Péptidos derivados de Melitina: potenciales agentes antibacterianos y anticancerígenos

Actualmente las infecciones causadas por bacterias causan preocupación, debido principalmente a la resistencia que estos microrganismos ejercen a los agentes terapéuticos disponibles para su tratamiento. Por otro lado, las enfermedades cancerígenas han sido responsables de una alta morbimortalidad,...

Full description

Autores:
Ramírez Andrade, Julián David
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Colegio Mayor de Cundinamarca
Repositorio:
Repositorio Colegio Mayor de Cundinamarca
Idioma:
spa
OAI Identifier:
oai:repositorio.unicolmayor.edu.co:unicolmayor/6891
Acceso en línea:
https://repositorio.unicolmayor.edu.co/handle/unicolmayor/6891
Palabra clave:
Péptidos antimicrobianos
Melitina
Actividad antibacteriana
Actividad anticancerígena
Rights
closedAccess
License
Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2024
id UCOLMAYOR2_3d1b599cd1b289f1a97c03523875e242
oai_identifier_str oai:repositorio.unicolmayor.edu.co:unicolmayor/6891
network_acronym_str UCOLMAYOR2
network_name_str Repositorio Colegio Mayor de Cundinamarca
repository_id_str
dc.title.spa.fl_str_mv Péptidos derivados de Melitina: potenciales agentes antibacterianos y anticancerígenos
title Péptidos derivados de Melitina: potenciales agentes antibacterianos y anticancerígenos
spellingShingle Péptidos derivados de Melitina: potenciales agentes antibacterianos y anticancerígenos
Péptidos antimicrobianos
Melitina
Actividad antibacteriana
Actividad anticancerígena
title_short Péptidos derivados de Melitina: potenciales agentes antibacterianos y anticancerígenos
title_full Péptidos derivados de Melitina: potenciales agentes antibacterianos y anticancerígenos
title_fullStr Péptidos derivados de Melitina: potenciales agentes antibacterianos y anticancerígenos
title_full_unstemmed Péptidos derivados de Melitina: potenciales agentes antibacterianos y anticancerígenos
title_sort Péptidos derivados de Melitina: potenciales agentes antibacterianos y anticancerígenos
dc.creator.fl_str_mv Ramírez Andrade, Julián David
dc.contributor.advisor.none.fl_str_mv Estupiñan Torres, Sandra Mónica
Parra Giraldo, Claudia Marcela
Vargas Casanova, Yerly
dc.contributor.author.none.fl_str_mv Ramírez Andrade, Julián David
dc.contributor.corporatename.spa.fl_str_mv Universidad Colegio Mayor de Cundinamarca
dc.subject.proposal.spa.fl_str_mv Péptidos antimicrobianos
Melitina
Actividad antibacteriana
Actividad anticancerígena
topic Péptidos antimicrobianos
Melitina
Actividad antibacteriana
Actividad anticancerígena
description Actualmente las infecciones causadas por bacterias causan preocupación, debido principalmente a la resistencia que estos microrganismos ejercen a los agentes terapéuticos disponibles para su tratamiento. Por otro lado, las enfermedades cancerígenas han sido responsables de una alta morbimortalidad, hoy en día el tratamiento incluye procedimientos invasivos que en muchos casos llegan a ser altamente tóxicos y poco efectivos. Bajo el anterior escenario, los Péptidos Antimicrobianos (PAMs) se han convertido en una opción terapéutica novedosa, debido a que exhiben múltiples funciones biológicas. La melitina es un PAM lineal de 26 aminoácidos, extraído del veneno de la abeja Apis mellifera, para la cual ha reportado ser efectiva contra bacterias sensibles y resistentes, además de células cancerosas. Con el objetivo de encontrar péptidos más cortos que melitina, con igual o mayor actividad tanto antibacteriana como anticancerígena y con reducida toxicidad, se han sintetizado péptidos derivados de melitina con algunas modificaciones en su secuencia. Así entonces, el propósito de esta revisión fue recopilar artículos tanto experimentales como revisiones, de los últimos veinte años, que reporten actividad antibacteriana (especialmente en bacterias de importancia en salud pública) y anticancerígena, de péptidos derivados de melitina, comparándolos con la secuencia original. Como resultado se logró encontrar que los péptidos modificados (reducción y sustitución de aminoácidos e hibridación con moléculas de otras fuentes) lograron conservar o incluso potenciar estas actividades, reduciendo la citotoxicidad con respecto al péptido original.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2024-05-21T17:27:05Z
dc.date.available.none.fl_str_mv 2024-05-21T17:27:05Z
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TP
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unicolmayor.edu.co/handle/unicolmayor/6891
url https://repositorio.unicolmayor.edu.co/handle/unicolmayor/6891
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Moreno M C, González E R, Beltrán C. Mecanismos de resistencia antimicrobiana en patógenos respiratorios. Rev Otorrinolaringol y cirugía cabeza y cuello [Internet]. 2009;69(2):185–92. Available from: https://scielo.conicyt.cl/pdf/orl/v69n2/art14.pdf
Chávez-Jacobo VM. La batalla contra las superbacterias: No más antimicrobianos, no hay ESKAPE. TIP Rev Espec en Ciencias Químico-Biológicas. 2020;23:1–11.
Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health [Internet]. 2019;9(4):217–22. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310786/
Baguley BC. Multiple drug resistance mechanisms in cancer. Mol Biotechnol [Internet]. 2010;46(3):308–16. Available from: https://link.springer.com/article/10.1007/s12033-010-9321-2
Block K, Gyllenhaal C, Lowe L, Amedei A, Amin R, Amin A, et al. A Broad-spectrum Integrative Prevention Design for Cancer Prevention and Therapy. Semin Cancer Biol [Internet]. 2015;35(Suppl):S276–304. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819002/
Huan Y, Kong Q, Mou H, Yi H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front Microbiol. 2020;11(October):1–21.
Pino-Angeles A, Lazaridis T. Effects of Peptide Charge, Orientation, and Concentration on Melittin Transmembrane Pores. Biophys J [Internet]. 2018;114(12):2865–74. Available from: https://doi.org/10.1016/j.bpj.2018.05.006
Picoli T, Peter CM, Zani JL, Waller SB, Lopes MG, Boesche KN, et al. Melittin and its potential in the destruction and inhibition of the biofilm formation by Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa isolated from bovine milk. Microb Pathog [Internet]. 2017;112:57–62. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0882401017307386?via%3Dihub
Jo M, Park MH, Kollipara PS, An BJ, Song HS, Han SB, et al. Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway. Toxicol Appl Pharmacol [Internet]. 2012;258(1):72–81. Available from: http://dx.doi.org/10.1016/j.taap.2011.10.009
Islam R, Siddiquia IA, Radyb M, Mukhtara H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Physiol Behav [Internet]. 2017;176(5):139–48. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5682937/
Oršolić N. Bee venom in cancer therapy. Cancer Metastasis Rev. 2012;31(1–2):173–94.
Akbari R, Hakemi Vala M, Hashemi A, Aghazadeh H, Sabatier JM, Pooshang Bagheri K. Action mechanism of melittin-derived antimicrobial peptides, MDP1 and MDP2, de novo designed against multidrug resistant bacteria. Amino Acids [Internet]. 2018;50(9):1231–43. Available from: https://doi.org/10.1007/s00726-018-2596-5
Moghaddam MM, Abolhassani F, Babavalian H, Mirnejad R, Barjini KA, Amani J. Comparison of in vitro antibacterial activities of two cationic peptides CM15 and CM11 against five pathogenic bacteria: Pseudomonas aeruginosa, Staphylococcus aureus, Vibrio cholerae, Acinetobacter baumannii, and Escherichia coli. Probiotics Antimicrob Proteins. 2012;4(2):133–9.
Phoenix DA, Dennison SR, Harris F. Antimicrobial Peptides: Their History, Evolution, and Functional Promiscuity. Antimicrob Pept. 2013;1–37.
