Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito pertenecientes a las familias de ligandos pfeba y pfrh de la cepa fcb2 de plasmodium falciparum
Plasmodium falciparum, es el parásito causante de malaria asociado a la mayor morbilidad y mortalidad a nivel mundial. Es un problema de salud pública cada vez más difícil de tratar, debido especialmente al aumento de resistencia por parte del parásito a los antimaláricos actuales; por esta razón es...
- Autores:
-
Flórez Arenas, Zulma Julieth
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2019
- Institución:
- Colegio Mayor de Cundinamarca
- Repositorio:
- Repositorio Colegio Mayor de Cundinamarca
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unicolmayor.edu.co:unicolmayor/306
- Acceso en línea:
- https://repositorio.unicolmayor.edu.co/handle/unicolmayor/306
- Palabra clave:
- Malaria - Epidemiología
Vacuna contra la malaria
Paludismo
Malaria
Plasmodium falciparum
Ligandos de invasión
PfRHs
PfEBAs
RT-qPCR
- Rights
- openAccess
- License
- Derechos Reservados -Universidad Colegio Myor de Cundinamarca ,2019
id |
UCOLMAYOR2_2095efcf2604f2cacc5e0b4da4cb850a |
---|---|
oai_identifier_str |
oai:repositorio.unicolmayor.edu.co:unicolmayor/306 |
network_acronym_str |
UCOLMAYOR2 |
network_name_str |
Repositorio Colegio Mayor de Cundinamarca |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito pertenecientes a las familias de ligandos pfeba y pfrh de la cepa fcb2 de plasmodium falciparum |
title |
Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito pertenecientes a las familias de ligandos pfeba y pfrh de la cepa fcb2 de plasmodium falciparum |
spellingShingle |
Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito pertenecientes a las familias de ligandos pfeba y pfrh de la cepa fcb2 de plasmodium falciparum Malaria - Epidemiología Vacuna contra la malaria Paludismo Malaria Plasmodium falciparum Ligandos de invasión PfRHs PfEBAs RT-qPCR |
title_short |
Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito pertenecientes a las familias de ligandos pfeba y pfrh de la cepa fcb2 de plasmodium falciparum |
title_full |
Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito pertenecientes a las familias de ligandos pfeba y pfrh de la cepa fcb2 de plasmodium falciparum |
title_fullStr |
Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito pertenecientes a las familias de ligandos pfeba y pfrh de la cepa fcb2 de plasmodium falciparum |
title_full_unstemmed |
Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito pertenecientes a las familias de ligandos pfeba y pfrh de la cepa fcb2 de plasmodium falciparum |
title_sort |
Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito pertenecientes a las familias de ligandos pfeba y pfrh de la cepa fcb2 de plasmodium falciparum |
dc.creator.fl_str_mv |
Flórez Arenas, Zulma Julieth |
dc.contributor.advisor.none.fl_str_mv |
Ararat Sarría, Mónica Rodríguez Panduro, Mauricio Humberto |
dc.contributor.author.none.fl_str_mv |
Flórez Arenas, Zulma Julieth |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad Colegio Mayor de Cundinamarca |
dc.contributor.researchgroup.spa.fl_str_mv |
Trabajo de investigación |
dc.subject.lemb.none.fl_str_mv |
Malaria - Epidemiología Vacuna contra la malaria Paludismo |
topic |
Malaria - Epidemiología Vacuna contra la malaria Paludismo Malaria Plasmodium falciparum Ligandos de invasión PfRHs PfEBAs RT-qPCR |
dc.subject.proposal.spa.fl_str_mv |
Malaria Plasmodium falciparum Ligandos de invasión PfRHs PfEBAs RT-qPCR |
description |
Plasmodium falciparum, es el parásito causante de malaria asociado a la mayor morbilidad y mortalidad a nivel mundial. Es un problema de salud pública cada vez más difícil de tratar, debido especialmente al aumento de resistencia por parte del parásito a los antimaláricos actuales; por esta razón es necesaria la búsqueda de nuevas herramientas en pro del control y la erradicación de la enfermedad principalmente enfocadas al desarrollo de vacunas eficaces. Para esto es indispensable la caracterización de proteínas que puedan ser blancos potenciales, como lo son los ligandos de invasión, correspondientes a las familias de antígenos de unión a eritrocito (PfEBAs) y proteínas homólogas de unión a reticulocito (PfRHs), ya que múltiples estudios de expresión transcripcional de los genes que codifican para estos ligandos, han demostrado que son esenciales en el proceso de invasión al eritrocito y que su expresión varía entre diferentes cepas y aislados. Por este motivo, el presente proyecto determinó de manera parcial el perfil transcripcional de genes pertenecientes a estas dos familias, cuantificando su expresión transcripcional mediante la técnica RT-qPCR, en una cepa autóctona de Colombia. Con los resultados obtenidos, se espera dar pie a futuros estudios comparativos con otras cepas del parásito, para así mejorar la comprensión de los fenotipos que utiliza P. falciparum en el proceso de invasión al eritrocito y así mismo buscar métodos para bloquear dicha invasión. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019-10 |
dc.date.accessioned.none.fl_str_mv |
2021-06-30T14:05:16Z |
dc.date.available.none.fl_str_mv |
2021-06-30T14:05:16Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TP |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unicolmayor.edu.co/handle/unicolmayor/306 |
dc.identifier.barcode.none.fl_str_mv |
60185 |
url |
https://repositorio.unicolmayor.edu.co/handle/unicolmayor/306 |
identifier_str_mv |
60185 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.none.fl_str_mv |
No objeto asociado |
dc.relation.references.spa.fl_str_mv |
1. WHO. Paludismo [Internet]. 2018 [cited 2019 May 5]. Available from: https://www.who.int/es/news-room/fact-sheets/detail/malaria 2. Arévalo-Pinzón G, Curtidor H, Muñoz M, Suarez D, Patarroyo MA, Patarroyo ME. Rh1 high activity binding peptides inhibit high percentages of Plasmodium falciparum FVO strain invasion. Vaccine. 2013;31(14):1830–7. 3. WHO. World Malaria Report. 2018. ISBN 978 92 4 156469 4. [Internet]. 2018. Available from: www.who.int/malaria 4. Castro MC. Malaria Transmission and Prospects for Malaria Eradication : The Role of the Environment. 2017; 5. Cowman AF, Healer J, Marapana D, Marsh K. Malaria: Biology and Disease. Cell [Internet]. 2016;167(3):610–24. Available from: http://dx.doi.org/10.1016/j.cell.2016.07.055 6. Tarr SJ, Díaz-Ingelmo O, Stewart LB, Hocking SE, Murray L, Duffy CW, et al. Schizont transcriptome variation among clinical isolates and laboratory-adapted clones of the malaria parasite Plasmodium falciparum. BMC Genomics. 2018;19(1):1–13. 7. Taylor HM, Grainger M, Holder AA. Variation in the expression of a Plasmodium falciparum protein family implicated in erythrocyte invasion. Infect Immun [Internet]. 2002;70(10):5779–89. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=128319&tool=pmcentrez&rendertype=abstract 8. Ord RL, Rodriguez M, Yamasaki T, Takeo S, Tsuboi T, Lobo CA. Targeting sialic acid dependent and independent pathways of invasion in Plasmodium falciparum. PLoS One. 2012;7(1). 