Caracterización de la enzima cisteína sintasa en Acinetobacter baumannii como posible blanco terapéutico mediante un análisis in silico

Acinetobacter baumannii se ha convertido en uno de los microorganismos fuertemente implicados en las infecciones asociadas a la atención en salud (IAAS) y representa una amenaza para la salud pública debido a las altas tasas de resistencia y mortalidad que genera. La búsqueda de nuevos blancos terap...

Full description

Autores:
León Castro, Francy Rocío
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Colegio Mayor de Cundinamarca
Repositorio:
Repositorio Colegio Mayor de Cundinamarca
Idioma:
spa
OAI Identifier:
oai:repositorio.unicolmayor.edu.co:unicolmayor/2866
Acceso en línea:
https://repositorio.unicolmayor.edu.co/handle/unicolmayor/2866
Palabra clave:
Análisis in Silico
Microorganismos
Salud pública
Patógeno
Acinetobacter baumannii
Cisteína Sintasa
IAAS
Resistencia
Mortalidad
Rights
closedAccess
License
Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2021
id UCOLMAYOR2_2c597844edbe70b5701dacbe34136464
oai_identifier_str oai:repositorio.unicolmayor.edu.co:unicolmayor/2866
network_acronym_str UCOLMAYOR2
network_name_str Repositorio Colegio Mayor de Cundinamarca
repository_id_str
dc.title.spa.fl_str_mv Caracterización de la enzima cisteína sintasa en Acinetobacter baumannii como posible blanco terapéutico mediante un análisis in silico
title Caracterización de la enzima cisteína sintasa en Acinetobacter baumannii como posible blanco terapéutico mediante un análisis in silico
spellingShingle Caracterización de la enzima cisteína sintasa en Acinetobacter baumannii como posible blanco terapéutico mediante un análisis in silico
Análisis in Silico
Microorganismos
Salud pública
Patógeno
Acinetobacter baumannii
Cisteína Sintasa
IAAS
Resistencia
Mortalidad
title_short Caracterización de la enzima cisteína sintasa en Acinetobacter baumannii como posible blanco terapéutico mediante un análisis in silico
title_full Caracterización de la enzima cisteína sintasa en Acinetobacter baumannii como posible blanco terapéutico mediante un análisis in silico
title_fullStr Caracterización de la enzima cisteína sintasa en Acinetobacter baumannii como posible blanco terapéutico mediante un análisis in silico
title_full_unstemmed Caracterización de la enzima cisteína sintasa en Acinetobacter baumannii como posible blanco terapéutico mediante un análisis in silico
title_sort Caracterización de la enzima cisteína sintasa en Acinetobacter baumannii como posible blanco terapéutico mediante un análisis in silico
dc.creator.fl_str_mv León Castro, Francy Rocío
dc.contributor.advisor.none.fl_str_mv Romero Calderón, Ibeth Cristina
Sánchez, Ruth Mélida
dc.contributor.author.none.fl_str_mv León Castro, Francy Rocío
dc.contributor.researchgroup.spa.fl_str_mv Genética y Biotecnología U.C.M.C
dc.subject.lemb.none.fl_str_mv Análisis in Silico
Microorganismos
Salud pública
Patógeno
topic Análisis in Silico
Microorganismos
Salud pública
Patógeno
Acinetobacter baumannii
Cisteína Sintasa
IAAS
Resistencia
Mortalidad
dc.subject.proposal.spa.fl_str_mv Acinetobacter baumannii
Cisteína Sintasa
IAAS
Resistencia
Mortalidad
description Acinetobacter baumannii se ha convertido en uno de los microorganismos fuertemente implicados en las infecciones asociadas a la atención en salud (IAAS) y representa una amenaza para la salud pública debido a las altas tasas de resistencia y mortalidad que genera. La búsqueda de nuevos blancos terapéuticos para desarrollar terapias alternativas es indispensable para garantizar el control de las enfermedades asociadas a este patógeno. En este sentido, en el presente trabajo se hizo una caracterización in silico de la enzima cisteína sintasa (CS) de A. baumannii, así como una identificación de compuestos con afinidad por la enzima mediante el uso de herramientas y bases de datos bioinformáticas de acceso libre. El estudio in silico demostró que A. baumannii posee dos genes que codifican para las proteínas CysM y CysK; las dos isoformas presentan todos los residuos y dominios importantes para la actividad catalítica y que han sido descritos en la familia de enzimas piridoxal 5′-fosfato (PLP) dependientes involucradas en la síntesis de cisteina por la via de novo a la cual pertenece CS. Mediante la herramienta I-TASSER se obtuvieron los modelos tridimensionales de las dos isoformas los cuales presentaron una topología correcta y alta calidad con puntajes típicamente encontrados en proteínas nativas. El acoplamiento molecular, las predicciones ADMET y los análisis de interacción permitieron identificar compuestos con alta afinidad por la isoforma CysK, dentro de lo que se destacan ZINC13643289, ZINC14996361, ZINC000002957581 y ZINC20353527 como candidatos para estudios in vitro y futuro desarrollo de una terapia selectiva para el tratamiento de infecciones asociadas a A. baumannii.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-09-23T20:15:40Z
dc.date.available.none.fl_str_mv 2021-09-23T20:15:40Z
dc.date.issued.none.fl_str_mv 2021-03-12
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TM
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unicolmayor.edu.co/handle/unicolmayor/2866
url https://repositorio.unicolmayor.edu.co/handle/unicolmayor/2866
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Alcántar-Curiel, M. D., Rosales-Reyes, R., Jarillo-Quijada, M. D., Gayosso-Vázquez, C., Fernández-Vázquez, J. L., Toledano-Tableros, J. E., Giono-Cerezo, S., Garza-Villafuerte, P., López-Huerta, A., Vences-Vences, D., Morfín-Otero, R., Rodríguez-Noriega, E., López-Álvarez, M. del R., Espinosa-Sotero, M. del C., & Santos-Preciado, J. I. (2019). Carbapenem-Resistant Acinetobacter baumannii in Three Tertiary Care Hospitals in Mexico: Virulence Profiles, Innate Immune Response and Clonal Dissemination. Frontiers in Microbiology, 10(September), 1-19. https://doi.org/10.3389/fmicb.2019.02116
Asif, M., Alvi, I. A., & Ur Rehman, S. (2018). Insight into acinetobacter baumannii: Pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infection and Drug Resistance, 11, 1249-1260. https://doi.org/10.2147/IDR.S166750
Benoni, R., Pertinhez, T. A., Spyrakis, F., Davalli, S., Pellegrino, S., Paredi, G., Pezzotti, A., Bettati, S., Campanini, B., & Mozzarelli, A. (2016). Structural insight into the interaction of O-acetylserine sulfhydrylase with competitive, peptidic inhibitors by saturation transfer difference-NMR. FEBS Letters, 590(7), 943-953. https://doi.org/10.1002/1873- 3468.12126
Bhattacharya, M., Hota, A., Kar, A., Sankar Chini, D., Chandra Malick, R., Chandra Patra, B., & Kumar Das, B. (2018). In silico structural and functional modelling of Antifreeze protein (AFP) sequences of Ocean pout (Zoarces americanus, Bloch & Schneider 1801). Journal of Genetic Engineering and Biotechnology, 16(2), 721-730. https://doi.org/10.1016/j.jgeb.2018.08.004
Brunner, K., Steiner, E. M., Reshma, R. S., Sriram, D., Schnell, R., & Schneider, G. (2017). Profiling of in vitro activities of urea-based inhibitors against cysteine synthases from Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 27(19), 4582- 4587. https://doi.org/10.1016/j.bmcl.2017.08.039
Burkhard, P., Rao, G. S. J., Hohenester, E., Schnackerz, K. D., Cook, P. F., & Jansonius, J. N. (1998). Three-dimensional structure of O-acetylserine sulfhydrylase from Salmonella typhimurium. Journal of Molecular Biology, 283(1), 121-133. https://doi.org/10.1006/jmbi.1998.2037
Chinthalapudi, K., Kumar, M., Kumar, S., Jain, S., Alam, N., & Gourinath, S. (2008). Crystal structure of native O-acetyl-serine sulfhydrylase from Entamoeba histolytica and its complex with cysteine: Structural evidence for cysteine binding and lack of interactions with serine acetyl transferase. Proteins: Structure, Function and Genetics, 72(4), 1222- 1232. https://doi.org/10.1002/prot.22013
de la Fuente-Salcido, N. M., Villarreal-Prieto, J. M., Díaz León, M. Á., & García Pérez, A. P. (2015). Evaluación de la actividad de los agentes antimicrobianos ante el desafío de la resistencia bacteriana. Revista Mexicana de Ciencias Farmaceuticas, 46(2), 7-16.