Nakatsuji T, Gallo RL. Antimicrobial peptides: Old molecules with new ideas. J Invest Dermatol [Internet]. 2012;132(3 PART 2):887–95. Available from: http://dx.doi.org/10.1038/jid.2011.387
Lehrer RI, Bevins CL, Ganz T. Defensins and other antimicrobial peptides and proteins. Comb Chem High Throughput Screen [Internet]. 2005;95–110. Available from: https://www.eurekaselect.com/61285/article
Chena J, Larivierec W. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: A double-edged sword. Prog Neurobiol [Internet]. 2010;23(1):1–7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946189/
Memariani H, Memariani M. Anti-fungal properties and mechanisms of melittin. Appl Microbiol Biotechnol [Internet]. 2020;104(15):6513–26. Available from: https://link.springer.com/article/10.1007%2Fs00253-020-10701-0
Suchanek G, Kreil G, Hermodson MA. Amino acid sequence of honeybee prepromelittin synthesized in vitro. Proc Natl Acad Sci U S A. 1978;75(2):701–4.
Bogdanov S. Bee Venom : Composition , Health , Medicine : A Review. Bee Prod Sci [Internet]. 2011;(May):1–16. Available from: https://pdf4pro.com/download/bee-venom-composition-health-medicine-a-review-31d61b.html
Castañeda-Casimiro J, Ortega-Roque JA, Venegas-Medina AM, Aquino-Andrade A, Serafín-López J, Estrada-Parra S, et al. www.medigraphic.com Artículo de revisión Péptidos antimicrobianos: péptidos con múltiples funciones Artemisa medigraphic en línea. Péptidos Antimicrob [Internet]. 2009;18:16–29. Available from: www.medigraphic.com
Adade CM, Oliveira IRS, Pais JAR, Souto-Padrón T. Melittin peptide kills Trypanosoma cruzi parasites by inducing different cell death pathways. Toxicon [Internet]. 2013;69:227–39. Available from: http://dx.doi.org/10.1016/j.toxicon.2013.03.011
Rautenbach M, Troskie AM, Vosloo JA. Antifungal peptides: To be or not to be membrane active. Biochimie [Internet]. 2016;130:132–45. Available from: 54 http://dx.doi.org/10.1016/j.biochi.2016.05.013
Mwangi J, Hao X, Lai R, Zhang ZY. Antimicrobial peptides: new hope in the war against multidrug resistance. Zool Res [Internet]. 2019;40(6):488–505. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822926/
Splith K, Neundorf I. Antimicrobial peptides with cell-penetrating peptide properties and vice versa. Eur Biophys J [Internet]. 2011;40(4):387–97. Available from: https://link.springer.com/article/10.1007/s00249-011-0682-7
Li J, Koh JJ, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW. Membrane active antimicrobial peptides: Translating mechanistic insights to design. Front Neurosci. 2017;11(FEB):1–18.
Gutierrez P, Orduz S. PÉPTIDOS ANTIMICROBIANOS : ESTRUCTURA , FUNCIÓN Y APLICACIONES. Actual Biol [Internet]. 2003;25(78):5–15. Available from: https://revistas.udea.edu.co/index.php/actbio/article/view/329497/20785935
Tornesello AL, Borrelli A, Buonaguro L, Buonaguro FM, Tornesello ML. Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities. Molecules. 2020;25(12):1–25.
Téllez G, Castaño JC. Péptidos antimicrobianos Antimicrobial peptides. Iunics [Internet]. 2010;14(1):55–67. Available from: www.ncbi.nlm.nih.gov/pubmed
Zhang SF, Chen Z. Melittin exerts an antitumor effect on non-small celllung cancer cells. Mol Med Rep [Internet]. 2017;16(3):3581–6. Available from: https://www.spandidos-publications.com/10.3892/mmr.2017.6970
Fry DE. Antimicrobial peptides. Surg Infect (Larchmt). 2018;19(8):804–11.
Miura Y. NMR studies on the monomer-tetramer transition of melittin in an aqueous solution at high and low temperatures. Eur Biophys J [Internet]. 2012;41(7):629–36. Available from: https://link.springer.com/article/10.1007%2Fs00249-012-0831-7
Vargas-Casanova Y, Rodríguez-Mayor AV, Cardenas KJ, Leal-Castro AL, Muñoz-Molina LC, Fierro-Medina R, et al. Synergistic bactericide and antibiotic effects of dimeric, tetrameric, or palindromic peptides containing the RWQWR motif against Gram-positive and Gram-negative strains. RSC Adv [Internet]. 2019;9(13):7239–45. Available from: https://pubs.rsc.org/
León-Calvijo MA, Leal-Castro AL, Almanzar-Reina GA, Rosas-Pérez JE, García-Castañeda JE, Rivera-Monroy ZJ. Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus Faecalis ATCC 29212. Biomed Res Int. 2015;2015.
Vargas Casanova Y, Rodríguez Guerra JA, Umaña Pérez YA, Leal Castro AL, Almanzar Reina G, García Castañeda JE, et al. Antibacterial Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Cytotoxic Effect against MDA-MB-468 and MDA-MB-231 Breast Cancer Cell Lines. Molecules. 2017;22(10):1–11.
Vega SC, Martínez DA, Chalá M del S, Vargas HA, Rosas JE. Design, synthesis and evaluation of branched RRWQWR-based peptides as antibacterial agents against clinically relevant gram-positive and gram-negative pathogens. Front Microbiol. 2018;9(MAR).
Choi JH, Jang AY, Lin S, Lim S, Kim D, Park K, et al. Melittin, a honeybee venom-derived antimicrobial peptide, may target methicillin-resistant Staphylococcus aureus. Mol Med Rep [Internet]. 2015;12(5):6483–90. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4626175/pdf/mmr-12-05-6483.pdf
Pineda-Castañeda HM, Bonilla-Velásquez LD, Leal-Castro AL, Fierro-Medina R, García-Castañeda JE, Rivera-Monroy ZJ. Use of Click Chemistry for Obtaining an Antimicrobial Chimeric Peptide Containing the LfcinB and Buforin II Minimal Antimicrobial Motifs. ChemistrySelect. 2020;5(5):1655–7.
Liu C cui, Hao D jun, Zhang Q, An J, Zhao J jing, Chen B, et al. Application of bee venom and its main constituent melittin for cancer treatment. Cancer Chemother Pharmacol [Internet]. 2016;78(6):1113–30. Available from: https://link.springer.com/article/10.1007/s00280-016-3160-1
Wu Q, Patočka J, Kuča K. Insect antimicrobial peptides, a mini review. Toxins (Basel) [Internet]. 2018;10(11):1–17. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267271/
Shin JM, Jeong YJ, Cho HJ, Park KK, Chung IK, Lee IK, et al. Melittin Suppresses HIF-1α/VEGF Expression through Inhibition of ERK and mTOR/p70S6K Pathway in Human Cervical Carcinoma Cells. PLoS One [Internet]. 2013;8(7). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3720276/
Shaw P, Kumar N, Hammerschmid D, Privat-Maldonado A, Dewilde S, Bogaerts A. Synergistic effects of melittin and plasma treatment: A promising approach for cancer therapy. Cancers (Basel) [Internet]. 2019;11(8):1–19. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721819/
Gajski G, Garaj-Vrhovac V. Melittin: A lytic peptide with anticancer properties. Environ Toxicol Pharmacol [Internet]. 2013;36(2):697–705. Available from: http://dx.doi.org/10.1016/j.etap.2013.06.009
Marques Pereira AF, Albano M, Bérgamo Alves FC, Murbach Teles Andrade BF, Furlanetto A, Mores Rall VL, et al. Influence of apitoxin and melittin from Apis mellifera bee on Staphylococcus aureus strains. Microb Pathog [Internet]. 2020;141:104011. Available from: https://doi.org/10.1016/j.micpath.2020.104011
Memariani H, Memariani M, Shahidi-Dadras M, Nasiri S, Akhavan MM, Moravvej H. Melittin: from honeybees to superbugs. Appl Microbiol Biotechnol [Internet]. 2019;103(8):3265–76. Available from: https://link.springer.com/article/10.1007%2Fs00253-019-09698-y
Lakhundi S, Zhang K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin Microbiol Rev. 2018;31(4):1–103.