9. Garavito G, Rincón J, Arteaga L, Hata Y, Bourdy G, Gimenez A, et al. Antimalarial activity of some Colombian medicinal plants. J Ethnopharmacol. 2006;107(3):460–2. 10. García-huertas P, Pabón A, Arias C, Blair S. Evaluación del efecto citotóxico y del daño genético de extractos estandarizados de Solanum nudum con actividad anti- Plasmodium. 2013;78–87. 11. Arango E, Carmona-fonseca J, Blair S. Susceptibilidad in vitro de aislamientos colombianos de Plasmodium falciparum a diferentes antipalúdicos. 2008;19(18):213–23. 12. Lopez-Perez M, Villasis E, Machado RLD, Póvoa MM, Vinetz JM, Blair S, et al. Plasmodium falciparum Field Isolates from South America Use an Atypical Red Blood Cell Invasion Pathway Associated with Invasion Ligand Polymorphisms. PLoS One [Internet]. 2012;7(10):e47913. Available from: http://dx.plos.org/10.1371/journal.pone.0047913 13. Curtidor H, Vanegas M, P. Alba M, E. Patarroyo M. Functional, Immunological and Three-Dimensional Analysis of Chemically Synthesised Sporozoite Peptides as Components of a Fully-Effective Antimalarial Vaccine. Curr Med Chem. 2011;18(29):4470–502. 14. Hulse JH. Biotechnologies: Past history, present state and future prospects. Trends Food Sci Technol. 2004;15(1):3–18. 15. Cox FEG. History of discovery of malaria parasites & vectors(171). 2010;(Figure 1):1–9. 16. Sherman IW. Malaria: parasite biology, pathogenesis and protection. 1998. 565 p. 17. Dvorak JA, Miller LH, Whitehouse WC, Shiroishi T. Invasion of Erythrocytes by Malaria Merozoites. Source Sci New Ser [Internet]. 1975;187(4178):748–50. Available from: http://www.jstor.org/stable/173 18. Pasvol G, Jungery M, Weatherall DJ, Parsons SF, Anstee DJ, Tanner MJA. Glycophorin As a Possible Receptor for Plasmodium Falciparum. Lancet. 1982;320(8305):947–50. 19. Pasvol G. Receptors on red cells for Plasmodium falciparum and their interaction with merozoites. Vol. 307, Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 1984. p. 189–200 20. Perkins ME. Binding of glycophorins to Plasmodium falciparum merozoites. Mol Biochem Parasitol. 1984;10(1):67–78. 21. Camus D, Hadley TJ. A Plasmodium falciparum Antigen That Binds to Host Erythrocytes and Merozoites. Adv Sci. 1985;230(4725):553–6. 22. Adams JH, Sim BK, Dolan SA, Fang X, Kaslow DC, Miller LH. A family of erythrocyte binding proteins of malaria parasites. Proc Natl Acad Sci U S A [Internet]. 1992;89(15):7085–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1496004%0Ahttp://www.pubmedcentral.nih.gov/artic 23. Sim BK, Chitnis CE, Wasniowska K, Hadley TJ, Miller LH. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science [Internet]. 1994 Jun 24;264(5167):1941–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/80092 24. Dolan SA, Proctor JL, Alling DW, Okubo Y, Wellems TE, Miller LH. Glycophorin B as an EBA-175 independent Plasmodium falciparum receptor of human erythrocytes. Mol Biochem Parasitol [Internet]. 1994 Mar;64(1):55–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8078523 25. Adams JH, Blair PL, Kaneko O, Peterson DS. An expanding ebl family of Plasmodium falciparum. Trends Parasitol. 2002;17(6):297–9 26. Lobo C-A. Glycophorin C is the receptor for the Plasmodium falciparum erythrocyte binding ligand PfEBP-2 (baebl). Blood [Internet]. 2003 Jun 1;101(11):4628–31. Available from: http://www.bloodjournal.org/cgi/doi/10.1182/blood-2002-10-3076 27. Gilberger T-W, Thompson JK, Triglia T, Good RT, Duraisingh MT, Cowman AF. A Novel Erythrocyte Binding Antigen-175 Paralogue from Plasmodium falciparum Defines a New Trypsin-resistant Receptor on Human Erythrocytes. J Biol Chem [Internet]. 2003 Apr 18;278(16):14480–6. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M211446200 28. Rayner JC, Galinski MR, P. I, Barnwell JW. Two Plasmodium falciparum genes express merozoite proteins that are related to Plasmodium vivax and Plasmodium yoelii adhesive proteins involved in host cell selection and invasion. Proc Natl Acad Sci U S A [Internet]. 2000;97(17):9648–53. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC16919/ 29. Triglia T, Thompson J, Caruana SR, Delorenzi M, Speed T, Cowman AF. Identification of Proteins from Plasmodium falciparum That Are Homologous to Reticulocyte Binding Proteins in Plasmodium vivax. 2001;69(2):1084–92. 30. Rayner JC, Vargas-Serrato E, Huber CS, Galinski MR, Barnwell JW. A Plasmodium falciparum Homologue of Plasmodium vivax Reticulocyte Binding Protein (PvRBP1) Defines a Trypsin-resistant Erythrocyte Invasion Pathway. J Exp Med [Internet]. 2001 Dec 3;194(11):1571–82. Available from: http://www.jem.org/lookup/doi/10.1084/jem.194.11.1571 31. Taylor HM, Triglia T, Thompson J, Sajid M, Fowler R, Wickham ME, et al. Plasmodium falciparum Homologue of the Genes for Plasmodium vivax and Plasmodium yoelii Adhesive Proteins, Which Is Transcribed but Not Translated. Infect Immun [Internet]. 2001;69(6):3635–3645. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC98354/ 32. Blair PL, Witney A, Haynes JD, Moch JK, Carucci DJ, Adams JH. Transcripts of developmentally regulated Plasmodium falciparum genes quantified by real-time RT-PCR. Nucleic Acids Res. 2002;30(10):2224–31. 33. Kaneko O, Mu J, Tsuboi T, Su XZ, Torii M. Gene structure and expression of a Plasmodium falciparum 220-kDa protein homologous to the Plasmodium vivax reticulocyte binding proteins. Mol Biochem Parasitol. 2002;121:275–8. 34. Gaur D, Furuya T, Mu J, Jiang L Bin, Su XZ, Miller LH. Upregulation of expression of the reticulocyte homology gene 4 in the Plasmodium falciparum clone Dd2 is associated with a switch in the erythrocyte invasion pathway. Mol Biochem Parasitol. 2006;145(2):205–15. 35. Tham W, Wilson DW, Lopaticki S, Schmidt CQ, Tetteh-quarcoo PB. Complement receptor 1 is the host erythrocyte receptor for Plasmodium falciparum PfRh4 invasion ligand. 2010;107(40):17327–32. 36. Triglia T, Duraisingh MT, Good RT, Cowman AF. Reticulocyte-binding protein homologue 1 is required for sialic acid-dependent invasion into human erythrocytes by Plasmodium falciparum. 2005;55:162–74. 37. Duraisingh MT, Triglia T, Ralph SA, Rayner JC, Barnwell JW, McFadden GI, et al. Phenotypic variation of Plasmodium falciparum merozoite proteins directs receptor targeting for invasion of human erythrocytes. Embo J. 2003;22(5):1047–57. 38. Sahar T, Reddy KS, Bharadwaj M, Pandey AK, Singh S, Chitnis CE, et al. Plasmodium falciparum reticulocyte binding-like homologue protein 2 (PfRH2) is a key adhesive molecule involved in erythrocyte invasion. PLoS One. 2011;6(2). 39. Baum J, Chen L, Healer J, Lopaticki S, Boyle M, Triglia T, et al. Reticulocyte-binding protein homologue 5 - An essential adhesin involved in invasion of human erythrocytes by Plasmodium falciparum. Int J Parasitol [Internet]. 2009;39(3):371–80. Available from: http://dx.doi.org/10.1016/j.ijpara.2008.10.00 40. Crosnier C, Bustamante L, Bei AK, Theron M, Uchikawa M, Mboup S, et al. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature. 2011;480(7378):534–7. 41. Chen L, Lopaticki S, Riglar DT, Dekiwadia C, Uboldi AD, Tham W-H, et al. An EGF-like Protein Forms a Complex with PfRh5 and Is Required for Invasion of Human Erythrocytes by Plasmodium falciparum. Blackman MJ, editor. PLoS Pathog [Internet]. 