Dietrich H. Nies, S. P. (2007). Molecular Microbiology of Heavy Metals. En Molecular Microbiology of Heavy Metals. https://doi.org/10.1007/978-3-540-69771-8
Doi, Y., Murray, G. L., & Peleg, A. Y. (2015). Acinetobacter baumannii: Evolution of antimicrobial resistance-treatment options. Seminars in Respiratory and Critical Care Medicine, 36(1), 85-98. https://doi.org/10.1055/s-0034-1398388
Ducel, G. Fabry, J. Nicolle, L. Girard, R. Perraud, M. Prüss, A. Savey, a. (2009). Prevención de las infecciones nosocomiales. Who.int, 2, 70. https://doi.org/10.1590/S0036- 36341999000700012
Durante-Mangoni, E., Signoriello, G., Andini, R., Mattei, A., De Cristoforo, M., Murino, P., Bassetti, M., Malacarne, P., Petrosillo, N., Galdieri, N., Mocavero, P., Corcione, A., Viscoli, C., Zarrilli, R., Gallo, C., & Utili, R. (2013). Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: A multicenter, randomized clinical trial. Clinical Infectious Diseases, 57(3), 349-358. https://doi.org/10.1093/cid/cit253
Eze, E. C., Chenia, H. Y., & El Zowalaty, M. E. (2018). Acinetobacter baumannii biofilms: Effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infection and Drug Resistance, 11, 2277- 2299. https://doi.org/10.2147/IDR.S169894
Franko, N., Grammatoglou, K., Campanini, B., Costantino, G., Jirgensons, A., & Mozzarelli, A. (2018). Inhibition of O-acetylserine sulfhydrylase by fluoroalanine derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 33(1), 1343-1351. https://doi.org/10.1080/14756366.2018.1504040
Frávega, J. S. T. exhibits fluoroquinolone resistance mediated by the accumulation of the antioxidant molecule H. in a C. manner, Álvarez, R., Díaz, F., Inostroza, O., Tejías, C., Rodas, P. I., Paredes-Sabja, D., Fuentes, J. A., Calderón, I. L., & Gil, F. (2016). Salmonella Typhimurium exhibits fluoroquinolone resistance mediated by the accumulation of the antioxidant molecule H2S in a CysK-dependent manner. Journal of Antimicrobial Chemotherapy, 71(12), 3409-3415. https://doi.org/10.1093/JAC/DKW311
Fyfe, P. K., Westrop, G. D., Ramos, T., Müller, S., Coombs, G. H., & Hunter, W. N. (2012). Structure of Leishmania major cysteine synthase. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 68(7), 738-743. https://doi.org/10.1107/S1744309112019124
Guan, L., Yang, H., Cai, Y., Sun, L., Di, P., Li, W., Liu, G., & Tang, Y. (2019). ADMET-score-a comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm, 10(1), 148-157. https://doi.org/10.1039/C8MD00472B
Haque, M., Sartelli, M., Mckimm, J., & Abu Bakar, M. (2018). Infection and Drug Resistance Dovepress Health care-associated infections-an overview. Infection and Drug Resistance, 11(1), 2321-2333. https://doi.org/10.2147/IDR.S177247
Huang, B., Vetting, M. W., & Roderick, S. L. (2005). The active site of O-acetylserine sulfhydrylase is the anchor point for bienzyme complex formation with serine acetyltransferase. Journal of Bacteriology, 187(9), 3201-3205. https://doi.org/10.1128/JB.187.9.3201-3205.2005
Huma, T., Maryam, A., Rehman, S., Tahir, M., Haque, A., & Shaheen, B. (2014). Phylogenetic and Comparative Sequence Analysis of Thermostable Alpha Amylases of kingdom. Biomedical Informatics, 10(7).
Irwin, J. J., & Shoichet, B. K. (2005). ZINC - A free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 45(1), 177-182. https://doi.org/10.1021/ci049714+
Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., & Coleman, R. G. (2012). ZINC: A fre tool to discover chemistry for biology. Journal of Chemical Information and Modeling, 52(7), 1757-1768. https://doi.org/10.1021/ci3001277
Jawad, A., Hawkey, P. M., Heritage, J., & Snelling, A. M. (1994). Description of Leeds Acinetobacter Medium, a New Selective and Differential Medium for Isolation of Clinically Important Acinetobacter spp., and Comparison with Herellea Agar and Holton’s Agar. En JOURNAL OF CLINICAL MICROBIOLOGY.
Jean Kumar, V. U., Poyraz, Ö., Saxena, S., Schnell, R., Yogeeswari, P., Schneider, G., & Sriram, D. (2013). Discovery of novel inhibitors targeting the Mycobacterium tuberculosis O-acetylserine sulfhydrylase (CysK1) using virtual high-throughput screening. Bioorganic and Medicinal Chemistry Letters, 23(5), 1182-1186. https://doi.org/10.1016/j.bmcl.2013.01.031
Joshi, P., Gupta, A., & Gupta, V. (2019). Insights into multifaceted activities of CysK for therapeutic interventions. 3 Biotech, 9(2), 1-16. https://doi.org/10.1007/s13205-019-1572- 4
Kapoor, R. (2008). Acinetobacter infection. New England Journal of Medicine, 358(26), 2845- 2847. https://doi.org/10.1056/NEJMc080854
Karlowsky, J. A., Hoban, D. J., Hacke, M. A., Lob, S. H., & Sahm, D. F. (2017). Antimicrobial susceptibility of gram-negative ESKAPE pathogens isolated from hospitalized patients with intra-abdominal and urinary tract infections in Asia-Pacific countries: SMART 2013- 2015. Journal of Medical Microbiology, 66(1), 61-69. https://doi.org/10.1099/jmm.0.000421
Khan, H. A., Baig, F. K., & Mehboob, R. (2017). Nosocomial infections: Epidemiology, prevention, control and surveillance. Asian Pacific Journal of Tropical Biomedicine, 7(5), 478-482. https://doi.org/10.1016/j.apjtb.2017.01.019
Kim, S. W., Oh, M. H., Jun, S. H., Jeon, H., Kim, S. Il, Kim, K., Lee, Y. C., & Lee, J. C. (2016). Outer membrane Protein A plays a role in pathogenesis of Acinetobacter nosocomialis. Virulence, 7(4), 413-426. https://doi.org/10.1080/21505594.2016.1140298
Klausen, M. S., Jespersen, M. C., Nielsen, H., Jensen, K. K., Jurtz, V. I., Sønderby, C. K., Sommer, M. O. A., Winther, O., Nielsen, M., Petersen, B., & Marcatili, P. (2019). NetSurfP- 2.0: Improved prediction of protein structural features by integreatd deep learning. Proteins: Structure, Function and Bioinformatics, 87(6), 520-527. https://doi.org/10.1002/prot.25674
Kohl, J. B., Mellis, A. T., & Schwarz, G. (2019). Homeostatic impact of sulfite and hydrogen sulfide on cysteine catabolism. British Journal of Pharmacology, 176(4), 554-570. https://doi.org/10.1111/bph.14464
Kwofie, S. K., Dankwa, B., Odame, E. A., Agamah, F. E., Doe, L. P. A., Teye, J., Agyapong, O., Miller, W. A., Mosi, L., & Wilson, M. D. (2018). In silico screening of isocitrate lyase for novel anti-buruli ulcer natural products originating from Africa. Molecules, 23(7). https://doi.org/10.3390/molecules23071550
Lee, C. R., Lee, J. H., Park, M., Park, K. S., Bae, I. K., Kim, Y. B., Cha, C. J., Jeong, B. C., & Lee, S. H. (2017). Biology of Acinetobacter baumannii: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Frontiers in Cellular and Infection Microbiology, 7(MAR). https://doi.org/10.3389/fcimb.2017.00055
Lee, J. S., Choi, C. H., Kim, J. W., & Lee, J. C. (2010). Acinetobacter baumannii outer membrane protein a induces dendritic cell death through mitochondrial targeting. Journal of Microbiology, 48(3), 387-392. https://doi.org/10.1007/s12275-010-0155-1
Liang, J., Han, Q., Tan, Y., Ding, H., & Li, J. (2019). Current advances on structure-function relationships of pyridoxal 5’-phosphate-dependent enzymes. Frontiers in Molecular Biosciences, 6(MAR). https://doi.org/10.3389/fmolb.2019.00004
Lin, M.-F. (2014). Antimicrobial resistance in Acinetobacter baumannii : From bench to bedside . World Journal of Clinical Cases, 2(12), 787. https://doi.org/10.12998/wjcc.v2.i12.787
Lucidi, M., Runci, F., Rampioni, G., Frangipani, E., Leoni, L., & Visca, P. (2018). New shuttle vectors for gene cloning and expression in multidrug-resistant Acinetobacter species. Antimicrobial Agents and Chemotherapy, 62(4), 1-19. https://doi.org/10.1128/AAC.02480- 17
Magalhães, J., Franko, N., Annunziato, G., Pieroni, M., Benoni, R., Nikitjuka, A., Mozzarelli, A., Bettati, S., Karawajczyk, A., Jirgensons, A., Campanini, B., & Costantino, G. (2019). Refining the structure−activity relationships of 2-phenylcyclopropane carboxylic acids as inhibitors of O-acetylserine sulfhydrylase isoforms. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 31-43. https://doi.org/10.1080/14756366.2018.1518959
Mazumder, M., & Gourinath, S. (2015). Structure-Based Design of Inhibitors of the Crucial Cysteine Biosynthetic Pathway Enzyme O-Acetyl Serine Sulfhydrylase. Current Topics in Medicinal Chemistry, 16(9), 948-959. https://doi.org/10.2174/1568026615666150825142422
Monem, S., Furmanek-Blaszk, B., Łupkowska, A., Kuczyńska-Wiśnik, D., Stojowska- Swędrzyńska, K., & Laskowska, E. (2020). Mechanisms protecting acinetobacter baumannii against multiple stresses triggered by the host immune response, antibiotics, and outside host environment. En International Journal of Molecular Sciences (Vol. 21, Número 15, pp. 1-30). MDPI AG. https://doi.org/10.3390/ijms21155498
Morrissey, I., Olesky, M., Hawser, S., Lob, S. H., Karlowsky, J. A., Corey, G. R., Bassetti, M., & Fyfe, C. (2019). In Vitro Activity of Eravacycline against Gram-Negative Bacilli Isolated in Clinical Laboratories Worldwide from 2013 to 2017 . Antimicrobial Agents and Chemotherapy, 41(December), 1-29. https://doi.org/10.1128/aac.01699-19
Mulani, M. S., Kamble, E. E., Kumkar, S. N., Tawre, M. S., & Pardesi, K. R. (2019). Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Frontiers in Microbiology, 10(APR). https://doi.org/10.3389/fmicb.2019.00539
Nasr, P. (2020). Genetics, epidemiology, and clinical manifestations of multidrug-resistant Acinetobacter baumannii. Journal of Hospital Infection, 104(1), 4-11. https://doi.org/10.1016/j.jhin.2019.09.021
Neto, N. N. M., Maia, J., Queiroz, I. T., Zacarkim, M. R., Lins, M. G., Labeaud, D., Aronoff, D., & Medicine, F. (2018). In vitro Activity of Cefiderocol (S-649266), a Siderophore Cephalosporin, Against Enterobacteriaceae With Defined Extended-Spectrum Β- Lactamases and Carbapenemases. 5(Suppl 1), 250-251.