Boucher HW, Corey GR. Epidemiology of methicillin-resistant Staphylococcus aureus. Clin Infect Dis [Internet]. 2008;46(SUPPL. 5). Available from: https://academic.oup.com/cid/article/46/Supplement_5/S344/471923
Dosler S, Alev Gerceker A. In vitro activities of antimicrobial cationic peptides; melittin and nisin, alone or in combination with antibiotics against Gram-positive bacteria. J Chemother [Internet]. 2012;24(3):137–43. Available from: https://www.tandfonline.com/doi/abs/10.1179/1973947812Y.0000000007?journalCode=yjoc20
Leandro LF, Mendes CA, Casemiro LA, Vinholis AHC, Cunha WR, De Almeida R, et al. Antimicrobial activity of apitoxin, melittin and phospholipase A2 of honey bee (Apis mellifera) venom against oral pathogens. An Acad Bras Cienc [Internet]. 2015;87(1):147–55. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652015000100147&lng=en&tlng=en
Ceci M, Delpech G, Sparo M, Mezzina V, Bruni SS, Baldaccini B. Clinical and microbiological features of bacteremia caused by enterococcus faecalis. J Infect Dev Ctries [Internet]. 2015;9(11):1195–203. Available from: https://jidc.org/index.php/journal/article/view/26623628/1412
Davis E, Hicks L, Ali I, Salzman E, Wang J, Snitkin E, et al. Epidemiology of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis colonization in nursing facilities. Open Forum Infect Dis. 2020;7(1).
Ebbensgaard A, Mordhorst H, Overgaard MT, Nielsen CG, Aarestrup FM, Hansen EB. Comparative evaluation of the antimicrobial activity of different antimicrobial peptides against a range of pathogenic Bacteria. PLoS One. 2015;10(12):1–18.
Bardbari AM, Arabestani MR, Karami M, Keramat F, Aghazadeh H, Alikhani MY, et al. Highly synergistic activity of melittin with imipenem and colistin in biofilm inhibition against multidrug-resistant strong biofilm producer strains of acinetobacter baumannii. Eur J Clin Microbiol Infect Dis [Internet]. 2018;37(3):443–54. Available from: https://link.springer.com/article/10.1007%2Fs10096-018-3189-7
Karyne R, Lechuga GC, Souza ALA, Carvalho JPR da S, Bôas MHSV, De Simone SG. Pan-drug resistant acinetobacter baumannii, but not other strains, are resistant to the bee venom peptide mellitin. Antibiotics [Internet]. 2020;9(4). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235889/
Kaper JB, Nataro JP, Mobley HLT. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004;2(2):123–40.
Alarcon A, Omenaca F. Antimicrobial Resistance in Escherichia coli Sepsis. Pediatr Infect Dis J [Internet]. 2004;23(10):979–80. Available from: https://journals.asm.org/doi/10.1128/microbiolspec.ARBA-0026-2017
Paz-Zarza VM, Mangwani-Mordani S, Martínez-Maldonado A, Álvarez-Hernández D, Solano-Gálvez SG, Vázquez-López R. Pseudomonas aeruginosa: patogenicidad y resistencia antimicrobiana en la infección urinaria. Rev Chil infectología. 2019;36(2):180–9.
Hakimi Alni R, Tavasoli F, Barati A, Shahrokhi Badarbani S, Salimi Z, Babaeekhou L. Synergistic activity of melittin with mupirocin: A study against methicillin-resistant S. Aureus (MRSA) and methicillin-susceptible S. Aureus (MSSA) isolates. Saudi J Biol Sci [Internet]. 2020;27(10):2580–5. Available from: https://doi.org/10.1016/j.sjbs.2020.05.027
Subbalakshmi C, Nagaraj R, Sitaram N. Biological activities of C-terminal 15-residue synthetic fragment of melittin: Design of an analog with improved antibacterial activity. FEBS Lett [Internet]. 1999;448(1):62–6. Available from: https://febs.onlinelibrary.wiley.com/doi/full/10.1016/S0014-5793%2899%2900328-2
Hakimi Alni R, Tavasoli F, Barati A, Shahrokhi Badarbani S, Salimi Z, Babaeekhou L. Synergistic activity of melittin with mupirocin: A study against methicillin-resistant S. Aureus (MRSA) and methicillin-susceptible S. Aureus (MSSA) isolates. Saudi J Biol Sci [Internet]. 2020;(xxxx). Available from: https://doi.org/10.1016/j.sjbs.2020.05.027
Killion JJ, Dunn JD. Differential cytolysis of murine spleen, bone-marrow and leukemia cells by melittin reveals differences in membrane topography. Biochem Biophys Res Commun [Internet]. 1986;139(1):222–7. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0006291X86801024?via%3Dihub
Zhu HG, Tayeh I, Israel L, Castagna M. Different susceptibility of lung cell lines to inhibitors of tumor promotion and inducers of differentiation. J Biol Regul Homeost Agents. 1991;5(2):52–8.
Liu S, Yu M, He Y, Xiao L, Wang F, Song C, et al. Melittin prevents liver cancer cell metastasis through inhibition of the Rac1-dependent pathway. Hepatology [Internet]. 2008;47(6):1964–73. Available from: https://aasldpubs.onlinelibrary.wiley.com/doi/10.1002/hep.22240
Meong Cheol S, Kyoung AM, Heesun C, Cheol M, Yongzhuo H, Huining H, et al. Preparation and Characterization of Gelonin-Melittin Fusion Biotoxin for Synergistically Enhanced Anti-Tumor Activity. Physiol Behav [Internet]. 2017;176(5):139–48. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967393/
Ke M, Dong J, Wang Y, Zhang J, Zhang M, Wu Z, et al. MEL-pep, an analog of melittin, disrupts cell membranes and reverses 5-fluorouracil resistance in human hepatocellular carcinoma cells. Int J Biochem Cell Biol [Internet]. 2018;101:39–48. Available from: https://www.sciencedirect.com/science/article/abs/pii/S1357272518301250?via%3Dihub
Soliman C, Eastwood S, Truong VK, Ramsland PA, Elbourne A. The membrane effects of melittin on gastric and colorectal cancer. PLoS One [Internet]. 2019;14(10):1–16. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797111/
Yan H, Li S, Sun X, Mi H, He B. Individual substitution analogs of Mel(12-26), melittin’s C-terminal 15-residue peptide: Their antimicrobial and hemolytic actions. FEBS Lett. 2003;554(1–2):100–4.
García MG, San IJ, Galán J, Fidel II, Morales E. Péptidos antimicrobianos :potencialidades terapéuticas Antimicrobial peptides: their therapeutic potential. Rev Cubana Med Trop. 2017;69(2):1–13.
Sun X, Chen S, Li S, Yan H, Fan Y, Mi H. Deletion of two C-terminal Gln residues of 12-26-residue fragment of melittin improves its antimicrobial activity. Peptides. 2005;26(3):369–75.
Almaaytah A, Tarazi S, Al-Fandi M, Abuilhaija A, Al-Shar’i N, Al-Balas Q, et al. The design and functional characterization of the antimicrobial and antibiofilm activities of BMAP27-Melittin, a rationally designed hybrid peptide. Int J Pept Res Ther [Internet]. 2015;21(2):165–77. Available from: http://dx.doi.org/10.1007/s10989-014-9444-6
Xiaoyu Z, Deshui Y, Hainan G, Liqiang M, Jing L, Shumei Z, et al. Design, synthesis and antibacterial activity of a novel hybrid antimicrobial peptide LFM23. African J Biotechnol. 2012;11(8):2107–12.
Rodríguez-Hernández MJ, Saugar J, Docobo-Pérez F, de la Torre BG, Pachón-Ibáñez ME, García-Curiel A, et al. Studies on the antimicrobial activity of cecropin A-melittin hybrid peptides in colistin-resistant clinical isolates of Acinetobacter baumannii. J Antimicrob Chemother [Internet]. 2006;58(1):95–100. Available from: https://academic.oup.com/jac/article/58/1/95/726655
Barletta Farías R, Pérez Ponce L, Castro Vega G, Pujol Pérez M, Barletta del Castillo J, Dueñas Pérez Y. Acinetobacter baumannii multirresistente: un reto para la terapéutica actual. Medisur Rev Ciencias Médicas Cienfuegos [Internet]. 2018;16(2):322–34. Available from: http://scielo.sld.cu/pdf/ms/v16n2/ms15216.pdf
Lu X, Liu J, Gou L, Li J, Yuan B, Yang K, et al. Designing Melittin-Graphene Hybrid Complexes for Enhanced Antibacterial Activity. Adv Healthc Mater. 2019;8(9):1–10.
Saugar JM, Rodríguez-Hernández MJ, De La Torre BG, Pachón-Ibañez ME, Fernández-Reyes M, Andreu D, et al. Activity of cecropin A-melittin hybrid peptides against colistin-resistant clinical strains of Acinetobacter baumannii: Molecular basis for the differential mechanisms of action. Antimicrob Agents Chemother. 2006;50(4):1251–6.