2011 Sep 1;7(9):e1002199. Available from: http://dx.plos.org/10.1371/journal.ppat.1002199 42. Reddy KS, Amlabu E, Pandey AK, Mitra P, Chauhan VS, Gaur D. Multiprotein complex between the GPI-anchored CyRPA with PfRH5 and PfRipr is crucial for Plasmodium falciparum erythrocyte invasion. Proc Natl Acad Sci [Internet]. 2015 Jan 27;112(4):1179–84. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1415466112 43. Galaway F, Drought LG, Fala M, Cross N, Kemp AC, Rayner JC, et al. P113 is a merozoite surface protein that binds the N terminus of Plasmodium falciparum RH5. Nat Commun [Internet]. 2017 Feb 10;8:14333. Available from: http://www.nature.com/doifinder/10.1038/ncomms14333 44. Espinal, Carlos. Moreno, Edith. Guerra, patricia. De la Vega P. Aislamiento Y Caracterizacion De Cepas Colombianas De Plasmodium Falciparum. 1982;2(3). 45. Harvey KL, Gilson PR, Crabb BS. A model for the progression of receptor-ligand interactions during erythrocyte invasion by Plasmodium falciparum. Int J Parasitol [Internet]. 2012;42(6):567–73. Available from: http://dx.doi.org/10.1016/j.ijpara.2012.02.011 46. Cowman AF, Tonkin CJ, Tham WH, Duraisingh MT. The Molecular Basis of Erythrocyte Invasion by Malaria Parasites. Cell Host Microbe [Internet]. 2017;22(2):232–45. Available from: http://dx.doi.org/10.1016/j.chom.2017.07.003 47. Satchwell TJ. Erythrocyte invasion receptors for Plasmodium falciparum : new and old. Transfus Med. 2016;26(2):77–88 48. Blackman MJ, Bannister LH. Apical organelles of Apicomplexa: Biology and isolation by subcellular fractionation. Mol Biochem Parasitol. 2001;117(1):11–25. 49. Weiss GE, Gilson PR, Taechalertpaisarn T, Tham WH, de Jong NWM, Harvey KL, et al. Revealing the Sequence and Resulting Cellular Morphology of Receptor-Ligand 61 Interactions during Plasmodium falciparum Invasion of Erythrocytes. PLoS Pathog [Internet]. 2015;11(2):1–25. Available from: http://dx.doi.org/10.1371/journal.ppat.1004670 50. Thillainayagam M, Ramaiah S. Mosquito, malaria and medicines – A review. Res J Pharm Technol. 2016;9(8):1268–76. 51. Carvajal venus zenith meliza, Martinez CND, Vergara JMA. Memorias © 2012 - 2013. Minist Prot Soc. 2013;(la malaria en colombia):7–46. 52. Padilla JC, Uribe GÁ, Araújo RM, Narváez PC, Valencia SH. Epidemiology and control of malaria in Colombia. Mem Inst Oswaldo Cruz [Internet]. 2011;106 Suppl(Suppl 1):114–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21881765%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4830684 53. Semanal BE. Comportamiento de la notificación malaria 2018. 2019;(2). Available from: https://www.ins.gov.co/buscador-eventos/Informesdeevento/Malaria 2017.pdf 54. Rodrigues CD, Hannus M, Prudêncio M, Martin C, Gonçalves LA, Portugal S, et al. Host Scavenger Receptor SR-BI Plays a Dual Role in the Establishment of Malaria Parasite Liver Infection. Cell Host Microbe [Internet]. 2008 Sep;4(3):271–82. Available from: https://linkinghub.elsevier.com/retrieve/pii/S193131280800231 55. Dankwa S, Chaand M, Kanjee U, Jiang RHY, Nobre L V., Goldberg JM, et al. Genetic Evidence for Erythrocyte Receptor Glycophorin B Expression Levels Defining a Dominant Plasmodium. Immunotherapy. 2017;85(10):1–15. 56. Tham WH, Healer J, Cowman AF. Erythrocyte and reticulocyte binding-like proteins of Plasmodium falciparum. Trends Parasitol [Internet]. 2012;28(1):23–30. Available from: http://dx.doi.org/10.1016/j.pt.2011.10.002 57. Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev. 2016;40(3):343–72 58. Delves MJ, Straschil U, Ruecker A, Miguel-Blanco C, Marques S, Dufour AC, et al. Routine in vitro culture of P. Falciparum gametocytes to evaluate novel transmission-blocking interventions. Nat Protoc [Internet]. 2016;11(9):1668–80. Available from: http://dx.doi.org/10.1038/nprot.2016.096 59. Henry NB, Sermé SS, Siciliano G, Sombié S, Diarra A, Sagnon N, et al. Biology of Plasmodium falciparum gametocyte sex ratio and implications in malaria parasite transmission. Malar J [Internet]. 2019;1–8. Available from: https://doi.org/10.1186/s12936-019-2707-0 60. Persson KEM, McCallum FJ, Reiling L, Lister NA, Stubbs J, Cowman AF, et al. Variation in use of erythrocyte invasion pathways by Plasmodium falciparum mediates evasion of human inhibitory antibodies. J Clin Invest. 2008;118(1):342–51. 61. Ararat-sarria M, Patarroyo MA, Curtidor H, Richard D. Parasite-Related Genetic and Epigenetic Aspects and Host Factors Influencing Plasmodium falciparum Invasion of Erythrocytes. 2019;8(January):1–15. 62. Koch M, Wright KE, Otto O, Herbig M, Salinas ND, Tolia NH, et al. Plasmodium falciparum erythrocyte-binding antigen 175 triggers a biophysical change in the red blood cell that facilitates invasion . Proc Natl Acad Sci. 2017;114(16):4225–30. 63. Mayer DCG, Jiang L, Achur RN, Kakizaki I, Gowda DC, Miller LH. The glycophorin C N-linked glycan is a critical component of the ligand for the Plasmodium falciparum erythrocyte receptor BAEBL. Proc Natl Acad Sci [Internet]. 2006 Feb 14;103(7):2358–62. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.0510648103 64. Patarroyo ME, Alba MP, Rojas-Luna R, Bermudez A, Aza-Conde J. Functionally relevant proteins in Plasmodium falciparum host cell invasion. Immunotherapy [Internet]. 2017;9(2):131–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28128713%0Ahttp://www.futuremedicine.com/doi/10.2217/imt-2016-0091 65. Zerka A, Olechwier A, Rydzak J, Kaczmarek R, Jaskiewicz E. Baculovirus-expressed Plasmodium reichenowi EBA-140 merozoite ligand is host specific. Parasitol Int [Internet]. 2016 Dec;65(6):708–14. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1383576916301817 66. Head DJ, Lee ZE, Poole J, Avent ND. Expression of phosphatidylserine (PS) on wild-type and Gerbich variant erythrocytes following glycophorin-C (GPC) ligation. Br J Haematol [Internet]. 2005 Apr;129(1):130–7. Available from: http://doi.wiley.com/10.1111/j.1365-2141.2005.05407.x 67. Lanzillotti R, Coetzer TL. The 10 kDa domain of human erythrocyte protein 4.1 binds the 63 Plasmodium falciparum EBA-181 protein. Malar J [Internet]. 2006 Dec 6;5(1):100. Available from: https://malariajournal.biomedcentral.com/articles/10.1186/1475-2875-5-100 68. Gao X, Gunalan K, Yap SSL, Preiser PR. Triggers of key calcium signals during erythrocyte invasion by Plasmodium falciparum. Nat Commun [Internet]. 2013;4:1–11. Available from: http://dx.doi.org/10.1038/ncomms3862 69. Tham W-H, Lim NTY, Weiss GE, Lopaticki S, Ansell BRE, Bird M, et al. Plasmodium falciparum Adhesins Play an Essential Role in Signalling and Activation of Invasion into Human Erythrocytes. Blackman MJ, editor. PLOS Pathog [Internet]. 2015 Dec 22;11(12):e1005343. Available from: https://dx.plos.org/10.1371/journal.ppat.1005343 70. Stubbs J. Molecular Mechanism for Switching of P. falciparum Invasion Pathways into Human Erythrocytes. Science (80- ) [Internet]. 2005 Aug 26;309(5739):1384–7. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1115257 71. Aniweh Y, Gao X, Hao P, Meng W, Lai SK, Gunalan K, et al. P. falciparum RH5-Basigin interaction induces changes in the cytoskeleton of the host RBC. Cell Microbiol [Internet]. 