Nho, J. S., Jun, S. H., Oh, M. H., Park, T. I., Choi, C. W., Kim, S. Il, Choi, C. H., & Lee, J. C. (2015). Acinetobacter nosocomialis secretes outer membrane vesicles that induce epithelial cell death and host inflammatory responses. Microbial Pathogenesis, 81, 39-45. https://doi.org/10.1016/j.micpath.2015.03.012
Nowak, P., & Paluchowska, P. (2016). Acinetobacter baumannii: Biology and drug resistance — role of carbapenemases. Folia Histochemica et Cytobiologica, 54(2), 61-74. https://doi.org/10.5603/FHC.a2016.0009
Pagano, M., Martins, A. F., & Barth, A. L. (2016). Mobile genetic elements related to carbapenem resistance in Acinetobacter baumannii. Brazilian Journal of Microbiology, 47(4), 785-792. https://doi.org/10.1016/j.bjm.2016.06.005
Percudani, R., & Peracchi, A. (2003). A genomic overview of pyridoxal-phosphate-dependent enzymes. EMBO Reports, 4(9), 850-854. https://doi.org/10.1038/sj.embor.embor914
Pinzi, L., & Rastelli, G. (2019). Molecular docking: Shifting paradigms in drug discovery. International Journal of Molecular Sciences, 20(18). https://doi.org/10.3390/ijms20184331
RA, L., & MB, S. (2011). LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51, 2778-2786.
Rada, J. (2016). An actual pathogen Acinetobacter. Revista de la Sociedad Boliviana de Pediatría, 55(1), 29-48. http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S1024-06752016000100006
Raj, I., Kumar, S., & Gourinath, S. (2012). The narrow active-site cleft of O-acetylserine sulfhydrylase from Leishmania donovani allows complex formation with serine acetyltransferases with a range of C-terminal sequences. Acta Crystallographica Section D: Biological Crystallography, 68(8), 909-919. https://doi.org/10.1107/S0907444912016459
Ramírez, D., & Caballero, J. (2018). Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules, 23(5), 1-17. https://doi.org/10.3390/molecules23051038
Roberto Carlos Barletta Farías, Leonardo Javier Pérez Ponce, Gabriela Castro Vega, Misael Pujol Pérez, J., & Emilio Barletta del Castillo, Y. D. P. (2018). Multidrug-resistant Acinetobacter baumannii: a challange for current therapeutic. Revista cientifíca de ciencias médicas en Cienfuegos, 13.
Rodríguez, C. H., Nastro, M., & Famiglietti, A. (2018). Carbapenemases in Acinetobacter baumannii. Review of their dissemination in Latin America. Revista Argentina de Microbiologia, 50(3), 327-333. https://doi.org/10.1016/j.ram.2017.10.006
Romero, I., Téllez, J., Romanha, A. J., Steindel, M., & Grisard, E. C. (2015). Upregulation of cysteine synthase and cystathionine β-synthase contributes to Leishmania braziliensis survival under oxidative stress. Antimicrobial Agents and Chemotherapy, 59(8), 4770- 4781. https://doi.org/10.1128/AAC.04880-14
Romero, I., Téllez, J., Yamanaka, L. E., Steindel, M., Romanha, A. J., & Grisard, E. C. (2014). Transsulfuration is an active pathway for cysteine biosynthesis in Trypanosoma rangeli. Parasites and Vectors, 7(1), 1-11. https://doi.org/10.1186/1756-3305-7-197
Rossi, E., Longo, F., Barbagallo, M., Peano, C., Consolandi, C., Pietrelli, A., Jaillon, S., Garlanda, C., & Landini, P. (2016). Glucose availability enhances lipopolysaccharide production and immunogenicity in the opportunistic pathogen Acinetobacter baumannii. Future Microbiology, 11(3), 335-349. https://doi.org/10.2217/fmb.15.153
Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: A unified platform for automated protein structure and function prediction. Nature Protocols, 5(4), 725-738. https://doi.org/10.1038/nprot.2010.5
Santajit, S., & Indrawattana, N. (2016). Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. BioMed Research International, 2016. https://doi.org/10.1155/2016/2475067
Schnell, R., & Schneider, G. (2010). Structural enzymology of sulphur metabolism in Mycobacterium tuberculosis. Biochemical and Biophysical Research Communications, 396(1), 33-38. https://doi.org/10.1016/j.bbrc.2010.02.118
Schweppe, D. K., Harding, C., Chavez, J. D., Wu, X., Ramage, E., Singh, P. K., Manoil, C., & Bruce, J. E. (2015). Host-Microbe Protein Interactions during Bacterial Infection. Chemistry and Biology, 22(11), 1521-1530. https://doi.org/10.1016/j.chembiol.2015.09.015
., Kaushik, A., Pandya, V., Singh, R. P., Banerjee, S., Mittal, M., SSingh, A. K., Ekka, M. Kingh, V., & Kumaran, S. (2017). Substrate-Induced Facilitated Dissociation of the Competitive Inhibitor from the Active Site of O-Acetyl Serine Sulfhydrylase Reveals a Competitive- Allostery Mechanism. Biochemistry, 56(37), 5011-5025. https://doi.org/10.1021/acs.biochem.7b00500
Singh, K., Ali, V., Pratap Singh, K., Gupta, P., Suman, S. S., Ghosh, A. K., Bimal, S., Pandey, K., & Das, P. (2017). z. Redox Biology, 12(March), 350-366. https://doi.org/10.1016/j.redox.2017.03.004
Singh, K., Singh, K. P., Equbal, A., Suman, S. S., Zaidi, A., Garg, G., Pandey, K., Das, P., & Ali, V. (2016). Interaction between cysteine synthase and serine O-acetyltransferase proteins and their stage specific expression in Leishmania donovani. En Biochimie (Vol. 131). Elsevier Ltd. https://doi.org/10.1016/j.biochi.2016.09.004
Singh, S., Sablok, G., Farmer, R., Singh, A. K., Gautam, B., & Kumar, S. (2013). Molecular dynamic simulation and inhibitor prediction of cysteine synthase structured model as a potential drug target for trichomoniasis. BioMed Research International, 2013. https://doi.org/10.1155/2013/390920
Smolyakov, R., Borer, A., Riesenberg, K., Schlaeffer, F., Alkan, M., Porath, A., Rimar, D., Almog, Y., & Gilad, J. (2003). Nosocomial multi-drug resistant Acinetobacter baumannii bloodstream infection: Risk factors and outcome with ampicillin-sulbactam treatment. Journal of Hospital Infection, 54(1), 32-38. https://doi.org/10.1016/S0195-6701(03)00046- X
Spyrakis, F., Singh, R., Cozzini, P., Campanini, B., Salsi, E., Felici, P., Raboni, S., Benedetti, P., Cruciani, G., Kellogg, G. E., Cook, P. F., & Mozzarelli, A. (2013). Isozyme-Specific Ligands for O-acetylserine sulfhydrylase, a Novel Antibiotic Target. PLoS ONE, 8(10). https://doi.org/10.1371/journal.pone.0077558