Park C, Lee DG. Melittin induces apoptotic features in Candida albicans. Biochem Biophys Res Commun [Internet]. 2010;394(1):170–2. Available from: http://dx.doi.org/10.1016/j.bbrc.2010.02.138
Jamasbi E, Mularski A, Separovic F. Model Membrane and Cell Studies of Antimicrobial Activity of Melittin Analogues. Curr Top Med Chem. 2016;16:40–5.
Choi H, Lee DG. Synergistic effect of antimicrobial peptide arenicin-1 in combination with antibiotics against pathogenic bacteria. Res Microbiol [Internet]. 2012;163(6–7):479–86. Available from: http://dx.doi.org/10.1016/j.resmic.2012.06.001
Martinez M, Gonçalves S, Felício MR, Maturana P, Santos NC, Semorile L, et al. Synergistic and antibiofilm activity of the antimicrobial peptide P5 against carbapenem-resistant Pseudomonas aeruginosa. Biochim Biophys Acta - Biomembr [Internet]. 2019;1861(7):1329–37. Available from: https://doi.org/10.1016/j.bbamem.2019.05.008
Al-Ani I, Zimmermann S, Reichling J, Wink M. Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens. Phytomedicine. 2015;22(2):245–55.
Giacometti A, Cirioni O, Kamysz W, D’Amato G, Silvestri C, Del Prete MS, et al. Comparative activities of cecropin A, melittin, and cecropin A-melittin peptide CA(1-7)M(2-9)NH2 against multidrug-resistant nosocomial isolates of Acinetobacter baumannii. Peptides. 2003;24(9):1315–8.
Giacometti A, Cirioni O, Kamysz W, D’Amato G, Silvestri C, Del Prete MS, et al. In vitro activity and killing effect of the synthetic hybrid cecropin A-melittin peptide CA(1-7)M(2-9)NH2 on methicillin-resistant nosocomial isolates of Staphylococcus aureus and interactions with clinically used antibiotics. Diagn Microbiol Infect Dis [Internet]. 2004;49(3):197–200. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0732889304000422?via%3Dihub
Geitani R, Ayoub Moubareck C, Touqui L, Karam Sarkis D. Cationic antimicrobial peptides: Alternatives and/or adjuvants to antibiotics active against methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa. BMC Microbiol [Internet]. 2019;19(1):1–12. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6408789/pdf/12866_2019_Article_1416.pdf
Ciandrini E, Morroni G, Cirioni O, Kamysz W, Kamysz E, Brescini L, et al. Synergistic combinations of antimicrobial peptides against biofilms of methicillin-resistant Staphylococcus aureus (MRSA) on polystyrene and medical devices. J Glob Antimicrob Resist [Internet]. 2020;21:203–10. Available from: https://doi.org/10.1016/j.jgar.2019.10.022
Gopal R, Kim YG, Lee JH, Lee SK, Chae JD, Son BK, et al. Synergistic effects and antibiofilm properties of chimeric peptides against multidrug-resistant acinetobacter baumannii strains. Antimicrob Agents Chemother [Internet]. 2014;58(3):1622–9. Available from: https://journals.asm.org/doi/full/10.1128/AAC.02473-13
Jamasbi E, Lucky SS, Li W, Hossain MA, Gopalakrishnakone P, Separovic F. Effect of dimerized melittin on gastric cancer cells and antibacterial activity. Amino Acids [Internet]. 2018;50(8):1101–10. Available from: https://doi.org/10.1007/s00726-018-2587-6
Jiang X, Qian K, Liu G, Sun L, Zhou G, Li J, et al. Design and activity study of a melittin–thanatin hybrid peptide. AMB Express [Internet]. 2019;9(1). Available from: https://doi.org/10.1186/s13568-019-0739-z
Wan L lan, Zhang D qi, Zhang J nan, Ren L qun. Anti-hepatocarcinoma activity of TT-1, an analog of melittin, combined with interferon-α via promoting the interaction of NKG2D and MICA. J Zhejiang Univ Sci B [Internet]. 2017;18(6):522–31. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5481301/
TtWan L, Zhang D, Zhang J, Ren L. Tt-1, an analog of melittin, triggers apoptosis in human thyroid cancer TT cells via regulating caspase, Bcl-2 and bax. Oncol Lett [Internet]. 2018;15(1):1271–8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5768099/
Xu T, Cui T, Peng L, Kong S, Zou J, Tian X. The anti-hepatocellular carcinoma activity of Mel-P15 is mediated by natural killer cells. Oncol Lett [Internet]. 2017;14(6):6901–6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5686529/pdf/ol-14-06-6901.pdf
Lee YJ, Kang SJ, Kim BM, Kim YJ, Woo HD, Chung HW. Cytotoxicity of honeybee (Apis mellifera) venom in normal human lymphocytes and HL-60 cells. Chem Biol Interact [Internet]. 2007;169(3):189–97. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0009279707002013?via%3Dihub
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2024
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2024
https://creativecommons.org/licenses/by-nc/4.0/
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.spa.fl_str_mv 67p.
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Colegio Mayor de Cundinamarca
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias de la Salud
dc.publisher.place.spa.fl_str_mv Bogotá D.C
dc.publisher.program.spa.fl_str_mv Bacteriología y Laboratorio Clínico
institution Colegio Mayor de Cundinamarca
bitstream.url.fl_str_mv https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6891/1/Peptidos%20derivados%20de%20melitina.pdf
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6891/2/P%c3%89PTIDOS%20DERIVADOS%20DE%20MELITINA.pptx
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6891/3/FORMATO%20CARTA%20DERECHOS%20DE%20AUTOR%20FIRMA%20DECANA%20IIP2021%20Ramirez%20Andrade.docx.pdf
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6891/4/FORMATO%20DERECHOS%20DE%20AUTOR%20TG%202021%20Ramirez%20Andrade.pdf
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6891/5/license.txt
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6891/6/Peptidos%20derivados%20de%20melitina.pdf.txt
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6891/8/P%c3%89PTIDOS%20DERIVADOS%20DE%20MELITINA.pptx.txt
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6891/9/FORMATO%20CARTA%20DERECHOS%20DE%20AUTOR%20FIRMA%20DECANA%20IIP2021%20Ramirez%20Andrade.docx.pdf.txt
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6891/11/FORMATO%20DERECHOS%20DE%20AUTOR%20TG%202021%20Ramirez%20Andrade.pdf.txt
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6891/7/Peptidos%20derivados%20de%20melitina.pdf.jpg
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6891/10/FORMATO%20CARTA%20DERECHOS%20DE%20AUTOR%20FIRMA%20DECANA%20IIP2021%20Ramirez%20Andrade.docx.pdf.jpg
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6891/12/FORMATO%20DERECHOS%20DE%20AUTOR%20TG%202021%20Ramirez%20Andrade.pdf.jpg
bitstream.checksum.fl_str_mv d6e8d02b9896dd21849af57e67a48bf1
62a5828619cc048157b6c8cc76d9d32c
61c89352a80350a1cf2e2517584768ed
9bdceb7ede37985cf97584021c2a6018
2f9959eaf5b71fae44bbf9ec84150c7a
71f733fe6b3915ae184b3ed497e45788
f86bb36da0f0402caaf1eaf49091ed83
9d0f5a0a921f854a1d8ad8eec4f3d0ab
7ac62307886c318727fcf9f5ec4a8c0b
cd577be9e6296f6e225c33dcd298da02
48587075d9fe3924a709d8ac5024aea8
119ddcb036931421cd7b1f69456fa5a8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital Unicolmayor
repository.mail.fl_str_mv repositorio@unicolmayor.edu.co
_version_ 1812210065338269696