2017 Sep;19(9):e12747. Available from: http://doi.wiley.com/10.1111/cmi.12747 72. Stephenson FH. Calculations for Molecular Biology and Biotechnology. Cell. 2003. 302 p. 73. Society for Mucosal Inmunology. PCR: The Polymerase Chain Reaction [Internet]. 2014 [cited 2019 Jun 10]. Available from: http://www.socmucimm.org/pcr-polymerase-chain-reaction/ 74. Integrated DNA Technologies. qPCR Application Guide. 4th ed. Belgium; 2015. 75. Bowyer PW, Stewart LB, Aspeling-Jones H, Mensah-Brown HE, Ahouidi AD, Amambua-Ngwa A, et al. Variation in Plasmodium falciparum erythrocyte invasion phenotypes and merozoite ligand gene expression across different populations in areas of malaria endemicity. Infect Immun. 2015;83(6):2575–82. 76. Valmaseda A, Bassat Q, Aide P, Cisteró P, Jiménez A, Casellas A, et al. Host age and expression of genes involved in red blood cell invasion in Plasmodium falciparum field isolates. Sci Rep. 2017;7(1):1–9. 77. Cortés A, Carret C, Kaneko O, Yim Lim BYS, Ivens A, Holder AA. Epigenetic Silencing of Plasmodium falciparum Genes Linked to Erythrocyte Invasion. PLoS Pathog [Internet]. 64 2007;3(8):e107. Available from: http://dx.plos.org/10.1371/journal.ppat.0030107 78. Viewi O, Hadley TI, Klotz FW, Miller LH. Invasion of erythrocytes by mal1\ria parasites: a cellular and molecular ovef�����viewi. 1986;451–77. 79. Bei AK, Duraisingh MT. Measuring Plasmodium falciparum Erythrocyte Invasion Phenotypes Using Flow Cytometry. In 2015. p. 167–86. Available from: http://link.springer.com/10.1007/978-1-4939-2815-6_14 80. Theron M, Hesketh RL, Subramanian S, Rayner JC. An adaptable two-color flow cytometric assay to quantitate the invasion of erythrocytes by Plasmodium falciparum parasites. Cytom Part A [Internet]. 2010 Nov;77A(11):1067–74. Available from: http://doi.wiley.com/10.1002/cyto.a.20972 81. Hayton K, Gaur D, Liu A, Takahashi J, Henschen B, Singh S, et al. Erythrocyte Binding Protein PfRH5 Polymorphisms Determine Species-Specific Pathways of Plasmodium falciparum Invasion. Cell Host Microbe [Internet]. 2008;4(1):40–51. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677973/ 82. Mu J, Seydel KB, Bates A, Su X. Recent Progress in Functional Genomic Research in Plasmodium falcipa- rum. 2010;(301):279–86. 83. Trager W, B JJ. Human malaria parasites in Continuous culture. 1976. 84. BEI Resources Repository, NIAID, NIH: Plasmodium falciparum, Strain 3D7, MRA-102, contributed by Daniel J. Carucci. [Internet]. Available from: https://www.beiresources.org/Catalog/BEIParasiticProtozoa/MRA-102.aspx 85. Radfar A, Méndez D, Moneriz C, Linares M, Marín-García P, Puyet A, et al. Synchronous culture of Plasmodium falciparum at high parasitemia levels. Nat Protoc. 2009;4(12):1899–915. 86. Bioline. ISOLATE II RNA Plan Kit [Internet]. 2018. Available from: https://www.bioline.com/au/downloads/dl/file/id/1204/isolate_ii_rna_plant_kit_protocol.pdf 87. Invitrogen. SuperScript TM III Reverse Transcriptase. Thermo Fisher. 2004. 88. Regalado A. Banco Nacional De Adn Carlos Iii. 2005;6. Available from: http://www.bancoadn.org/docs/programa-control-calidad-muestras.pdf 89. Nery S, Deans A, Mosobo M, Marsh K, Rowe JA, Conway DJ. Expression of Plasmodium 65 falciparum genes involved in erythrocyte invasion varies among isolates cultured directly from patients. Mol Biochem Parasitol. 2006;149(2):208–15. 90. Promega. GoTaq ® Probe qPCR Master Mix. 2012. 91. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature [Internet]. 2002 Oct;419(6906):498–511. Available from: http://www.nature.com/articles/nature01097 92. Gomez-escobar N, Amambua-ngwa A, Walther M, Okebe J, Ebonyi A, Conway DJ. Erythrocyte Invasion and Merozoite Ligand Gene Expression in Severe and Mild Plasmodium falciparum Malaria. 2010;201:444–52 93. Cowman AF, Crabb BS. Invasion of red blood cells by malaria parasites. Vol. 124, Cell. 2006. p. 755–66. |
dc.rights.eng.fl_str_mv |
Derechos Reservados -Universidad Colegio Myor de Cundinamarca ,2019 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Derechos Reservados -Universidad Colegio Myor de Cundinamarca ,2019 https://creativecommons.org/licenses/by-nc-sa/4.0/ Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
65p. |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Colombia |
dc.publisher.spa.fl_str_mv |
Universidad Colegio Mayor de Cundinamarca |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias de la Salud |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Distrito Capital |
dc.publisher.program.spa.fl_str_mv |
Bacteriología y Laboratorio Clínico |
institution |
Colegio Mayor de Cundinamarca |
bitstream.url.fl_str_mv |
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/306/1/Presentaci%c3%b3n%20Perfil%20transcripcional%20de%20genes%20que%20codifican%20prote%c3%adnas%20de%20invasi%c3%b3n%20a%20eritrocito%2c%20pertenec.pdf https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/306/2/1%20para%20subir%20Perfil%20transcripcional%20de%20genes%20que%20codifican%20prote%c3%adnas%20de%20invasi%c3%b3n%20a%20eritrocito%2c%20pertenecientes%20a%20las%20%20%281%29.pdf https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/306/3/2%20para%20subir%20Perfil%20transcripcional%20de%20genes%20que%20codifican%20prote%c3%adnas%20de%20invasi%c3%b3n%20a%20eritrocito%2c%20pertenecientes%20a%20las.pdf https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/306/4/license.txt https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/306/5/Presentaci%c3%b3n%20Perfil%20transcripcional%20de%20genes%20que%20codifican%20prote%c3%adnas%20de%20invasi%c3%b3n%20a%20eritrocito%2c%20pertenec.pdf.txt https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/306/7/1%20para%20subir%20Perfil%20transcripcional%20de%20genes%20que%20codifican%20prote%c3%adnas%20de%20invasi%c3%b3n%20a%20eritrocito%2c%20pertenecientes%20a%20las%20%20%281%29.pdf.txt https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/306/9/2%20para%20subir%20Perfil%20transcripcional%20de%20genes%20que%20codifican%20prote%c3%adnas%20de%20invasi%c3%b3n%20a%20eritrocito%2c%20pertenecientes%20a%20las.pdf.txt https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/306/6/Presentaci%c3%b3n%20Perfil%20transcripcional%20de%20genes%20que%20codifican%20prote%c3%adnas%20de%20invasi%c3%b3n%20a%20eritrocito%2c%20pertenec.pdf.jpg https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/306/8/1%20para%20subir%20Perfil%20transcripcional%20de%20genes%20que%20codifican%20prote%c3%adnas%20de%20invasi%c3%b3n%20a%20eritrocito%2c%20pertenecientes%20a%20las%20%20%281%29.pdf.jpg https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/306/10/2%20para%20subir%20Perfil%20transcripcional%20de%20genes%20que%20codifican%20prote%c3%adnas%20de%20invasi%c3%b3n%20a%20eritrocito%2c%20pertenecientes%20a%20las.pdf.jpg |
bitstream.checksum.fl_str_mv |