Thirumal Kumar, D., Lavanya, P., George Priya Doss, C., Tayubi, I. A., Naveen Kumar, D. R., Francis Yesurajan, I., Siva, R., & Balaji, V. (2017). A Molecular Docking and Dynamics Approach to Screen Potent Inhibitors Against Fosfomycin Resistant Enzyme in Clinical Klebsiella pneumoniae. Journal of Cellular Biochemistry, 118(11), 4088-4094. https://doi.org/10.1002/jcb.26064
Torres, P. H. M., Sodero, A. C. R., Jofily, P., & Silva-Jr, F. P. (2019). Key topics in molecular docking for drug design. International Journal of Molecular Sciences, 20(18), 1-29. https://doi.org/10.3390/ijms20184574
Viehman, J. A., Nguyen, M. H., & Doi, Y. (2014). Treatment options for carbapenem-resistant and extensively drug-resistant Acinetobacter baumannii infections. Drugs, 74(12), 1315- 1333. https://doi.org/10.1007/s40265-014-0267-8
Volker F. Wendisch. (2007). Amino Acid Biosynthesis – Pathways, Regulation and Metabolic Engineering. https://books.google.com.co/books?id=0wJUFr1TphYC&pg=PA201&dq=cysk&hl=es- 419&sa=X&ved=0ahUKEwiv4Zyl19ToAhWOg- AKHZXwBYAQ6AEINTAB#v=onepage&q=cysk&f=false
Wang, T., & Leyh, T. S. (2012). Three-stage assembly of the cysteine synthase complex from Escherichia coli. Journal of Biological Chemistry, 287(6), 4360-4367. https://doi.org/10.1074/jbc.M111.288423
Wang, Y., Xing, J., Xu, Y., Zhou, N., Peng, J., Xiong, Z., Liu, X., Luo, X., Luo, C., Chen, K., Zheng, M., & Jiang, H. (2015). In silico ADME/T modelling for rational drug design. Quarterly Reviews of Biophysics, 48(4), 488-515. https://doi.org/10.1017/S0033583515000190
Wassermann, A. M., & Bajorath, J. (2011). BindingDB and ChEMBL: Online compound databases for drug discovery. Expert Opinion on Drug Discovery, 6(7), 683-687. https://doi.org/10.1517/17460441.2011.579100
WHO. (2017). La OMS publica la lista de las bacterias para las que se necesitan urgentemente nuevos antibióticos. En Who. https://www.who.int/es/news-room/detail/27-02-2017-who- publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(SUPPL.2), 407-410. https://doi.org/10.1093/nar/gkm290
Williams, R. A. M., Westrop, G. D., & Coombs, G. H. (2009). Two pathways for cysteine biosynthesis in Leishmania major. Biochemical Journal, 420(3), 451-462. https://doi.org/10.1042/BJ20082441
Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W., Liu, G., & Tang, Y. (2019). AdmetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 35(6), 1067-1069. https://doi.org/10.1093/bioinformatics/bty707
Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2014). The I-TASSER suite: Protein structure and function prediction. Nature Methods, 12(1), 7-8. https://doi.org/10.1038/nmeth.3213
Magalhães J, Franko N, Annunziato G, Pieroni M, Benoni R, Nikitjuka A, et al. Refining the structure−activity relationships of 2-phenylcyclopropane carboxylic acids as inhibitors of O-acetylserine sulfhydrylase isoforms. J Enzyme Inhib Med Chem. 2019;34(1):31-43.
Singh AK, Ekka MK, Kaushik A, Pandya V, Singh RP, Banerjee S, et al. Substrate-Induced Facilitated Dissociation of the Competitive Inhibitor from the Active Site of O-Acetyl Serine Sulfhydrylase Reveals a Competitive-Allostery Mechanism. Biochemistry. 2017;56(37):5011-25.
Wang Y, Xing J, Xu Y, Zhou N, Peng J, Xiong Z, et al. In silico ADME/T modelling for rational drug design. Q Rev Biophys. 2015;48(4):488-515.
Franko N, Grammatoglou K, Campanini B, Costantino G, Jirgensons A, Mozzarelli A. Inhibition of O-acetylserine sulfhydrylase by fluoroalanine derivatives. J Enzyme Inhib Med Chem [Internet]. 2018;33(1):1343-51. Disponible en: https://doi.org/10.1080/14756366.2018.1504040
Brunner K, Steiner EM, Reshma RS, Sriram D, Schnell R, Schneider G. Profiling of in vitro activities of urea-based inhibitors against cysteine synthases from Mycobacterium tuberculosis. Bioorganic Med Chem Lett [Internet]. 2017;27(19):4582-7. Disponible en: http://dx.doi.org/10.1016/j.bmcl.2017.08.039
Jean Kumar VU, Poyraz Ö, Saxena S, Schnell R, Yogeeswari P, Schneider G, et al. Discovery of novel inhibitors targeting the Mycobacterium tuberculosis O-acetylserine sulfhydrylase (CysK1) using virtual high-throughput screening. Bioorganic Med Chem Lett [Internet]. 2013;23(5):1182-6. Disponible en: http://dx.doi.org/10.1016/j.bmcl.2013.01.031
Spyrakis F, Singh R, Cozzini P, Campanini B, Salsi E, Felici P, et al. Isozyme-Specific Ligands for O-acetylserine sulfhydrylase, a Novel Antibiotic Target. PLoS One. 2013;8(10).
Roy A, Kucukural A, Zhang Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat Protoc. 2010;5(4):725-38.
Huang B, Vetting MW, Roderick SL. The active site of O-acetylserine sulfhydrylase is the anchor point for bienzyme complex formation with serine acetyltransferase. J Bacteriol. 2005;187(9):3201-5.
Schnell R, Schneider G. Structural enzymology of sulphur metabolism in Mycobacterium tuberculosis. Biochem Biophys Res Commun [Internet]. 2010;396(1):33-8. Disponible en: http://dx.doi.org/10.1016/j.bbrc.2010.02.118
Williams RAM, Westrop GD, Coombs GH. Two pathways for cysteine biosynthesis in Leishmania major. Biochem J. 2009;420(3):451-62.
Raj I, Kumar S, Gourinath S. The narrow active-site cleft of O-acetylserine sulfhydrylase from Leishmania donovani allows complex formation with serine acetyltransferases with a range of C-terminal sequences. Acta Crystallogr Sect D Biol Crystallogr. 2012;68(8):909- 19.
Benoni R, Pertinhez TA, Spyrakis F, Davalli S, Pellegrino S, Paredi G, et al. Structural insight into the interaction of O-acetylserine sulfhydrylase with competitive, peptidic inhibitors by saturation transfer difference-NMR. FEBS Lett. 2016;590(7):943-53.
Farfan N, Molina K. Caracterización molecular y bioquímica de la enzima Cisteína Sintasa en la bacteria Pseudomonas aeruginosa mediante análisis in silico, como posible blanco terapéutico en este patógeno. 2020 trabajo Fin de Grado no publicado.
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2021
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2021
https://creativecommons.org/licenses/by-nc-sa/4.0/
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.spa.fl_str_mv 88p.