spelling Estupiñan Torres, Sandra Mónica09109e7c299c7d64a86f03700571e177Parra Giraldo, Claudia Marcelacdd8cdbf982881d2a26324066538c062Vargas Casanova, Yerly62ca6840539d58ad6f6a0751720d80f3Ramírez Andrade, Julián Davidf2585c470e92f7917a6f946d998bcc5cUniversidad Colegio Mayor de Cundinamarca2024-05-21T17:27:05Z2024-05-21T17:27:05Z2021https://repositorio.unicolmayor.edu.co/handle/unicolmayor/6891Actualmente las infecciones causadas por bacterias causan preocupación, debido principalmente a la resistencia que estos microrganismos ejercen a los agentes terapéuticos disponibles para su tratamiento. Por otro lado, las enfermedades cancerígenas han sido responsables de una alta morbimortalidad, hoy en día el tratamiento incluye procedimientos invasivos que en muchos casos llegan a ser altamente tóxicos y poco efectivos. Bajo el anterior escenario, los Péptidos Antimicrobianos (PAMs) se han convertido en una opción terapéutica novedosa, debido a que exhiben múltiples funciones biológicas. La melitina es un PAM lineal de 26 aminoácidos, extraído del veneno de la abeja Apis mellifera, para la cual ha reportado ser efectiva contra bacterias sensibles y resistentes, además de células cancerosas. Con el objetivo de encontrar péptidos más cortos que melitina, con igual o mayor actividad tanto antibacteriana como anticancerígena y con reducida toxicidad, se han sintetizado péptidos derivados de melitina con algunas modificaciones en su secuencia. Así entonces, el propósito de esta revisión fue recopilar artículos tanto experimentales como revisiones, de los últimos veinte años, que reporten actividad antibacteriana (especialmente en bacterias de importancia en salud pública) y anticancerígena, de péptidos derivados de melitina, comparándolos con la secuencia original. Como resultado se logró encontrar que los péptidos modificados (reducción y sustitución de aminoácidos e hibridación con moléculas de otras fuentes) lograron conservar o incluso potenciar estas actividades, reduciendo la citotoxicidad con respecto al péptido original.Tabla de Contenido RESUMEN 9 Introducción 11 1. Antecedentes 13 2. Marco Teórico 15 2.1 Péptidos Antimicrobianos (PAMs) 15 2.2 Melitina: Un péptido antimicrobiano 16 2.3 Actividad Antibacteriana 18 2.3.1. Actividad de Melitina en bacterias Grampositivas 19 2.3.2. Actividad de melitina en bacterias Gramnegativas 20 2.4. Actividad anticancerígena 21 3. Diseño Metodológico 24 3.1. Tipo de investigación 24 3.2 Universo, población y muestra 24 3.2.1. Universo 24 3.2.2. Población 24 3.2.3 Muestra 24 4. Metodología 24 4.1 Revisión bibliográfica. 24 4.2 Selección del material bibliográfico. 25 4.3 Elaboración de la estructura del documento. 25 5. Resultados y discusión 26 5.1 Revisión bibliográfica. 26 5.2 Selección del material bibliográfico. 26 5.3 Péptidos derivados de melitina con actividad antibacteriana 28 5.4. Mecanismos de acción de péptidos derivados de melitina en bacterias 33 5.5 Interacción de péptidos derivados de melitina con otras moléculas antibacterianas 36 5.6 Actividad Anticancerígena de péptidos derivados de melitina 45 6. Conclusiones 50 7. Referencias 52 Anexos 61PregradoBacteriólogo(a) y Laboratorista Clínico67p.application/pdfspaUniversidad Colegio Mayor de CundinamarcaFacultad de Ciencias de la SaludBogotá D.CBacteriología y Laboratorio ClínicoDerechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2024https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/closedAccessAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)http://purl.org/coar/access_right/c_14cbPéptidos derivados de Melitina: potenciales agentes antibacterianos y anticancerígenosTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/bachelorThesishttps://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/publishedVersionMoreno M C, González E R, Beltrán C. Mecanismos de resistencia antimicrobiana en patógenos respiratorios. Rev Otorrinolaringol y cirugía cabeza y cuello [Internet]. 2009;69(2):185–92. Available from: https://scielo.conicyt.cl/pdf/orl/v69n2/art14.pdfChávez-Jacobo VM. La batalla contra las superbacterias: No más antimicrobianos, no hay ESKAPE. TIP Rev Espec en Ciencias Químico-Biológicas. 2020;23:1–11.Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health [Internet]. 2019;9(4):217–22. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310786/Baguley BC. Multiple drug resistance mechanisms in cancer. Mol Biotechnol [Internet]. 2010;46(3):308–16. Available from: https://link.springer.com/article/10.1007/s12033-010-9321-2Block K, Gyllenhaal C, Lowe L, Amedei A, Amin R, Amin A, et al. A Broad-spectrum Integrative Prevention Design for Cancer Prevention and Therapy. Semin Cancer Biol [Internet]. 2015;35(Suppl):S276–304. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819002/Huan Y, Kong Q, Mou H, Yi H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front Microbiol. 2020;11(October):1–21.Pino-Angeles A, Lazaridis T. Effects of Peptide Charge, Orientation, and Concentration on Melittin Transmembrane Pores. Biophys J [Internet]. 2018;114(12):2865–74. Available from: https://doi.org/10.1016/j.bpj.2018.05.006Picoli T, Peter CM, Zani JL, Waller SB, Lopes MG, Boesche KN, et al. Melittin and its potential in the destruction and inhibition of the biofilm formation by Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa isolated from bovine milk. Microb Pathog [Internet]. 2017;112:57–62. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0882401017307386?via%3DihubJo M, Park MH, Kollipara PS, An BJ, Song HS, Han SB, et al. Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway. Toxicol Appl Pharmacol [Internet]. 2012;258(1):72–81. Available from: http://dx.doi.org/10.1016/j.taap.2011.10.009Islam R, Siddiquia IA, Radyb M, Mukhtara H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Physiol Behav [Internet]. 2017;176(5):139–48. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5682937/Oršolić N. Bee venom in cancer therapy. Cancer Metastasis Rev. 2012;31(1–2):173–94.Akbari R, Hakemi Vala M, Hashemi A, Aghazadeh H, Sabatier JM, Pooshang Bagheri K. Action mechanism of melittin-derived antimicrobial peptides, MDP1 and MDP2, de novo designed against multidrug resistant bacteria. Amino Acids [Internet]. 2018;50(9):1231–43. Available from: https://doi.org/10.1007/s00726-018-2596-5Moghaddam MM, Abolhassani F, Babavalian H, Mirnejad R, Barjini KA, Amani J. Comparison of in vitro antibacterial activities of two cationic peptides CM15 and CM11 against five pathogenic bacteria: Pseudomonas aeruginosa, Staphylococcus aureus, Vibrio cholerae, Acinetobacter baumannii, and Escherichia coli. Probiotics Antimicrob Proteins. 2012;4(2):133–9.Phoenix DA, Dennison SR, Harris F. Antimicrobial Peptides: Their History, Evolution, and Functional Promiscuity. Antimicrob Pept. 2013;1–37.Nakatsuji T, Gallo RL. Antimicrobial peptides: Old molecules with new ideas. J Invest Dermatol [Internet]. 2012;132(3 PART 2):887–95. Available from: http://dx.doi.org/10.1038/jid.2011.387Lehrer RI, Bevins CL, Ganz T. Defensins and other antimicrobial peptides and proteins. Comb Chem High Throughput Screen [Internet]. 2005;95–110. Available from: https://www.eurekaselect.com/61285/articleChena J, Larivierec W. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: A double-edged sword. Prog Neurobiol [Internet]. 2010;23(1):1–7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946189/Memariani H, Memariani M. Anti-fungal properties and mechanisms of melittin. Appl Microbiol Biotechnol [Internet]. 2020;104(15):6513–26. Available from: https://link.springer.com/article/10.1007%2Fs00253-020-10701-0Suchanek G, Kreil G, Hermodson MA. Amino acid sequence of honeybee prepromelittin synthesized in vitro. Proc Natl Acad Sci U S A. 1978;75(2):701–4.Bogdanov S. Bee Venom : Composition , Health , Medicine : A Review. Bee Prod Sci [Internet]. 