8b842802905872953d6eb348c0bbe8cd 136402e2f47f9c1af941d3c048ddafdc f91882e06cdca64ad04f79afd03fbdc1 2f9959eaf5b71fae44bbf9ec84150c7a 1d9d42f2e4ab5e8411a7d0d2bee0239c 6f6f066b340169a6847be20ddbda2485 05a9601de04b7e34528843738f44f531 22aa110d5fbcbf8424d10d25e8b07d82 27e0b83c63574964bd51b6db2ca7b48e 723d341469a21b0fa11c310a2b61742a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital Unicolmayor |
repository.mail.fl_str_mv |
repositorio@unicolmayor.edu.co |
_version_ |
1812210107577008128 |
spelling |
Ararat Sarría, Mónicada6d22c36e1e0f114cbcc7e0c852757cRodríguez Panduro, Mauricio Humberto5a3aa353075aff39d48a3977c88cdb07Flórez Arenas, Zulma Julieth18a1f1449976da02940f786746aad719Universidad Colegio Mayor de CundinamarcaTrabajo de investigación2021-06-30T14:05:16Z2021-06-30T14:05:16Z2019-10https://repositorio.unicolmayor.edu.co/handle/unicolmayor/30660185Plasmodium falciparum, es el parásito causante de malaria asociado a la mayor morbilidad y mortalidad a nivel mundial. Es un problema de salud pública cada vez más difícil de tratar, debido especialmente al aumento de resistencia por parte del parásito a los antimaláricos actuales; por esta razón es necesaria la búsqueda de nuevas herramientas en pro del control y la erradicación de la enfermedad principalmente enfocadas al desarrollo de vacunas eficaces. Para esto es indispensable la caracterización de proteínas que puedan ser blancos potenciales, como lo son los ligandos de invasión, correspondientes a las familias de antígenos de unión a eritrocito (PfEBAs) y proteínas homólogas de unión a reticulocito (PfRHs), ya que múltiples estudios de expresión transcripcional de los genes que codifican para estos ligandos, han demostrado que son esenciales en el proceso de invasión al eritrocito y que su expresión varía entre diferentes cepas y aislados. Por este motivo, el presente proyecto determinó de manera parcial el perfil transcripcional de genes pertenecientes a estas dos familias, cuantificando su expresión transcripcional mediante la técnica RT-qPCR, en una cepa autóctona de Colombia. Con los resultados obtenidos, se espera dar pie a futuros estudios comparativos con otras cepas del parásito, para así mejorar la comprensión de los fenotipos que utiliza P. falciparum en el proceso de invasión al eritrocito y así mismo buscar métodos para bloquear dicha invasión.Resumen 13 1. Introducción 14 2. Objetivos 16 2.1. Objetivo general 16 2.2. Objetivos específicos 16 3. Antecedentes 17 4. Marco referencial 22 4.1. Generalidades 22 4.2. Sintomatología y clasificación de la malaria 22 4.3. Epidemiología 24 4.4. Ciclo biológico del parásito 25 4.4.4. Vías alternas de invasión 28 4.5. Métodos de determinación del fenotipo de invasión32 4.5.1. RT-qPCR 32 5. Materiales y metodos 36 5.1. Tipo de estudio 36 5.3. Variables 36 5.4. Cultivo de parásitos 36 5.5. Extracción de ARN, ADNg y síntesis de ADNc 37 5.6. Estandarización de la técnica RT- qPCR 38 6. Resultados 41 6.1. Cuantificación de las muestras de ADN y ARN 41 6.2. Electroforesis de los genes de los genes pertenecientes a las familias PfRh y PfEBA 42 6.3. PCR tiempo real 43 6.4. Determinación parcial del perfil transcripcional de cada gen 47 7. Discusión 49 Conclusiones 53 Anexos 54 Referencias 56PregradoBacteriólogo(a) y Laboratorista ClínicoTrabajo de investigación65p.application/pdfspaUniversidad Colegio Mayor de CundinamarcaFacultad de Ciencias de la SaludBogotá, Distrito CapitalBacteriología y Laboratorio ClínicoNo objeto asociado1. WHO. Paludismo [Internet]. 2018 [cited 2019 May 5]. Available from: https://www.who.int/es/news-room/fact-sheets/detail/malaria2. Arévalo-Pinzón G, Curtidor H, Muñoz M, Suarez D, Patarroyo MA, Patarroyo ME. Rh1 high activity binding peptides inhibit high percentages of Plasmodium falciparum FVO strain invasion. Vaccine. 2013;31(14):1830–7.3. WHO. World Malaria Report. 2018. ISBN 978 92 4 156469 4. [Internet]. 2018. Available from: www.who.int/malaria4. Castro MC. Malaria Transmission and Prospects for Malaria Eradication : The Role of the Environment. 2017;5. Cowman AF, Healer J, Marapana D, Marsh K. Malaria: Biology and Disease. Cell [Internet]. 2016;167(3):610–24. Available from: http://dx.doi.org/10.1016/j.cell.2016.07.0556. Tarr SJ, Díaz-Ingelmo O, Stewart LB, Hocking SE, Murray L, Duffy CW, et al. Schizont transcriptome variation among clinical isolates and laboratory-adapted clones of the malaria parasite Plasmodium falciparum. BMC Genomics. 2018;19(1):1–13.7. Taylor HM, Grainger M, Holder AA. Variation in the expression of a Plasmodium falciparum protein family implicated in erythrocyte invasion. Infect Immun [Internet]. 2002;70(10):5779–89. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=128319&tool=pmcentrez&rendertype=abstract8. Ord RL, Rodriguez M, Yamasaki T, Takeo S, Tsuboi T, Lobo CA. Targeting sialic acid dependent and independent pathways of invasion in Plasmodium falciparum. PLoS One. 2012;7(1).9. Garavito G, Rincón J, Arteaga L, Hata Y, Bourdy G, Gimenez A, et al. Antimalarial activity of some Colombian medicinal plants. J Ethnopharmacol. 2006;107(3):460–2.10. García-huertas P, Pabón A, Arias C, Blair S. Evaluación del efecto citotóxico y del daño genético de extractos estandarizados de Solanum nudum con actividad anti- Plasmodium. 2013;78–87.11. Arango E, Carmona-fonseca J, Blair S. Susceptibilidad in vitro de aislamientos colombianos de Plasmodium falciparum a diferentes antipalúdicos. 2008;19(18):213–23.12. Lopez-Perez M, Villasis E, Machado RLD, Póvoa MM, Vinetz JM, Blair S, et al. Plasmodium falciparum Field Isolates from South America Use an Atypical Red Blood Cell Invasion Pathway Associated with Invasion Ligand Polymorphisms. PLoS One [Internet]. 2012;7(10):e47913. Available from: http://dx.plos.org/10.1371/journal.pone.004791313. Curtidor H, Vanegas M, P. Alba M, E. Patarroyo M. Functional, Immunological and Three-Dimensional Analysis of Chemically Synthesised Sporozoite Peptides as Components of a Fully-Effective Antimalarial Vaccine. Curr Med Chem. 2011;18(29):4470–502.14. Hulse JH. Biotechnologies: Past history, present state and future prospects. Trends Food Sci Technol. 2004;15(1):3–18.15. Cox FEG. History of discovery of malaria parasites & vectors(171). 2010;(Figure 1):1–9.16. Sherman IW. Malaria: parasite biology, pathogenesis and protection. 1998. 565 p.17. Dvorak JA, Miller LH, Whitehouse WC, Shiroishi T. Invasion of Erythrocytes by Malaria Merozoites. Source Sci New Ser [Internet]. 1975;187(4178):748–50. Available from: http://www.jstor.org/stable/17318. Pasvol G, Jungery M, Weatherall DJ, Parsons SF, Anstee DJ, Tanner MJA. Glycophorin As a Possible Receptor for Plasmodium Falciparum. Lancet. 1982;320(8305):947–50.19. Pasvol G. Receptors on red cells for Plasmodium falciparum and their interaction with merozoites. Vol. 307, Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 1984. p. 189–20020. Perkins ME. Binding of glycophorins to Plasmodium falciparum merozoites. Mol Biochem Parasitol. 1984;10(1):67–78.21. Camus D, Hadley TJ. A Plasmodium falciparum Antigen That Binds to Host Erythrocytes and Merozoites. Adv Sci. 1985;230(4725):553–6.22. Adams JH, Sim BK, Dolan SA, Fang X, Kaslow DC, Miller LH. A family of erythrocyte binding proteins of malaria parasites. Proc Natl Acad Sci U S A [Internet]. 