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Colegio Mayor de Cundinamarca
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias de la Salud
dc.publisher.place.spa.fl_str_mv Bogotá D.C
dc.publisher.program.spa.fl_str_mv Maestría en Microbiología
institution Colegio Mayor de Cundinamarca
bitstream.url.fl_str_mv https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/2866/1/FrancyRocio_Leon_TrabajoFinalde%20Grado_VersionFinal.pdf
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/2866/2/license.txt
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/2866/3/FrancyRocio_Leon_TrabajoFinalde%20Grado_VersionFinal.pdf.txt
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/2866/4/FrancyRocio_Leon_TrabajoFinalde%20Grado_VersionFinal.pdf.jpg
bitstream.checksum.fl_str_mv 480c7178b966a8d0d1279f5923e97196
2f9959eaf5b71fae44bbf9ec84150c7a
cdabe752f724caa8010ef7916cf4e7ca
8ca1fdc739fd46b5e5e7d85c0fbbae66
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital Unicolmayor
repository.mail.fl_str_mv repositorio@unicolmayor.edu.co
_version_ 1812210110545526784
spelling Romero Calderón, Ibeth Cristina1be6cd68f2562dc4b43f161eb1ab77a0Sánchez, Ruth Mélidaf258b9690e26de0a561e9c8cba06b45a600León Castro, Francy Rocío82125bdc2babe08862cf6eb6b8d38f86Genética y Biotecnología U.C.M.C2021-09-23T20:15:40Z2021-09-23T20:15:40Z2021-03-12https://repositorio.unicolmayor.edu.co/handle/unicolmayor/2866Acinetobacter baumannii se ha convertido en uno de los microorganismos fuertemente implicados en las infecciones asociadas a la atención en salud (IAAS) y representa una amenaza para la salud pública debido a las altas tasas de resistencia y mortalidad que genera. La búsqueda de nuevos blancos terapéuticos para desarrollar terapias alternativas es indispensable para garantizar el control de las enfermedades asociadas a este patógeno. En este sentido, en el presente trabajo se hizo una caracterización in silico de la enzima cisteína sintasa (CS) de A. baumannii, así como una identificación de compuestos con afinidad por la enzima mediante el uso de herramientas y bases de datos bioinformáticas de acceso libre. El estudio in silico demostró que A. baumannii posee dos genes que codifican para las proteínas CysM y CysK; las dos isoformas presentan todos los residuos y dominios importantes para la actividad catalítica y que han sido descritos en la familia de enzimas piridoxal 5′-fosfato (PLP) dependientes involucradas en la síntesis de cisteina por la via de novo a la cual pertenece CS. Mediante la herramienta I-TASSER se obtuvieron los modelos tridimensionales de las dos isoformas los cuales presentaron una topología correcta y alta calidad con puntajes típicamente encontrados en proteínas nativas. El acoplamiento molecular, las predicciones ADMET y los análisis de interacción permitieron identificar compuestos con alta afinidad por la isoforma CysK, dentro de lo que se destacan ZINC13643289, ZINC14996361, ZINC000002957581 y ZINC20353527 como candidatos para estudios in vitro y futuro desarrollo de una terapia selectiva para el tratamiento de infecciones asociadas a A. baumannii.Acinetobacter baumannii has become one of the microorganisms strongly implicated in health care associated infections (HAI) and represents a threat to public health due to the high rates of resistance and mortality it generates. The search for new therapeutic targets to develop alternative therapies is essential to guarantee the control of diseases associated with this pathogen. In this sense, in the present work an in silico characterization of the enzyme cysteine synthase (CS) of A. baumannii was carried out, as well as an identification of compounds with affinity for the enzyme through the use of tools and bioinformatic databases of access free. The in silico study showed that A. baumannii has two genes that code for the CysM and CysK proteins; the two isoforms present all the important residues and domains for catalytic activity and which have been described in the family of dependent Pyridoxal 5′-Phosphate (PLP) enzymes involved in the synthesis of cysteine by the de novo route to which CS belongs. Using the I-TASSER tool, the three-dimensional models of the two isoforms were obtained, which presented a correct and high-quality topology with scores typically found in native proteins. Molecular coupling, ADMET predictions, and interaction analysis made it possible to identify compounds with high affinity for the CysK isoform, among which ZINC13643289, ZINC14996361, ZINC000002957581 and ZINC20353527 stand out as candidates for in vitro studies and future development of a selective therapy for the treatment of infections associated with A. baumannii.RESUMEN 10 ABSTRACT 11 1.INTRODUCCIÓN 11 2. MARCO CONCEPTUAL Y GENERALIDADES 14 2.1 Acinetobacter baumannii, características generales 14 2.2 Enfermedades ocasionadas por A. baumannii 15 1.2.1 Patología de A. baumannii 16 2.3 Tratamiento para las enfermedades ocasionadas por A. baumannii 17 2.4 Resistencia a antibióticos en A. baumannii 18 2.5 Nuevos compuestos para el tratamiento de A. baumannii 21 2.6 Complejo cisteína sintasa (CS) (CysK- CysM) 23 2.6.1 Funciones de la cisteína en la supervivencia celular 24 2.6.2 Cisteína Sintasa un blanco de inhibición en patógenos humanos 26 2.7 Docking Molecular, análisis in silico de nuevos compuestos 27 3.PREGUNTA DE INVESTIGACIÓN - HIPÓTESIS 28 4.OBJETIVOS 29 4.1 Objetivo General 29 4.2 Objetivos específicos 29 5. MATERIALES Y MÉTODOS 29 5.1 Caracterización in silico de la cs en A. baumannii 30 5.1.1 Identificación de la secuencia nucleotídica del gen CS en las bases de datos bioinformáticas 30 5.1.2 Búsqueda de dominios y motivos característicos en la secuencia proteica de CS 30 5.1.3 Comparación de las secuencias proteicas de CS en A. baumannii y otras secuencias ortólogas 31 5.1.4 Predicción de estructuras secundaria y terciaria de las CS en A. baumannii 31 5.2 Docking molecular para cisteína sintasa (CysK) de A. baumannii 32 5.2.1 Preparación de la proteína CysK y los ligandos naturales para el docking molecular 32 5.2.2 Docking entre CysK, sustratos naturales y algunos compuestos control 33 5.2.3 Docking masivo entre CysK y compuestos con potencial unión a la enzima 33 5.3 Predicción in silico de las propiedades farmacocinéticas ADMET 34 5.4 Interacciones moleculares entre CysK y posibles ligandos (Proteína-Ligando) 34 6.RESULTADOS 35 6.1 Identificación del gen que codifica para CS en A. baumannii 35 6.2 Características generales de la enzima CS en Acinetobacter baumannii 40 6.3 Comparación de las secuencias proteicas de CS en A. baumannii y otras secuencias ortólogas 42 6.4 Predicción de estructuras secundaria y terciaria de las CS en A. baumannii 45 6.5 Docking molecular entre cisteína sintasa (CysK) de A. baumannii – posibles ligandos 50 6.6 Análisis de las propiedades farmacocinéticas ADMET en los compuestos con mejor energía de unión a CysK. 52 6.7 Interacciones moleculares entre cisteína sintasa (CysK) y ligandos con mejor energía de unión 56 7.DISCUSIÓN 58 8.CONCLUSIONES 60 9.PERSPECTIVAS 61 REFERENCIAS BIBLIOGRAFICAS 62 ANEXOS 74MaestríaMagíster en MicrobiologíaSalud humana88p.application/pdfspaUniversidad Colegio Mayor de CundinamarcaFacultad de Ciencias de la SaludBogotá D.CMaestría en MicrobiologíaDerechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2021https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/closedAccessAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)http://purl.org/coar/access_right/c_14cbCaracterización de la enzima cisteína sintasa en Acinetobacter baumannii como posible blanco terapéutico mediante un análisis in silicoTrabajo de grado - Maestríahttp://purl.org/coar/resource_type/c_db06http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/doctoralThesishttps://purl.org/redcol/resource_type/TMinfo:eu-repo/semantics/publishedVersionAlcántar-Curiel, M. D., Rosales-Reyes, R., Jarillo-Quijada, M. D., Gayosso-Vázquez, C., Fernández-Vázquez, J. L., Toledano-Tableros, J. E., Giono-Cerezo, S., Garza-Villafuerte, P., López-Huerta, A., Vences-Vences, D., Morfín-Otero, R., Rodríguez-Noriega, E., López-Álvarez, M. del R., Espinosa-Sotero, M. del C., & Santos-Preciado, J. I. (2019). Carbapenem-Resistant Acinetobacter baumannii in Three Tertiary Care Hospitals in Mexico: Virulence Profiles, Innate Immune Response and Clonal Dissemination. Frontiers in Microbiology, 10(September), 