2011;(May):1–16. Available from: https://pdf4pro.com/download/bee-venom-composition-health-medicine-a-review-31d61b.htmlCastañeda-Casimiro J, Ortega-Roque JA, Venegas-Medina AM, Aquino-Andrade A, Serafín-López J, Estrada-Parra S, et al. www.medigraphic.com Artículo de revisión Péptidos antimicrobianos: péptidos con múltiples funciones Artemisa medigraphic en línea. Péptidos Antimicrob [Internet]. 2009;18:16–29. Available from: www.medigraphic.comAdade CM, Oliveira IRS, Pais JAR, Souto-Padrón T. Melittin peptide kills Trypanosoma cruzi parasites by inducing different cell death pathways. Toxicon [Internet]. 2013;69:227–39. Available from: http://dx.doi.org/10.1016/j.toxicon.2013.03.011Rautenbach M, Troskie AM, Vosloo JA. Antifungal peptides: To be or not to be membrane active. Biochimie [Internet]. 2016;130:132–45. Available from: 54 http://dx.doi.org/10.1016/j.biochi.2016.05.013Mwangi J, Hao X, Lai R, Zhang ZY. Antimicrobial peptides: new hope in the war against multidrug resistance. Zool Res [Internet]. 2019;40(6):488–505. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822926/Splith K, Neundorf I. Antimicrobial peptides with cell-penetrating peptide properties and vice versa. Eur Biophys J [Internet]. 2011;40(4):387–97. Available from: https://link.springer.com/article/10.1007/s00249-011-0682-7Li J, Koh JJ, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW. Membrane active antimicrobial peptides: Translating mechanistic insights to design. Front Neurosci. 2017;11(FEB):1–18.Gutierrez P, Orduz S. PÉPTIDOS ANTIMICROBIANOS : ESTRUCTURA , FUNCIÓN Y APLICACIONES. Actual Biol [Internet]. 2003;25(78):5–15. Available from: https://revistas.udea.edu.co/index.php/actbio/article/view/329497/20785935Tornesello AL, Borrelli A, Buonaguro L, Buonaguro FM, Tornesello ML. Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities. Molecules. 2020;25(12):1–25.Téllez G, Castaño JC. Péptidos antimicrobianos Antimicrobial peptides. Iunics [Internet]. 2010;14(1):55–67. Available from: www.ncbi.nlm.nih.gov/pubmedZhang SF, Chen Z. Melittin exerts an antitumor effect on non-small celllung cancer cells. Mol Med Rep [Internet]. 2017;16(3):3581–6. Available from: https://www.spandidos-publications.com/10.3892/mmr.2017.6970Fry DE. Antimicrobial peptides. Surg Infect (Larchmt). 2018;19(8):804–11.Miura Y. NMR studies on the monomer-tetramer transition of melittin in an aqueous solution at high and low temperatures. Eur Biophys J [Internet]. 2012;41(7):629–36. Available from: https://link.springer.com/article/10.1007%2Fs00249-012-0831-7Vargas-Casanova Y, Rodríguez-Mayor AV, Cardenas KJ, Leal-Castro AL, Muñoz-Molina LC, Fierro-Medina R, et al. Synergistic bactericide and antibiotic effects of dimeric, tetrameric, or palindromic peptides containing the RWQWR motif against Gram-positive and Gram-negative strains. RSC Adv [Internet]. 2019;9(13):7239–45. Available from: https://pubs.rsc.org/León-Calvijo MA, Leal-Castro AL, Almanzar-Reina GA, Rosas-Pérez JE, García-Castañeda JE, Rivera-Monroy ZJ. Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus Faecalis ATCC 29212. Biomed Res Int. 2015;2015.Vargas Casanova Y, Rodríguez Guerra JA, Umaña Pérez YA, Leal Castro AL, Almanzar Reina G, García Castañeda JE, et al. Antibacterial Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Cytotoxic Effect against MDA-MB-468 and MDA-MB-231 Breast Cancer Cell Lines. Molecules. 2017;22(10):1–11.Vega SC, Martínez DA, Chalá M del S, Vargas HA, Rosas JE. Design, synthesis and evaluation of branched RRWQWR-based peptides as antibacterial agents against clinically relevant gram-positive and gram-negative pathogens. Front Microbiol. 2018;9(MAR).Choi JH, Jang AY, Lin S, Lim S, Kim D, Park K, et al. Melittin, a honeybee venom-derived antimicrobial peptide, may target methicillin-resistant Staphylococcus aureus. Mol Med Rep [Internet]. 2015;12(5):6483–90. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4626175/pdf/mmr-12-05-6483.pdfPineda-Castañeda HM, Bonilla-Velásquez LD, Leal-Castro AL, Fierro-Medina R, García-Castañeda JE, Rivera-Monroy ZJ. Use of Click Chemistry for Obtaining an Antimicrobial Chimeric Peptide Containing the LfcinB and Buforin II Minimal Antimicrobial Motifs. ChemistrySelect. 2020;5(5):1655–7.Liu C cui, Hao D jun, Zhang Q, An J, Zhao J jing, Chen B, et al. Application of bee venom and its main constituent melittin for cancer treatment. Cancer Chemother Pharmacol [Internet]. 2016;78(6):1113–30. Available from: https://link.springer.com/article/10.1007/s00280-016-3160-1Wu Q, Patočka J, Kuča K. Insect antimicrobial peptides, a mini review. Toxins (Basel) [Internet]. 2018;10(11):1–17. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267271/Shin JM, Jeong YJ, Cho HJ, Park KK, Chung IK, Lee IK, et al. Melittin Suppresses HIF-1α/VEGF Expression through Inhibition of ERK and mTOR/p70S6K Pathway in Human Cervical Carcinoma Cells. PLoS One [Internet]. 2013;8(7). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3720276/Shaw P, Kumar N, Hammerschmid D, Privat-Maldonado A, Dewilde S, Bogaerts A. Synergistic effects of melittin and plasma treatment: A promising approach for cancer therapy. Cancers (Basel) [Internet]. 2019;11(8):1–19. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721819/Gajski G, Garaj-Vrhovac V. Melittin: A lytic peptide with anticancer properties. Environ Toxicol Pharmacol [Internet]. 2013;36(2):697–705. Available from: http://dx.doi.org/10.1016/j.etap.2013.06.009Marques Pereira AF, Albano M, Bérgamo Alves FC, Murbach Teles Andrade BF, Furlanetto A, Mores Rall VL, et al. Influence of apitoxin and melittin from Apis mellifera bee on Staphylococcus aureus strains. Microb Pathog [Internet]. 2020;141:104011. Available from: https://doi.org/10.1016/j.micpath.2020.104011Memariani H, Memariani M, Shahidi-Dadras M, Nasiri S, Akhavan MM, Moravvej H. Melittin: from honeybees to superbugs. Appl Microbiol Biotechnol [Internet]. 2019;103(8):3265–76. Available from: https://link.springer.com/article/10.1007%2Fs00253-019-09698-yLakhundi S, Zhang K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin Microbiol Rev. 2018;31(4):1–103.Boucher HW, Corey GR. Epidemiology of methicillin-resistant Staphylococcus aureus. Clin Infect Dis [Internet]. 2008;46(SUPPL. 5). Available from: https://academic.oup.com/cid/article/46/Supplement_5/S344/471923Dosler S, Alev Gerceker A. In vitro activities of antimicrobial cationic peptides; melittin and nisin, alone or in combination with antibiotics against Gram-positive bacteria. J Chemother [Internet]. 2012;24(3):137–43. Available from: https://www.tandfonline.com/doi/abs/10.1179/1973947812Y.0000000007?journalCode=yjoc20Leandro LF, Mendes CA, Casemiro LA, Vinholis AHC, Cunha WR, De Almeida R, et al. Antimicrobial activity of apitoxin, melittin and phospholipase A2 of honey bee (Apis mellifera) venom against oral pathogens. An Acad Bras Cienc [Internet]. 2015;87(1):147–55. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652015000100147&lng=en&tlng=enCeci M, Delpech G, Sparo M, Mezzina V, Bruni SS, Baldaccini B. Clinical and microbiological features of bacteremia caused by enterococcus faecalis. J Infect Dev Ctries [Internet]. 