1992;89(15):7085–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1496004%0Ahttp://www.pubmedcentral.nih.gov/artic23. Sim BK, Chitnis CE, Wasniowska K, Hadley TJ, Miller LH. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science [Internet]. 1994 Jun 24;264(5167):1941–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8009224. Dolan SA, Proctor JL, Alling DW, Okubo Y, Wellems TE, Miller LH. Glycophorin B as an EBA-175 independent Plasmodium falciparum receptor of human erythrocytes. Mol Biochem Parasitol [Internet]. 1994 Mar;64(1):55–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/807852325. Adams JH, Blair PL, Kaneko O, Peterson DS. An expanding ebl family of Plasmodium falciparum. Trends Parasitol. 2002;17(6):297–926. Lobo C-A. Glycophorin C is the receptor for the Plasmodium falciparum erythrocyte binding ligand PfEBP-2 (baebl). Blood [Internet]. 2003 Jun 1;101(11):4628–31. Available from: http://www.bloodjournal.org/cgi/doi/10.1182/blood-2002-10-307627. Gilberger T-W, Thompson JK, Triglia T, Good RT, Duraisingh MT, Cowman AF. A Novel Erythrocyte Binding Antigen-175 Paralogue from Plasmodium falciparum Defines a New Trypsin-resistant Receptor on Human Erythrocytes. J Biol Chem [Internet]. 2003 Apr 18;278(16):14480–6. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M21144620028. Rayner JC, Galinski MR, P. I, Barnwell JW. Two Plasmodium falciparum genes express merozoite proteins that are related to Plasmodium vivax and Plasmodium yoelii adhesive proteins involved in host cell selection and invasion. Proc Natl Acad Sci U S A [Internet]. 2000;97(17):9648–53. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC16919/29. Triglia T, Thompson J, Caruana SR, Delorenzi M, Speed T, Cowman AF. Identification of Proteins from Plasmodium falciparum That Are Homologous to Reticulocyte Binding Proteins in Plasmodium vivax. 2001;69(2):1084–92.30. Rayner JC, Vargas-Serrato E, Huber CS, Galinski MR, Barnwell JW. A Plasmodium falciparum Homologue of Plasmodium vivax Reticulocyte Binding Protein (PvRBP1) Defines a Trypsin-resistant Erythrocyte Invasion Pathway. J Exp Med [Internet]. 2001 Dec 3;194(11):1571–82. Available from: http://www.jem.org/lookup/doi/10.1084/jem.194.11.157131. Taylor HM, Triglia T, Thompson J, Sajid M, Fowler R, Wickham ME, et al. Plasmodium falciparum Homologue of the Genes for Plasmodium vivax and Plasmodium yoelii Adhesive Proteins, Which Is Transcribed but Not Translated. Infect Immun [Internet]. 2001;69(6):3635–3645. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC98354/32. Blair PL, Witney A, Haynes JD, Moch JK, Carucci DJ, Adams JH. Transcripts of developmentally regulated Plasmodium falciparum genes quantified by real-time RT-PCR. Nucleic Acids Res. 2002;30(10):2224–31.33. Kaneko O, Mu J, Tsuboi T, Su XZ, Torii M. Gene structure and expression of a Plasmodium falciparum 220-kDa protein homologous to the Plasmodium vivax reticulocyte binding proteins. Mol Biochem Parasitol. 2002;121:275–8.34. Gaur D, Furuya T, Mu J, Jiang L Bin, Su XZ, Miller LH. Upregulation of expression of the reticulocyte homology gene 4 in the Plasmodium falciparum clone Dd2 is associated with a switch in the erythrocyte invasion pathway. Mol Biochem Parasitol. 2006;145(2):205–15.35. Tham W, Wilson DW, Lopaticki S, Schmidt CQ, Tetteh-quarcoo PB. Complement receptor 1 is the host erythrocyte receptor for Plasmodium falciparum PfRh4 invasion ligand. 2010;107(40):17327–32.36. Triglia T, Duraisingh MT, Good RT, Cowman AF. Reticulocyte-binding protein homologue 1 is required for sialic acid-dependent invasion into human erythrocytes by Plasmodium falciparum. 2005;55:162–74.37. Duraisingh MT, Triglia T, Ralph SA, Rayner JC, Barnwell JW, McFadden GI, et al. Phenotypic variation of Plasmodium falciparum merozoite proteins directs receptor targeting for invasion of human erythrocytes. Embo J. 2003;22(5):1047–57.38. Sahar T, Reddy KS, Bharadwaj M, Pandey AK, Singh S, Chitnis CE, et al. Plasmodium falciparum reticulocyte binding-like homologue protein 2 (PfRH2) is a key adhesive molecule involved in erythrocyte invasion. PLoS One. 2011;6(2).39. Baum J, Chen L, Healer J, Lopaticki S, Boyle M, Triglia T, et al. Reticulocyte-binding protein homologue 5 - An essential adhesin involved in invasion of human erythrocytes by Plasmodium falciparum. Int J Parasitol [Internet]. 2009;39(3):371–80. Available from: http://dx.doi.org/10.1016/j.ijpara.2008.10.0040. Crosnier C, Bustamante L, Bei AK, Theron M, Uchikawa M, Mboup S, et al. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature. 2011;480(7378):534–7.41. Chen L, Lopaticki S, Riglar DT, Dekiwadia C, Uboldi AD, Tham W-H, et al. An EGF-like Protein Forms a Complex with PfRh5 and Is Required for Invasion of Human Erythrocytes by Plasmodium falciparum. Blackman MJ, editor. PLoS Pathog [Internet]. 2011 Sep 1;7(9):e1002199. Available from: http://dx.plos.org/10.1371/journal.ppat.100219942. Reddy KS, Amlabu E, Pandey AK, Mitra P, Chauhan VS, Gaur D. Multiprotein complex between the GPI-anchored CyRPA with PfRH5 and PfRipr is crucial for Plasmodium falciparum erythrocyte invasion. Proc Natl Acad Sci [Internet]. 2015 Jan 27;112(4):1179–84. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.141546611243. Galaway F, Drought LG, Fala M, Cross N, Kemp AC, Rayner JC, et al. P113 is a merozoite surface protein that binds the N terminus of Plasmodium falciparum RH5. Nat Commun [Internet]. 2017 Feb 10;8:14333. Available from: http://www.nature.com/doifinder/10.1038/ncomms1433344. Espinal, Carlos. Moreno, Edith. Guerra, patricia. De la Vega P. Aislamiento Y Caracterizacion De Cepas Colombianas De Plasmodium Falciparum. 1982;2(3).45. Harvey KL, Gilson PR, Crabb BS. A model for the progression of receptor-ligand interactions during erythrocyte invasion by Plasmodium falciparum. Int J Parasitol [Internet]. 2012;42(6):567–73. Available from: http://dx.doi.org/10.1016/j.ijpara.2012.02.01146. Cowman AF, Tonkin CJ, Tham WH, Duraisingh MT. The Molecular Basis of Erythrocyte Invasion by Malaria Parasites. Cell Host Microbe [Internet]. 2017;22(2):232–45. Available from: http://dx.doi.org/10.1016/j.chom.2017.07.00347. Satchwell TJ. Erythrocyte invasion receptors for Plasmodium falciparum : new and old. Transfus Med. 2016;26(2):77–8848. Blackman MJ, Bannister LH. Apical organelles of Apicomplexa: Biology and isolation by subcellular fractionation. Mol Biochem Parasitol. 2001;117(1):11–25.49. Weiss GE, Gilson PR, Taechalertpaisarn T, Tham WH, de Jong NWM, Harvey KL, et al. Revealing the Sequence and Resulting Cellular Morphology of Receptor-Ligand 61 Interactions during Plasmodium falciparum Invasion of Erythrocytes. PLoS Pathog [Internet]. 2015;11(2):1–25. Available from: http://dx.doi.org/10.1371/journal.ppat.100467050. Thillainayagam M, Ramaiah S. Mosquito, malaria and medicines – A review. Res J Pharm Technol. 2016;9(8):1268–76.51. Carvajal venus zenith meliza, Martinez CND, Vergara JMA. Memorias © 2012 - 2013. Minist Prot Soc. 2013;(la malaria en colombia):7–46.52. Padilla JC, Uribe GÁ, Araújo RM, Narváez PC, Valencia SH. Epidemiology and control of malaria in Colombia. Mem Inst Oswaldo Cruz [Internet]. 