1-19. https://doi.org/10.3389/fmicb.2019.02116Asif, M., Alvi, I. A., & Ur Rehman, S. (2018). Insight into acinetobacter baumannii: Pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infection and Drug Resistance, 11, 1249-1260. https://doi.org/10.2147/IDR.S166750Benoni, R., Pertinhez, T. A., Spyrakis, F., Davalli, S., Pellegrino, S., Paredi, G., Pezzotti, A., Bettati, S., Campanini, B., & Mozzarelli, A. (2016). Structural insight into the interaction of O-acetylserine sulfhydrylase with competitive, peptidic inhibitors by saturation transfer difference-NMR. FEBS Letters, 590(7), 943-953. https://doi.org/10.1002/1873- 3468.12126Bhattacharya, M., Hota, A., Kar, A., Sankar Chini, D., Chandra Malick, R., Chandra Patra, B., & Kumar Das, B. (2018). In silico structural and functional modelling of Antifreeze protein (AFP) sequences of Ocean pout (Zoarces americanus, Bloch & Schneider 1801). Journal of Genetic Engineering and Biotechnology, 16(2), 721-730. https://doi.org/10.1016/j.jgeb.2018.08.004Brunner, K., Steiner, E. M., Reshma, R. S., Sriram, D., Schnell, R., & Schneider, G. (2017). Profiling of in vitro activities of urea-based inhibitors against cysteine synthases from Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 27(19), 4582- 4587. https://doi.org/10.1016/j.bmcl.2017.08.039Burkhard, P., Rao, G. S. J., Hohenester, E., Schnackerz, K. D., Cook, P. F., & Jansonius, J. N. (1998). Three-dimensional structure of O-acetylserine sulfhydrylase from Salmonella typhimurium. Journal of Molecular Biology, 283(1), 121-133. https://doi.org/10.1006/jmbi.1998.2037Chinthalapudi, K., Kumar, M., Kumar, S., Jain, S., Alam, N., & Gourinath, S. (2008). Crystal structure of native O-acetyl-serine sulfhydrylase from Entamoeba histolytica and its complex with cysteine: Structural evidence for cysteine binding and lack of interactions with serine acetyl transferase. Proteins: Structure, Function and Genetics, 72(4), 1222- 1232. https://doi.org/10.1002/prot.22013de la Fuente-Salcido, N. M., Villarreal-Prieto, J. M., Díaz León, M. Á., & García Pérez, A. P. (2015). Evaluación de la actividad de los agentes antimicrobianos ante el desafío de la resistencia bacteriana. Revista Mexicana de Ciencias Farmaceuticas, 46(2), 7-16.Dietrich H. Nies, S. P. (2007). Molecular Microbiology of Heavy Metals. En Molecular Microbiology of Heavy Metals. https://doi.org/10.1007/978-3-540-69771-8Doi, Y., Murray, G. L., & Peleg, A. Y. (2015). Acinetobacter baumannii: Evolution of antimicrobial resistance-treatment options. Seminars in Respiratory and Critical Care Medicine, 36(1), 85-98. https://doi.org/10.1055/s-0034-1398388Ducel, G. Fabry, J. Nicolle, L. Girard, R. Perraud, M. Prüss, A. Savey, a. (2009). Prevención de las infecciones nosocomiales. Who.int, 2, 70. https://doi.org/10.1590/S0036- 36341999000700012Durante-Mangoni, E., Signoriello, G., Andini, R., Mattei, A., De Cristoforo, M., Murino, P., Bassetti, M., Malacarne, P., Petrosillo, N., Galdieri, N., Mocavero, P., Corcione, A., Viscoli, C., Zarrilli, R., Gallo, C., & Utili, R. (2013). Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: A multicenter, randomized clinical trial. Clinical Infectious Diseases, 57(3), 349-358. https://doi.org/10.1093/cid/cit253Eze, E. C., Chenia, H. Y., & El Zowalaty, M. E. (2018). Acinetobacter baumannii biofilms: Effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infection and Drug Resistance, 11, 2277- 2299. https://doi.org/10.2147/IDR.S169894Franko, N., Grammatoglou, K., Campanini, B., Costantino, G., Jirgensons, A., & Mozzarelli, A. (2018). Inhibition of O-acetylserine sulfhydrylase by fluoroalanine derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 33(1), 1343-1351. https://doi.org/10.1080/14756366.2018.1504040Frávega, J. S. T. exhibits fluoroquinolone resistance mediated by the accumulation of the antioxidant molecule H. in a C. manner, Álvarez, R., Díaz, F., Inostroza, O., Tejías, C., Rodas, P. I., Paredes-Sabja, D., Fuentes, J. A., Calderón, I. L., & Gil, F. (2016). Salmonella Typhimurium exhibits fluoroquinolone resistance mediated by the accumulation of the antioxidant molecule H2S in a CysK-dependent manner. Journal of Antimicrobial Chemotherapy, 71(12), 3409-3415. https://doi.org/10.1093/JAC/DKW311Fyfe, P. K., Westrop, G. D., Ramos, T., Müller, S., Coombs, G. H., & Hunter, W. N. (2012). Structure of Leishmania major cysteine synthase. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 68(7), 738-743. https://doi.org/10.1107/S1744309112019124Guan, L., Yang, H., Cai, Y., Sun, L., Di, P., Li, W., Liu, G., & Tang, Y. (2019). ADMET-score-a comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm, 10(1), 148-157. https://doi.org/10.1039/C8MD00472BHaque, M., Sartelli, M., Mckimm, J., & Abu Bakar, M. (2018). Infection and Drug Resistance Dovepress Health care-associated infections-an overview. Infection and Drug Resistance, 11(1), 2321-2333. https://doi.org/10.2147/IDR.S177247Huang, B., Vetting, M. W., & Roderick, S. L. (2005). The active site of O-acetylserine sulfhydrylase is the anchor point for bienzyme complex formation with serine acetyltransferase. Journal of Bacteriology, 187(9), 3201-3205. https://doi.org/10.1128/JB.187.9.3201-3205.2005Huma, T., Maryam, A., Rehman, S., Tahir, M., Haque, A., & Shaheen, B. (2014). Phylogenetic and Comparative Sequence Analysis of Thermostable Alpha Amylases of kingdom. Biomedical Informatics, 10(7).Irwin, J. J., & Shoichet, B. K. (2005). ZINC - A free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 45(1), 177-182. https://doi.org/10.1021/ci049714+Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., & Coleman, R. G. (2012). ZINC: A fre tool to discover chemistry for biology. Journal of Chemical Information and Modeling, 52(7), 1757-1768. https://doi.org/10.1021/ci3001277Jawad, A., Hawkey, P. M., Heritage, J., & Snelling, A. M. (1994). Description of Leeds Acinetobacter Medium, a New Selective and Differential Medium for Isolation of Clinically Important Acinetobacter spp., and Comparison with Herellea Agar and Holton’s Agar. En JOURNAL OF CLINICAL MICROBIOLOGY.Jean Kumar, V. U., Poyraz, Ö., Saxena, S., Schnell, R., Yogeeswari, P., Schneider, G., & Sriram, D. (2013). Discovery of novel inhibitors targeting the Mycobacterium tuberculosis O-acetylserine sulfhydrylase (CysK1) using virtual high-throughput screening. Bioorganic and Medicinal Chemistry Letters, 23(5), 1182-1186. https://doi.org/10.1016/j.bmcl.2013.01.031Joshi, P., Gupta, A., & Gupta, V. (2019). Insights into multifaceted activities of CysK for therapeutic interventions. 3 Biotech, 9(2), 1-16. https://doi.org/10.1007/s13205-019-1572- 4Kapoor, R. (2008). Acinetobacter infection. New England Journal of Medicine, 358(26), 2845- 2847. https://doi.org/10.1056/NEJMc080854Karlowsky, J. A., Hoban, D. J., Hacke, M. A., Lob, S. H., & Sahm, D. F. (2017). Antimicrobial susceptibility of gram-negative ESKAPE pathogens isolated from hospitalized patients with intra-abdominal and urinary tract infections in Asia-Pacific countries: SMART 2013- 2015. Journal of Medical Microbiology, 66(1), 61-69. https://doi.org/10.1099/jmm.0.000421Khan, H. A., Baig, F. K., & Mehboob, R. (2017). Nosocomial infections: Epidemiology, prevention, control and surveillance. Asian Pacific Journal of Tropical Biomedicine, 7(5), 478-482. https://doi.org/10.1016/j.apjtb.2017.01.019Kim, S. W., Oh, M. H., Jun, S. H., Jeon, H., Kim, S. Il, Kim, K., Lee, Y. C., & Lee, J. C. (2016). Outer membrane Protein A plays a role in pathogenesis of Acinetobacter nosocomialis. Virulence, 7(4), 413-426. https://doi.org/10.1080/21505594.2016.1140298Klausen, M. S., Jespersen, M. C., Nielsen, H., Jensen, K. K., Jurtz, V. I., Sønderby, C. K., Sommer, M. O. A., Winther, O., Nielsen, M., Petersen, B., & Marcatili, P. (2019). NetSurfP- 2.0: Improved prediction of protein structural features by integreatd deep learning. Proteins: Structure, Function and Bioinformatics, 87(6), 520-527. https://doi.org/10.1002/prot.25674Kohl, J. B., Mellis, A. T., & Schwarz, G. (2019). Homeostatic impact of sulfite and hydrogen sulfide on cysteine catabolism. British Journal of Pharmacology, 176(4), 554-570. https://doi.org/10.1111/bph.14464Kwofie, S. K., Dankwa, B., Odame, E. A., Agamah, F. E., Doe, L. P. A., Teye, J., Agyapong, O., Miller, W. A., Mosi, L., & Wilson, M. D. (2018). In silico screening of isocitrate lyase for novel anti-buruli ulcer natural products originating from Africa. Molecules, 23(7). https://doi.org/10.3390/molecules23071550Lee, C. R., Lee, J. H., Park, M., Park, K. S., Bae, I. K., Kim, Y. B., Cha, C. J., Jeong, B. C., & Lee, S. H. (2017). Biology of Acinetobacter baumannii: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Frontiers in Cellular and Infection Microbiology, 7(MAR). https://doi.org/10.3389/fcimb.2017.00055Lee, J. S., Choi, C. H., Kim, J. W., & Lee, J. C. (2010). Acinetobacter baumannii outer membrane protein a induces dendritic cell death through mitochondrial targeting. Journal of Microbiology, 48(3), 387-392. https://doi.org/10.1007/s12275-010-0155-1Liang, J., Han, Q., Tan, Y., Ding, H., & Li, J. (2019). Current advances on structure-function relationships of pyridoxal 5’-phosphate-dependent enzymes. Frontiers in Molecular Biosciences, 6(MAR). https://doi.org/10.3389/fmolb.2019.00004Lin, M.