2015;9(11):1195–203. Available from: https://jidc.org/index.php/journal/article/view/26623628/1412Davis E, Hicks L, Ali I, Salzman E, Wang J, Snitkin E, et al. Epidemiology of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis colonization in nursing facilities. Open Forum Infect Dis. 2020;7(1).Ebbensgaard A, Mordhorst H, Overgaard MT, Nielsen CG, Aarestrup FM, Hansen EB. Comparative evaluation of the antimicrobial activity of different antimicrobial peptides against a range of pathogenic Bacteria. PLoS One. 2015;10(12):1–18.Bardbari AM, Arabestani MR, Karami M, Keramat F, Aghazadeh H, Alikhani MY, et al. Highly synergistic activity of melittin with imipenem and colistin in biofilm inhibition against multidrug-resistant strong biofilm producer strains of acinetobacter baumannii. Eur J Clin Microbiol Infect Dis [Internet]. 2018;37(3):443–54. Available from: https://link.springer.com/article/10.1007%2Fs10096-018-3189-7Karyne R, Lechuga GC, Souza ALA, Carvalho JPR da S, Bôas MHSV, De Simone SG. Pan-drug resistant acinetobacter baumannii, but not other strains, are resistant to the bee venom peptide mellitin. Antibiotics [Internet]. 2020;9(4). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235889/Kaper JB, Nataro JP, Mobley HLT. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004;2(2):123–40.Alarcon A, Omenaca F. Antimicrobial Resistance in Escherichia coli Sepsis. Pediatr Infect Dis J [Internet]. 2004;23(10):979–80. Available from: https://journals.asm.org/doi/10.1128/microbiolspec.ARBA-0026-2017Paz-Zarza VM, Mangwani-Mordani S, Martínez-Maldonado A, Álvarez-Hernández D, Solano-Gálvez SG, Vázquez-López R. Pseudomonas aeruginosa: patogenicidad y resistencia antimicrobiana en la infección urinaria. Rev Chil infectología. 2019;36(2):180–9.Hakimi Alni R, Tavasoli F, Barati A, Shahrokhi Badarbani S, Salimi Z, Babaeekhou L. Synergistic activity of melittin with mupirocin: A study against methicillin-resistant S. Aureus (MRSA) and methicillin-susceptible S. Aureus (MSSA) isolates. Saudi J Biol Sci [Internet]. 2020;27(10):2580–5. Available from: https://doi.org/10.1016/j.sjbs.2020.05.027Subbalakshmi C, Nagaraj R, Sitaram N. Biological activities of C-terminal 15-residue synthetic fragment of melittin: Design of an analog with improved antibacterial activity. FEBS Lett [Internet]. 1999;448(1):62–6. Available from: https://febs.onlinelibrary.wiley.com/doi/full/10.1016/S0014-5793%2899%2900328-2Hakimi Alni R, Tavasoli F, Barati A, Shahrokhi Badarbani S, Salimi Z, Babaeekhou L. Synergistic activity of melittin with mupirocin: A study against methicillin-resistant S. Aureus (MRSA) and methicillin-susceptible S. Aureus (MSSA) isolates. Saudi J Biol Sci [Internet]. 2020;(xxxx). Available from: https://doi.org/10.1016/j.sjbs.2020.05.027Killion JJ, Dunn JD. Differential cytolysis of murine spleen, bone-marrow and leukemia cells by melittin reveals differences in membrane topography. Biochem Biophys Res Commun [Internet]. 1986;139(1):222–7. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0006291X86801024?via%3DihubZhu HG, Tayeh I, Israel L, Castagna M. Different susceptibility of lung cell lines to inhibitors of tumor promotion and inducers of differentiation. J Biol Regul Homeost Agents. 1991;5(2):52–8.Liu S, Yu M, He Y, Xiao L, Wang F, Song C, et al. Melittin prevents liver cancer cell metastasis through inhibition of the Rac1-dependent pathway. Hepatology [Internet]. 2008;47(6):1964–73. Available from: https://aasldpubs.onlinelibrary.wiley.com/doi/10.1002/hep.22240Meong Cheol S, Kyoung AM, Heesun C, Cheol M, Yongzhuo H, Huining H, et al. Preparation and Characterization of Gelonin-Melittin Fusion Biotoxin for Synergistically Enhanced Anti-Tumor Activity. Physiol Behav [Internet]. 2017;176(5):139–48. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967393/Ke M, Dong J, Wang Y, Zhang J, Zhang M, Wu Z, et al. MEL-pep, an analog of melittin, disrupts cell membranes and reverses 5-fluorouracil resistance in human hepatocellular carcinoma cells. Int J Biochem Cell Biol [Internet]. 2018;101:39–48. Available from: https://www.sciencedirect.com/science/article/abs/pii/S1357272518301250?via%3DihubSoliman C, Eastwood S, Truong VK, Ramsland PA, Elbourne A. The membrane effects of melittin on gastric and colorectal cancer. PLoS One [Internet]. 2019;14(10):1–16. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797111/Yan H, Li S, Sun X, Mi H, He B. Individual substitution analogs of Mel(12-26), melittin’s C-terminal 15-residue peptide: Their antimicrobial and hemolytic actions. FEBS Lett. 2003;554(1–2):100–4.García MG, San IJ, Galán J, Fidel II, Morales E. Péptidos antimicrobianos :potencialidades terapéuticas Antimicrobial peptides: their therapeutic potential. Rev Cubana Med Trop. 2017;69(2):1–13.Sun X, Chen S, Li S, Yan H, Fan Y, Mi H. Deletion of two C-terminal Gln residues of 12-26-residue fragment of melittin improves its antimicrobial activity. Peptides. 2005;26(3):369–75.Almaaytah A, Tarazi S, Al-Fandi M, Abuilhaija A, Al-Shar’i N, Al-Balas Q, et al. The design and functional characterization of the antimicrobial and antibiofilm activities of BMAP27-Melittin, a rationally designed hybrid peptide. Int J Pept Res Ther [Internet]. 2015;21(2):165–77. Available from: http://dx.doi.org/10.1007/s10989-014-9444-6Xiaoyu Z, Deshui Y, Hainan G, Liqiang M, Jing L, Shumei Z, et al. Design, synthesis and antibacterial activity of a novel hybrid antimicrobial peptide LFM23. African J Biotechnol. 2012;11(8):2107–12.Rodríguez-Hernández MJ, Saugar J, Docobo-Pérez F, de la Torre BG, Pachón-Ibáñez ME, García-Curiel A, et al. Studies on the antimicrobial activity of cecropin A-melittin hybrid peptides in colistin-resistant clinical isolates of Acinetobacter baumannii. J Antimicrob Chemother [Internet]. 2006;58(1):95–100. Available from: https://academic.oup.com/jac/article/58/1/95/726655Barletta Farías R, Pérez Ponce L, Castro Vega G, Pujol Pérez M, Barletta del Castillo J, Dueñas Pérez Y. Acinetobacter baumannii multirresistente: un reto para la terapéutica actual. Medisur Rev Ciencias Médicas Cienfuegos [Internet]. 2018;16(2):322–34. Available from: http://scielo.sld.cu/pdf/ms/v16n2/ms15216.pdfLu X, Liu J, Gou L, Li J, Yuan B, Yang K, et al. Designing Melittin-Graphene Hybrid Complexes for Enhanced Antibacterial Activity. Adv Healthc Mater. 2019;8(9):1–10.Saugar JM, Rodríguez-Hernández MJ, De La Torre BG, Pachón-Ibañez ME, Fernández-Reyes M, Andreu D, et al. Activity of cecropin A-melittin hybrid peptides against colistin-resistant clinical strains of Acinetobacter baumannii: Molecular basis for the differential mechanisms of action. Antimicrob Agents Chemother. 2006;50(4):1251–6.Park C, Lee DG. Melittin induces apoptotic features in Candida albicans. Biochem Biophys Res Commun [Internet]. 2010;394(1):170–2. Available from: http://dx.doi.org/10.1016/j.bbrc.2010.02.138Jamasbi E, Mularski A, Separovic F. Model Membrane and Cell Studies of Antimicrobial Activity of Melittin Analogues. Curr Top Med Chem. 2016;16:40–5.Choi H, Lee DG. Synergistic effect of antimicrobial peptide arenicin-1 in combination with antibiotics against pathogenic bacteria. Res Microbiol [Internet]. 2012;163(6–7):479–86. Available from: http://dx.doi.org/10.1016/j.resmic.2012.06.001Martinez M, Gonçalves S, Felício MR, Maturana P, Santos NC, Semorile L, et al. Synergistic and antibiofilm activity of the antimicrobial peptide P5 against carbapenem-resistant Pseudomonas aeruginosa. Biochim Biophys Acta - Biomembr [Internet]. 2019;1861(7):1329–37. Available from: https://doi.org/10.1016/j.bbamem.2019.05.008Al-Ani I, Zimmermann S, Reichling J, Wink M. Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens. Phytomedicine. 2015;22(2):245–55.Giacometti A, Cirioni O, Kamysz W, D’Amato G, Silvestri C, Del Prete MS, et al. Comparative activities of cecropin A, melittin, and cecropin A-melittin peptide CA(1-7)M(2-9)NH2 against multidrug-resistant nosocomial isolates of Acinetobacter baumannii. Peptides. 2003;24(9):1315–8.Giacometti A, Cirioni O, Kamysz W, D’Amato G, Silvestri C, Del Prete MS, et al. In vitro activity and killing effect of the synthetic hybrid cecropin A-melittin peptide CA(1-7)M(2-9)NH2 on methicillin-resistant nosocomial isolates of Staphylococcus aureus and interactions with clinically used antibiotics. Diagn Microbiol Infect Dis [Internet]. 2004;49(3):197–200. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0732889304000422?via%3DihubGeitani R, Ayoub Moubareck C, Touqui L, Karam Sarkis D. Cationic antimicrobial peptides: Alternatives and/or adjuvants to antibiotics active against methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa. BMC Microbiol [Internet]. 2019;19(1):1–12. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6408789/pdf/12866_2019_Article_1416.pdfCiandrini E, Morroni G, Cirioni O, Kamysz W, Kamysz E, Brescini L, et al. Synergistic combinations of antimicrobial peptides against biofilms of methicillin-resistant Staphylococcus aureus (MRSA) on polystyrene and medical devices. J Glob Antimicrob Resist [Internet]. 2020;21:203–10. Available from: https://doi.org/10.1016/j.jgar.2019.10.022Gopal R, Kim YG, Lee JH, Lee SK, Chae JD, Son BK, et al. Synergistic effects and antibiofilm properties of chimeric peptides against multidrug-resistant acinetobacter baumannii strains. Antimicrob Agents Chemother [Internet]. 2014;58(3):1622–9. Available from: https://journals.asm.org/doi/full/10.1128/AAC.02473-13Jamasbi E, Lucky SS, Li W, Hossain MA, Gopalakrishnakone P, Separovic F. Effect of dimerized melittin on gastric cancer cells and antibacterial activity. Amino Acids [Internet]. 2018;50(8):1101–10. Available from: https://doi.org/10.1007/s00726-018-2587-6Jiang X, Qian K, Liu G, Sun L, Zhou G, Li J, et al. Design and activity study of a melittin–thanatin hybrid peptide. AMB Express [Internet]. 2019;9(1). Available from: https://doi.org/10.1186/s13568-019-0739-zWan L lan, Zhang D qi, Zhang J nan, Ren L qun. Anti-hepatocarcinoma activity of TT-1, an analog of melittin, combined with interferon-α via promoting the interaction of NKG2D and MICA. J Zhejiang Univ Sci B [Internet]. 2017;18(6):522–31. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5481301/TtWan L, Zhang D, Zhang J, Ren L. Tt-1, an analog of melittin, triggers apoptosis in human thyroid cancer TT cells via regulating caspase, Bcl-2 and bax. Oncol Lett [Internet]. 2018;15(1):1271–8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5768099/Xu T, Cui T, Peng L, Kong S, Zou J, Tian X. The anti-hepatocellular carcinoma activity of Mel-P15 is mediated by natural killer cells. Oncol Lett [Internet]. 2017;14(6):6901–6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5686529/pdf/ol-14-06-6901.pdfLee YJ, Kang SJ, Kim BM, Kim YJ, Woo HD, Chung HW. Cytotoxicity of honeybee (Apis mellifera) venom in normal human lymphocytes and HL-60 cells. Chem Biol Interact [Internet]. 2007;169(3):189–97. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0009279707002013?via%3DihubPéptidos antimicrobianosMelitinaActividad antibacterianaActividad anticancerígenaORIGINALPeptidos derivados de melitina.pdfPeptidos derivados de melitina.pdfapplication/pdf1220864https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6891/1/Peptidos%20derivados%20de%20melitina.pdfd6e8d02b9896dd21849af57e67a48bf1MD51open accessPÉPTIDOS DERIVADOS DE MELITINA.pptxPÉPTIDOS DERIVADOS DE MELITINA.pptxapplication/vnd.openxmlformats-officedocument.presentationml.presentation9826510https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6891/2/P%c3%89PTIDOS%20DERIVADOS%20DE%20MELITINA.pptx62a5828619cc048157b6c8cc76d9d32cMD52open accessFORMATO CARTA DERECHOS DE AUTOR FIRMA DECANA IIP2021 Ramirez Andrade.docx.pdfFORMATO CARTA DERECHOS DE AUTOR FIRMA DECANA IIP2021 Ramirez Andrade.docx.pdfapplication/pdf104293https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6891/3/FORMATO%20CARTA%20DERECHOS%20DE%20AUTOR%20FIRMA%20DECANA%20IIP2021%20Ramirez%20Andrade.docx.pdf61c89352a80350a1cf2e2517584768edMD53metadata only accessFORMATO DERECHOS DE AUTOR TG 2021 Ramirez Andrade.pdfFORMATO DERECHOS DE AUTOR TG 2021 Ramirez Andrade.pdfapplication/pdf554504https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6891/4/FORMATO%20DERECHOS%20DE%20AUTOR%20TG%202021%20Ramirez%20Andrade.pdf9bdceb7ede37985cf97584021c2a6018MD54metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6891/5/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD55open accessTEXTPeptidos derivados de melitina.pdf.txtPeptidos derivados de melitina.pdf.txtExtracted texttext/plain125102https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6891/6/Peptidos%20derivados%20de%20melitina.pdf.txt71f733fe6b3915ae184b3ed497e45788MD56open accessPÉPTIDOS DERIVADOS DE MELITINA.pptx.txtPÉPTIDOS DERIVADOS DE MELITINA.pptx.txtExtracted texttext/plain13723https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6891/8/P%c3%89PTIDOS%20DERIVADOS%20DE%20MELITINA.pptx.txtf86bb36da0f0402caaf1eaf49091ed83MD58open accessFORMATO CARTA DERECHOS DE AUTOR FIRMA DECANA IIP2021 Ramirez Andrade.docx.pdf.txtFORMATO CARTA DERECHOS DE AUTOR FIRMA DECANA IIP2021 Ramirez Andrade.docx.pdf.txtExtracted texttext/plain1030https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6891/9/FORMATO%20CARTA%20DERECHOS%20DE%20AUTOR%20FIRMA%20DECANA%20IIP2021%20Ramirez%20Andrade.docx.pdf.txt9d0f5a0a921f854a1d8ad8eec4f3d0abMD59metadata only accessFORMATO DERECHOS DE AUTOR TG 2021 Ramirez Andrade.pdf.txtFORMATO DERECHOS DE AUTOR TG 2021 Ramirez Andrade.pdf.txtExtracted texttext/plain1436https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6891/11/FORMATO%20DERECHOS%20DE%20AUTOR%20TG%202021%20Ramirez%20Andrade.pdf.txt7ac62307886c318727fcf9f5ec4a8c0bMD511metadata only accessTHUMBNAILPeptidos derivados de melitina.pdf.jpgPeptidos derivados de melitina.pdf.jpgGenerated Thumbnailimage/jpeg6331https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6891/7/Peptidos%20derivados%20de%20melitina.pdf.jpgcd577be9e6296f6e225c33dcd298da02MD57open accessFORMATO CARTA DERECHOS DE AUTOR FIRMA DECANA IIP2021 Ramirez Andrade.docx.pdf.jpgFORMATO CARTA DERECHOS DE AUTOR FIRMA DECANA IIP2021 Ramirez Andrade.docx.pdf.jpgGenerated Thumbnailimage/jpeg9541https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6891/10/FORMATO%20CARTA%20DERECHOS%20DE%20AUTOR%20FIRMA%20DECANA%20IIP2021%20Ramirez%20Andrade.docx.pdf.jpg48587075d9fe3924a709d8ac5024aea8MD510metadata only accessFORMATO DERECHOS DE AUTOR TG 2021 Ramirez Andrade.pdf.jpgFORMATO DERECHOS DE AUTOR TG 2021 Ramirez Andrade.pdf.jpgGenerated Thumbnailimage/jpeg11183https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6891/12/FORMATO%20DERECHOS%20DE%20AUTOR%20TG%202021%20Ramirez%20Andrade.pdf.jpg119ddcb036931421cd7b1f69456fa5a8MD512metadata only accessunicolmayor/6891oai:repositorio.unicolmayor.edu.co:unicolmayor/68912024-05-22 03:00:37.103An error occurred on the license name.|||https://creativecommons.org/licenses/by-nc/4.0/open accessBiblioteca Digital Unicolmayorrepositorio@unicolmayor.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=