2011;106 Suppl(Suppl 1):114–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21881765%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC483068453. Semanal BE. Comportamiento de la notificación malaria 2018. 2019;(2). Available from: https://www.ins.gov.co/buscador-eventos/Informesdeevento/Malaria 2017.pdf54. Rodrigues CD, Hannus M, Prudêncio M, Martin C, Gonçalves LA, Portugal S, et al. Host Scavenger Receptor SR-BI Plays a Dual Role in the Establishment of Malaria Parasite Liver Infection. Cell Host Microbe [Internet]. 2008 Sep;4(3):271–82. Available from: https://linkinghub.elsevier.com/retrieve/pii/S19313128080023155. Dankwa S, Chaand M, Kanjee U, Jiang RHY, Nobre L V., Goldberg JM, et al. Genetic Evidence for Erythrocyte Receptor Glycophorin B Expression Levels Defining a Dominant Plasmodium. Immunotherapy. 2017;85(10):1–15.56. Tham WH, Healer J, Cowman AF. Erythrocyte and reticulocyte binding-like proteins of Plasmodium falciparum. Trends Parasitol [Internet]. 2012;28(1):23–30. Available from: http://dx.doi.org/10.1016/j.pt.2011.10.00257. Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev. 2016;40(3):343–7258. Delves MJ, Straschil U, Ruecker A, Miguel-Blanco C, Marques S, Dufour AC, et al. Routine in vitro culture of P. Falciparum gametocytes to evaluate novel transmission-blocking interventions. Nat Protoc [Internet]. 2016;11(9):1668–80. Available from: http://dx.doi.org/10.1038/nprot.2016.09659. Henry NB, Sermé SS, Siciliano G, Sombié S, Diarra A, Sagnon N, et al. Biology of Plasmodium falciparum gametocyte sex ratio and implications in malaria parasite transmission. Malar J [Internet]. 2019;1–8. Available from: https://doi.org/10.1186/s12936-019-2707-060. Persson KEM, McCallum FJ, Reiling L, Lister NA, Stubbs J, Cowman AF, et al. Variation in use of erythrocyte invasion pathways by Plasmodium falciparum mediates evasion of human inhibitory antibodies. J Clin Invest. 2008;118(1):342–51.61. Ararat-sarria M, Patarroyo MA, Curtidor H, Richard D. Parasite-Related Genetic and Epigenetic Aspects and Host Factors Influencing Plasmodium falciparum Invasion of Erythrocytes. 2019;8(January):1–15.62. Koch M, Wright KE, Otto O, Herbig M, Salinas ND, Tolia NH, et al. Plasmodium falciparum erythrocyte-binding antigen 175 triggers a biophysical change in the red blood cell that facilitates invasion . Proc Natl Acad Sci. 2017;114(16):4225–30.63. Mayer DCG, Jiang L, Achur RN, Kakizaki I, Gowda DC, Miller LH. The glycophorin C N-linked glycan is a critical component of the ligand for the Plasmodium falciparum erythrocyte receptor BAEBL. Proc Natl Acad Sci [Internet]. 2006 Feb 14;103(7):2358–62. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.051064810364. Patarroyo ME, Alba MP, Rojas-Luna R, Bermudez A, Aza-Conde J. Functionally relevant proteins in Plasmodium falciparum host cell invasion. Immunotherapy [Internet]. 2017;9(2):131–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28128713%0Ahttp://www.futuremedicine.com/doi/10.2217/imt-2016-009165. Zerka A, Olechwier A, Rydzak J, Kaczmarek R, Jaskiewicz E. Baculovirus-expressed Plasmodium reichenowi EBA-140 merozoite ligand is host specific. Parasitol Int [Internet]. 2016 Dec;65(6):708–14. Available from: https://linkinghub.elsevier.com/retrieve/pii/S138357691630181766. Head DJ, Lee ZE, Poole J, Avent ND. Expression of phosphatidylserine (PS) on wild-type and Gerbich variant erythrocytes following glycophorin-C (GPC) ligation. Br J Haematol [Internet]. 2005 Apr;129(1):130–7. Available from: http://doi.wiley.com/10.1111/j.1365-2141.2005.05407.x67. Lanzillotti R, Coetzer TL. The 10 kDa domain of human erythrocyte protein 4.1 binds the 63 Plasmodium falciparum EBA-181 protein. Malar J [Internet]. 2006 Dec 6;5(1):100. Available from: https://malariajournal.biomedcentral.com/articles/10.1186/1475-2875-5-10068. Gao X, Gunalan K, Yap SSL, Preiser PR. Triggers of key calcium signals during erythrocyte invasion by Plasmodium falciparum. Nat Commun [Internet]. 2013;4:1–11. Available from: http://dx.doi.org/10.1038/ncomms386269. Tham W-H, Lim NTY, Weiss GE, Lopaticki S, Ansell BRE, Bird M, et al. Plasmodium falciparum Adhesins Play an Essential Role in Signalling and Activation of Invasion into Human Erythrocytes. Blackman MJ, editor. PLOS Pathog [Internet]. 2015 Dec 22;11(12):e1005343. Available from: https://dx.plos.org/10.1371/journal.ppat.100534370. Stubbs J. Molecular Mechanism for Switching of P. falciparum Invasion Pathways into Human Erythrocytes. Science (80- ) [Internet]. 2005 Aug 26;309(5739):1384–7. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.111525771. Aniweh Y, Gao X, Hao P, Meng W, Lai SK, Gunalan K, et al. P. falciparum RH5-Basigin interaction induces changes in the cytoskeleton of the host RBC. Cell Microbiol [Internet]. 2017 Sep;19(9):e12747. Available from: http://doi.wiley.com/10.1111/cmi.1274772. Stephenson FH. Calculations for Molecular Biology and Biotechnology. Cell. 2003. 302 p.73. Society for Mucosal Inmunology. PCR: The Polymerase Chain Reaction [Internet]. 2014 [cited 2019 Jun 10]. Available from: http://www.socmucimm.org/pcr-polymerase-chain-reaction/74. Integrated DNA Technologies. qPCR Application Guide. 4th ed. Belgium; 2015.75. Bowyer PW, Stewart LB, Aspeling-Jones H, Mensah-Brown HE, Ahouidi AD, Amambua-Ngwa A, et al. Variation in Plasmodium falciparum erythrocyte invasion phenotypes and merozoite ligand gene expression across different populations in areas of malaria endemicity. Infect Immun. 2015;83(6):2575–82.76. Valmaseda A, Bassat Q, Aide P, Cisteró P, Jiménez A, Casellas A, et al. Host age and expression of genes involved in red blood cell invasion in Plasmodium falciparum field isolates. Sci Rep. 2017;7(1):1–9.77. Cortés A, Carret C, Kaneko O, Yim Lim BYS, Ivens A, Holder AA. Epigenetic Silencing of Plasmodium falciparum Genes Linked to Erythrocyte Invasion. PLoS Pathog [Internet]. 64 2007;3(8):e107. Available from: http://dx.plos.org/10.1371/journal.ppat.003010778. Viewi O, Hadley TI, Klotz FW, Miller LH. Invasion of erythrocytes by mal1\ria parasites: a cellular and molecular ovef�����viewi. 1986;451–77.79. Bei AK, Duraisingh MT. Measuring Plasmodium falciparum Erythrocyte Invasion Phenotypes Using Flow Cytometry. In 2015. p. 167–86. Available from: http://link.springer.com/10.1007/978-1-4939-2815-6_1480. Theron M, Hesketh RL, Subramanian S, Rayner JC. An adaptable two-color flow cytometric assay to quantitate the invasion of erythrocytes by Plasmodium falciparum parasites. Cytom Part A [Internet]. 2010 Nov;77A(11):1067–74. Available from: http://doi.wiley.com/10.1002/cyto.a.2097281. Hayton K, Gaur D, Liu A, Takahashi J, Henschen B, Singh S, et al. Erythrocyte Binding Protein PfRH5 Polymorphisms Determine Species-Specific Pathways of Plasmodium falciparum Invasion. Cell Host Microbe [Internet]. 2008;4(1):40–51. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677973/82. Mu J, Seydel KB, Bates A, Su X. Recent Progress in Functional Genomic Research in Plasmodium falcipa- rum. 2010;(301):279–86.83. Trager W, B JJ. Human malaria parasites in Continuous culture. 