-F. (2014). Antimicrobial resistance in Acinetobacter baumannii : From bench to bedside . World Journal of Clinical Cases, 2(12), 787. https://doi.org/10.12998/wjcc.v2.i12.787Lucidi, M., Runci, F., Rampioni, G., Frangipani, E., Leoni, L., & Visca, P. (2018). New shuttle vectors for gene cloning and expression in multidrug-resistant Acinetobacter species. Antimicrobial Agents and Chemotherapy, 62(4), 1-19. https://doi.org/10.1128/AAC.02480- 17Magalhães, J., Franko, N., Annunziato, G., Pieroni, M., Benoni, R., Nikitjuka, A., Mozzarelli, A., Bettati, S., Karawajczyk, A., Jirgensons, A., Campanini, B., & Costantino, G. (2019). Refining the structure−activity relationships of 2-phenylcyclopropane carboxylic acids as inhibitors of O-acetylserine sulfhydrylase isoforms. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 31-43. https://doi.org/10.1080/14756366.2018.1518959Mazumder, M., & Gourinath, S. (2015). Structure-Based Design of Inhibitors of the Crucial Cysteine Biosynthetic Pathway Enzyme O-Acetyl Serine Sulfhydrylase. Current Topics in Medicinal Chemistry, 16(9), 948-959. https://doi.org/10.2174/1568026615666150825142422Monem, S., Furmanek-Blaszk, B., Łupkowska, A., Kuczyńska-Wiśnik, D., Stojowska- Swędrzyńska, K., & Laskowska, E. (2020). Mechanisms protecting acinetobacter baumannii against multiple stresses triggered by the host immune response, antibiotics, and outside host environment. En International Journal of Molecular Sciences (Vol. 21, Número 15, pp. 1-30). MDPI AG. https://doi.org/10.3390/ijms21155498Morrissey, I., Olesky, M., Hawser, S., Lob, S. H., Karlowsky, J. A., Corey, G. R., Bassetti, M., & Fyfe, C. (2019). In Vitro Activity of Eravacycline against Gram-Negative Bacilli Isolated in Clinical Laboratories Worldwide from 2013 to 2017 . Antimicrobial Agents and Chemotherapy, 41(December), 1-29. https://doi.org/10.1128/aac.01699-19Mulani, M. S., Kamble, E. E., Kumkar, S. N., Tawre, M. S., & Pardesi, K. R. (2019). Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Frontiers in Microbiology, 10(APR). https://doi.org/10.3389/fmicb.2019.00539Nasr, P. (2020). Genetics, epidemiology, and clinical manifestations of multidrug-resistant Acinetobacter baumannii. Journal of Hospital Infection, 104(1), 4-11. https://doi.org/10.1016/j.jhin.2019.09.021Neto, N. N. M., Maia, J., Queiroz, I. T., Zacarkim, M. R., Lins, M. G., Labeaud, D., Aronoff, D., & Medicine, F. (2018). In vitro Activity of Cefiderocol (S-649266), a Siderophore Cephalosporin, Against Enterobacteriaceae With Defined Extended-Spectrum Β- Lactamases and Carbapenemases. 5(Suppl 1), 250-251.Nho, J. S., Jun, S. H., Oh, M. H., Park, T. I., Choi, C. W., Kim, S. Il, Choi, C. H., & Lee, J. C. (2015). Acinetobacter nosocomialis secretes outer membrane vesicles that induce epithelial cell death and host inflammatory responses. Microbial Pathogenesis, 81, 39-45. https://doi.org/10.1016/j.micpath.2015.03.012Nowak, P., & Paluchowska, P. (2016). Acinetobacter baumannii: Biology and drug resistance — role of carbapenemases. Folia Histochemica et Cytobiologica, 54(2), 61-74. https://doi.org/10.5603/FHC.a2016.0009Pagano, M., Martins, A. F., & Barth, A. L. (2016). Mobile genetic elements related to carbapenem resistance in Acinetobacter baumannii. Brazilian Journal of Microbiology, 47(4), 785-792. https://doi.org/10.1016/j.bjm.2016.06.005Percudani, R., & Peracchi, A. (2003). A genomic overview of pyridoxal-phosphate-dependent enzymes. EMBO Reports, 4(9), 850-854. https://doi.org/10.1038/sj.embor.embor914Pinzi, L., & Rastelli, G. (2019). Molecular docking: Shifting paradigms in drug discovery. International Journal of Molecular Sciences, 20(18). https://doi.org/10.3390/ijms20184331RA, L., & MB, S. (2011). LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51, 2778-2786.Rada, J. (2016). An actual pathogen Acinetobacter. Revista de la Sociedad Boliviana de Pediatría, 55(1), 29-48. http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S1024-06752016000100006Raj, I., Kumar, S., & Gourinath, S. (2012). The narrow active-site cleft of O-acetylserine sulfhydrylase from Leishmania donovani allows complex formation with serine acetyltransferases with a range of C-terminal sequences. Acta Crystallographica Section D: Biological Crystallography, 68(8), 909-919. https://doi.org/10.1107/S0907444912016459Ramírez, D., & Caballero, J. (2018). Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules, 23(5), 1-17. https://doi.org/10.3390/molecules23051038Roberto Carlos Barletta Farías, Leonardo Javier Pérez Ponce, Gabriela Castro Vega, Misael Pujol Pérez, J., & Emilio Barletta del Castillo, Y. D. P. (2018). Multidrug-resistant Acinetobacter baumannii: a challange for current therapeutic. Revista cientifíca de ciencias médicas en Cienfuegos, 13.Rodríguez, C. H., Nastro, M., & Famiglietti, A. (2018). Carbapenemases in Acinetobacter baumannii. Review of their dissemination in Latin America. Revista Argentina de Microbiologia, 50(3), 327-333. https://doi.org/10.1016/j.ram.2017.10.006Romero, I., Téllez, J., Romanha, A. J., Steindel, M., & Grisard, E. C. (2015). Upregulation of cysteine synthase and cystathionine β-synthase contributes to Leishmania braziliensis survival under oxidative stress. Antimicrobial Agents and Chemotherapy, 59(8), 4770- 4781. https://doi.org/10.1128/AAC.04880-14Romero, I., Téllez, J., Yamanaka, L. E., Steindel, M., Romanha, A. J., & Grisard, E. C. (2014). Transsulfuration is an active pathway for cysteine biosynthesis in Trypanosoma rangeli. Parasites and Vectors, 7(1), 1-11. https://doi.org/10.1186/1756-3305-7-197Rossi, E., Longo, F., Barbagallo, M., Peano, C., Consolandi, C., Pietrelli, A., Jaillon, S., Garlanda, C., & Landini, P. (2016). Glucose availability enhances lipopolysaccharide production and immunogenicity in the opportunistic pathogen Acinetobacter baumannii. Future Microbiology, 11(3), 335-349. https://doi.org/10.2217/fmb.15.153Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: A unified platform for automated protein structure and function prediction. Nature Protocols, 5(4), 725-738. https://doi.org/10.1038/nprot.2010.5Santajit, S., & Indrawattana, N. (2016). Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. BioMed Research International, 2016. https://doi.org/10.1155/2016/2475067Schnell, R., & Schneider, G. (2010). Structural enzymology of sulphur metabolism in Mycobacterium tuberculosis. Biochemical and Biophysical Research Communications, 396(1), 33-38. https://doi.org/10.1016/j.bbrc.2010.02.118Schweppe, D. K., Harding, C., Chavez, J. D., Wu, X., Ramage, E., Singh, P. K., Manoil, C., & Bruce, J. E. (2015). Host-Microbe Protein Interactions during Bacterial Infection. Chemistry and Biology, 22(11), 1521-1530. https://doi.org/10.1016/j.chembiol.2015.09.015., Kaushik, A., Pandya, V., Singh, R. P., Banerjee, S., Mittal, M., SSingh, A. K., Ekka, M. Kingh, V., & Kumaran, S. (2017). Substrate-Induced Facilitated Dissociation of the Competitive Inhibitor from the Active Site of O-Acetyl Serine Sulfhydrylase Reveals a Competitive- Allostery Mechanism. Biochemistry, 56(37), 5011-5025. https://doi.org/10.1021/acs.biochem.7b00500Singh, K., Ali, V., Pratap Singh, K., Gupta, P., Suman, S. S., Ghosh, A. K., Bimal, S., Pandey, K., & Das, P. (2017). z. Redox Biology, 12(March), 350-366. https://doi.org/10.1016/j.redox.2017.03.004Singh, K., Singh, K. P., Equbal, A., Suman, S. S., Zaidi, A., Garg, G., Pandey, K., Das, P., & Ali, V. (2016). Interaction between cysteine synthase and serine O-acetyltransferase proteins and their stage specific expression in Leishmania donovani. En Biochimie (Vol. 131). Elsevier Ltd. https://doi.org/10.1016/j.biochi.2016.09.004Singh, S., Sablok, G., Farmer, R., Singh, A. K., Gautam, B., & Kumar, S. (2013). Molecular dynamic simulation and inhibitor prediction of cysteine synthase structured model as a potential drug target for trichomoniasis. BioMed Research International, 2013. https://doi.org/10.1155/2013/390920Smolyakov, R., Borer, A., Riesenberg, K., Schlaeffer, F., Alkan, M., Porath, A., Rimar, D., Almog, Y., & Gilad, J. (2003). Nosocomial multi-drug resistant Acinetobacter baumannii bloodstream infection: Risk factors and outcome with ampicillin-sulbactam treatment. Journal of Hospital Infection, 54(1), 32-38. https://doi.org/10.1016/S0195-6701(03)00046- XSpyrakis, F., Singh, R., Cozzini, P., Campanini, B., Salsi, E., Felici, P., Raboni, S., Benedetti, P., Cruciani, G., Kellogg, G. E., Cook, P. F., & Mozzarelli, A. (2013). Isozyme-Specific Ligands for O-acetylserine sulfhydrylase, a Novel Antibiotic Target. PLoS ONE, 8(10). https://doi.org/10.1371/journal.pone.0077558Thirumal Kumar, D., Lavanya, P., George Priya Doss, C., Tayubi, I. A., Naveen Kumar, D. R., Francis Yesurajan, I., Siva, R., & Balaji, V. (2017). A Molecular Docking and Dynamics Approach to Screen Potent Inhibitors Against Fosfomycin Resistant Enzyme in Clinical Klebsiella pneumoniae. Journal of Cellular Biochemistry, 118(11), 4088-4094. https://doi.org/10.1002/jcb.26064Torres, P. H. M., Sodero, A. C. R., Jofily, P., & Silva-Jr, F. P. (2019). Key topics in molecular docking for drug design. International Journal of Molecular Sciences, 20(18), 1-29. https://doi.org/10.3390/ijms20184574Viehman, J. A., Nguyen, M. H., & Doi, Y. (2014). Treatment options for carbapenem-resistant and extensively drug-resistant Acinetobacter baumannii infections. Drugs, 74(12), 1315- 1333. https://doi.org/10.1007/s40265-014-0267-8Volker F. Wendisch. (2007). Amino Acid Biosynthesis – Pathways, Regulation and Metabolic Engineering. https://books.google.com.co/books?id=0wJUFr1TphYC&pg=PA201&dq=cysk&hl=es- 419&sa=X&ved=0ahUKEwiv4Zyl19ToAhWOg- AKHZXwBYAQ6AEINTAB#v=onepage&q=cysk&f=falseWang, T., & Leyh, T. S. (2012). Three-stage assembly of the cysteine synthase complex from Escherichia coli. Journal of Biological Chemistry, 287(6), 4360-4367. https://doi.org/10.1074/jbc.M111.288423Wang, Y., Xing, J., Xu, Y., Zhou, N., Peng, J., Xiong, Z., Liu, X., Luo, X., Luo, C., Chen, K., Zheng, M., & Jiang, H. (2015). In silico ADME/T modelling for rational drug design. Quarterly Reviews of Biophysics, 48(4), 488-515. https://doi.org/10.1017/S0033583515000190Wassermann, A. M., & Bajorath, J. (2011). BindingDB and ChEMBL: Online compound databases for drug discovery. Expert Opinion on Drug Discovery, 6(7), 683-687. https://doi.org/10.1517/17460441.2011.579100WHO. (2017). La OMS publica la lista de las bacterias para las que se necesitan urgentemente nuevos antibióticos. En Who. https://www.who.int/es/news-room/detail/27-02-2017-who- publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-neededWiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(SUPPL.2), 407-410. https://doi.org/10.1093/nar/gkm290Williams, R. A. M., Westrop, G. D., & Coombs, G. H. (2009). Two pathways for cysteine biosynthesis in Leishmania major. Biochemical Journal, 420(3), 451-462. https://doi.org/10.1042/BJ20082441Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W., Liu, G., & Tang, Y. (2019). AdmetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 35(6), 1067-1069. https://doi.org/10.1093/bioinformatics/bty707Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2014). The I-TASSER suite: Protein structure and function prediction. Nature Methods, 12(1), 7-8. https://doi.org/10.1038/nmeth.3213Magalhães J, Franko N, Annunziato G, Pieroni M, Benoni R, Nikitjuka A, et al. Refining the structure−activity relationships of 2-phenylcyclopropane carboxylic acids as inhibitors of O-acetylserine sulfhydrylase isoforms. J Enzyme Inhib Med Chem. 2019;34(1):31-43.Singh AK, Ekka MK, Kaushik A, Pandya V, Singh RP, Banerjee S, et al. Substrate-Induced Facilitated Dissociation of the Competitive Inhibitor from the Active Site of O-Acetyl Serine Sulfhydrylase Reveals a Competitive-Allostery Mechanism. Biochemistry. 2017;56(37):5011-25.Wang Y, Xing J, Xu Y, Zhou N, Peng J, Xiong Z, et al. In silico ADME/T modelling for rational drug design. Q Rev Biophys. 2015;48(4):488-515.Franko N, Grammatoglou K, Campanini B, Costantino G, Jirgensons A, Mozzarelli A. Inhibition of O-acetylserine sulfhydrylase by fluoroalanine derivatives. J Enzyme Inhib Med Chem [Internet]. 2018;33(1):1343-51. Disponible en: https://doi.org/10.1080/14756366.2018.1504040Brunner K, Steiner EM, Reshma RS, Sriram D, Schnell R, Schneider G. Profiling of in vitro activities of urea-based inhibitors against cysteine synthases from Mycobacterium tuberculosis. Bioorganic Med Chem Lett [Internet]. 2017;27(19):4582-7. Disponible en: http://dx.doi.org/10.1016/j.bmcl.2017.08.039Jean Kumar VU, Poyraz Ö, Saxena S, Schnell R, Yogeeswari P, Schneider G, et al. Discovery of novel inhibitors targeting the Mycobacterium tuberculosis O-acetylserine sulfhydrylase (CysK1) using virtual high-throughput screening. Bioorganic Med Chem Lett [Internet]. 2013;23(5):1182-6. Disponible en: http://dx.doi.org/10.1016/j.bmcl.2013.01.031Spyrakis F, Singh R, Cozzini P, Campanini B, Salsi E, Felici P, et al. Isozyme-Specific Ligands for O-acetylserine sulfhydrylase, a Novel Antibiotic Target. PLoS One. 2013;8(10).Roy A, Kucukural A, Zhang Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat Protoc. 2010;5(4):725-38.Huang B, Vetting MW, Roderick SL. The active site of O-acetylserine sulfhydrylase is the anchor point for bienzyme complex formation with serine acetyltransferase. J Bacteriol. 2005;187(9):3201-5.Schnell R, Schneider G. Structural enzymology of sulphur metabolism in Mycobacterium tuberculosis. Biochem Biophys Res Commun [Internet]. 2010;396(1):33-8. Disponible en: http://dx.doi.org/10.1016/j.bbrc.2010.02.118Williams RAM, Westrop GD, Coombs GH. Two pathways for cysteine biosynthesis in Leishmania major. Biochem J. 2009;420(3):451-62.Raj I, Kumar S, Gourinath S. The narrow active-site cleft of O-acetylserine sulfhydrylase from Leishmania donovani allows complex formation with serine acetyltransferases with a range of C-terminal sequences. Acta Crystallogr Sect D Biol Crystallogr. 2012;68(8):909- 19.Benoni R, Pertinhez TA, Spyrakis F, Davalli S, Pellegrino S, Paredi G, et al. Structural insight into the interaction of O-acetylserine sulfhydrylase with competitive, peptidic inhibitors by saturation transfer difference-NMR. FEBS Lett. 2016;590(7):943-53.Farfan N, Molina K. Caracterización molecular y bioquímica de la enzima Cisteína Sintasa en la bacteria Pseudomonas aeruginosa mediante análisis in silico, como posible blanco terapéutico en este patógeno. 2020 trabajo Fin de Grado no publicado.Análisis in SilicoMicroorganismosSalud públicaPatógenoAcinetobacter baumanniiCisteína SintasaIAASResistenciaMortalidadORIGINALFrancyRocio_Leon_TrabajoFinalde Grado_VersionFinal.pdfFrancyRocio_Leon_TrabajoFinalde Grado_VersionFinal.pdfapplication/pdf3679902https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/2866/1/FrancyRocio_Leon_TrabajoFinalde%20Grado_VersionFinal.pdf480c7178b966a8d0d1279f5923e97196MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/2866/2/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD52open accessTEXTFrancyRocio_Leon_TrabajoFinalde Grado_VersionFinal.pdf.txtFrancyRocio_Leon_TrabajoFinalde Grado_VersionFinal.pdf.txtExtracted texttext/plain185447https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/2866/3/FrancyRocio_Leon_TrabajoFinalde%20Grado_VersionFinal.pdf.txtcdabe752f724caa8010ef7916cf4e7caMD53open accessTHUMBNAILFrancyRocio_Leon_TrabajoFinalde Grado_VersionFinal.pdf.jpgFrancyRocio_Leon_TrabajoFinalde Grado_VersionFinal.pdf.jpgGenerated Thumbnailimage/jpeg6752https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/2866/4/FrancyRocio_Leon_TrabajoFinalde%20Grado_VersionFinal.pdf.jpg8ca1fdc739fd46b5e5e7d85c0fbbae66MD54open accessunicolmayor/2866oai:repositorio.unicolmayor.edu.co:unicolmayor/28662021-09-24 03:00:52.874An error occurred on the license name.|||https://creativecommons.org/licenses/by-nc-sa/4.0/open accessBiblioteca Digital Unicolmayorrepositorio@unicolmayor.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=