1976.84. BEI Resources Repository, NIAID, NIH: Plasmodium falciparum, Strain 3D7, MRA-102, contributed by Daniel J. Carucci. [Internet]. Available from: https://www.beiresources.org/Catalog/BEIParasiticProtozoa/MRA-102.aspx85. Radfar A, Méndez D, Moneriz C, Linares M, Marín-García P, Puyet A, et al. Synchronous culture of Plasmodium falciparum at high parasitemia levels. Nat Protoc. 2009;4(12):1899–915.86. Bioline. ISOLATE II RNA Plan Kit [Internet]. 2018. Available from: https://www.bioline.com/au/downloads/dl/file/id/1204/isolate_ii_rna_plant_kit_protocol.pdf87. Invitrogen. SuperScript TM III Reverse Transcriptase. Thermo Fisher. 2004.88. Regalado A. Banco Nacional De Adn Carlos Iii. 2005;6. Available from: http://www.bancoadn.org/docs/programa-control-calidad-muestras.pdf89. Nery S, Deans A, Mosobo M, Marsh K, Rowe JA, Conway DJ. Expression of Plasmodium 65 falciparum genes involved in erythrocyte invasion varies among isolates cultured directly from patients. Mol Biochem Parasitol. 2006;149(2):208–15.90. Promega. GoTaq ® Probe qPCR Master Mix. 2012.91. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature [Internet]. 2002 Oct;419(6906):498–511. Available from: http://www.nature.com/articles/nature0109792. Gomez-escobar N, Amambua-ngwa A, Walther M, Okebe J, Ebonyi A, Conway DJ. Erythrocyte Invasion and Merozoite Ligand Gene Expression in Severe and Mild Plasmodium falciparum Malaria. 2010;201:444–5293. Cowman AF, Crabb BS. Invasion of red blood cells by malaria parasites. Vol. 124, Cell. 2006. p. 755–66.Derechos Reservados -Universidad Colegio Myor de Cundinamarca ,2019https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)http://purl.org/coar/access_right/c_abf2Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito pertenecientes a las familias de ligandos pfeba y pfrh de la cepa fcb2 de plasmodium falciparumTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/bachelorThesishttps://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/publishedVersionColombiaMalaria - EpidemiologíaVacuna contra la malariaPaludismoMalariaPlasmodium falciparumLigandos de invasiónPfRHsPfEBAsRT-qPCRORIGINALPresentación Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito, pertenec.pdfPresentación Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito, pertenec.pdfapplication/pdf2779667https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/306/1/Presentaci%c3%b3n%20Perfil%20transcripcional%20de%20genes%20que%20codifican%20prote%c3%adnas%20de%20invasi%c3%b3n%20a%20eritrocito%2c%20pertenec.pdf8b842802905872953d6eb348c0bbe8cdMD51open access1 para subir Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito, pertenecientes a las (1).pdf1 para subir Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito, pertenecientes a las (1).pdfapplication/pdf2153766https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/306/2/1%20para%20subir%20Perfil%20transcripcional%20de%20genes%20que%20codifican%20prote%c3%adnas%20de%20invasi%c3%b3n%20a%20eritrocito%2c%20pertenecientes%20a%20las%20%20%281%29.pdf136402e2f47f9c1af941d3c048ddafdcMD52open access2 para subir Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito, pertenecientes a las.pdf2 para subir Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito, pertenecientes a las.pdfapplication/pdf398466https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/306/3/2%20para%20subir%20Perfil%20transcripcional%20de%20genes%20que%20codifican%20prote%c3%adnas%20de%20invasi%c3%b3n%20a%20eritrocito%2c%20pertenecientes%20a%20las.pdff91882e06cdca64ad04f79afd03fbdc1MD53metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/306/4/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD54open accessTEXTPresentación Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito, pertenec.pdf.txtPresentación Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito, pertenec.pdf.txtExtracted texttext/plain8489https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/306/5/Presentaci%c3%b3n%20Perfil%20transcripcional%20de%20genes%20que%20codifican%20prote%c3%adnas%20de%20invasi%c3%b3n%20a%20eritrocito%2c%20pertenec.pdf.txt1d9d42f2e4ab5e8411a7d0d2bee0239cMD55open access1 para subir Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito, pertenecientes a las (1).pdf.txt1 para subir Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito, pertenecientes a las (1).pdf.txtExtracted texttext/plain96904https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/306/7/1%20para%20subir%20Perfil%20transcripcional%20de%20genes%20que%20codifican%20prote%c3%adnas%20de%20invasi%c3%b3n%20a%20eritrocito%2c%20pertenecientes%20a%20las%20%20%281%29.pdf.txt6f6f066b340169a6847be20ddbda2485MD57open access2 para subir Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito, pertenecientes a las.pdf.txt2 para subir Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito, pertenecientes a las.pdf.txtExtracted texttext/plain15https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/306/9/2%20para%20subir%20Perfil%20transcripcional%20de%20genes%20que%20codifican%20prote%c3%adnas%20de%20invasi%c3%b3n%20a%20eritrocito%2c%20pertenecientes%20a%20las.pdf.txt05a9601de04b7e34528843738f44f531MD59metadata only accessTHUMBNAILPresentación Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito, pertenec.pdf.jpgPresentación Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito, pertenec.pdf.jpgGenerated Thumbnailimage/jpeg9743https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/306/6/Presentaci%c3%b3n%20Perfil%20transcripcional%20de%20genes%20que%20codifican%20prote%c3%adnas%20de%20invasi%c3%b3n%20a%20eritrocito%2c%20pertenec.pdf.jpg22aa110d5fbcbf8424d10d25e8b07d82MD56open access1 para subir Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito, pertenecientes a las (1).pdf.jpg1 para subir Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito, pertenecientes a las (1).pdf.jpgGenerated Thumbnailimage/jpeg8501https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/306/8/1%20para%20subir%20Perfil%20transcripcional%20de%20genes%20que%20codifican%20prote%c3%adnas%20de%20invasi%c3%b3n%20a%20eritrocito%2c%20pertenecientes%20a%20las%20%20%281%29.pdf.jpg27e0b83c63574964bd51b6db2ca7b48eMD58open access2 para subir Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito, pertenecientes a las.pdf.jpg2 para subir Perfil transcripcional de genes que codifican proteínas de invasión a eritrocito, pertenecientes a las.pdf.jpgGenerated Thumbnailimage/jpeg6102https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/306/10/2%20para%20subir%20Perfil%20transcripcional%20de%20genes%20que%20codifican%20prote%c3%adnas%20de%20invasi%c3%b3n%20a%20eritrocito%2c%20pertenecientes%20a%20las.pdf.jpg723d341469a21b0fa11c310a2b61742aMD510metadata only accessunicolmayor/306oai:repositorio.unicolmayor.edu.co:unicolmayor/3062021-07-01 03:00:16.547An error occurred on the license name.|||https://creativecommons.org/licenses/by-nc-sa/4.0/open accessBiblioteca Digital Unicolmayorrepositorio@unicolmayor.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |