Modelo tridimensional de las proteínas Nfcpb y Nfcpb-l de Naegleria Fowleri

La meningoencefalitis amebiana primaria (PAM) es una enfermedad de amplia distribución a nivel mundial, con un porcentaje mayor de casos en climas tropicales. PAM es causada por una ameba de vida libre del genero Naegleria, de la cual han descrito 47 especies1, dos de estas especies son agentes caus...

Full description

Autores:
Castillo Vega, Leidy Gabriela
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2019
Institución:
Colegio Mayor de Cundinamarca
Repositorio:
Repositorio Colegio Mayor de Cundinamarca
Idioma:
spa
OAI Identifier:
oai:repositorio.unicolmayor.edu.co:unicolmayor/3585
Acceso en línea:
https://repositorio.unicolmayor.edu.co/handle/unicolmayor/3585
Palabra clave:
Meningoencefalitis
Enfermedad
Especies
Animales experimentales
Bioinformática
Proteína
NfCPB
proteína NfCPB-L
Naegleria fowleri
Catepsina
Rights
closedAccess
License
Universidad Colegio Mayor de Cundinamarca, 2019
id UCOLMAYOR2_0a965abfacd4cfde2707baee8fcc3db2
oai_identifier_str oai:repositorio.unicolmayor.edu.co:unicolmayor/3585
network_acronym_str UCOLMAYOR2
network_name_str Repositorio Colegio Mayor de Cundinamarca
repository_id_str
dc.title.spa.fl_str_mv Modelo tridimensional de las proteínas Nfcpb y Nfcpb-l de Naegleria Fowleri
title Modelo tridimensional de las proteínas Nfcpb y Nfcpb-l de Naegleria Fowleri
spellingShingle Modelo tridimensional de las proteínas Nfcpb y Nfcpb-l de Naegleria Fowleri
Meningoencefalitis
Enfermedad
Especies
Animales experimentales
Bioinformática
Proteína
NfCPB
proteína NfCPB-L
Naegleria fowleri
Catepsina
title_short Modelo tridimensional de las proteínas Nfcpb y Nfcpb-l de Naegleria Fowleri
title_full Modelo tridimensional de las proteínas Nfcpb y Nfcpb-l de Naegleria Fowleri
title_fullStr Modelo tridimensional de las proteínas Nfcpb y Nfcpb-l de Naegleria Fowleri
title_full_unstemmed Modelo tridimensional de las proteínas Nfcpb y Nfcpb-l de Naegleria Fowleri
title_sort Modelo tridimensional de las proteínas Nfcpb y Nfcpb-l de Naegleria Fowleri
dc.creator.fl_str_mv Castillo Vega, Leidy Gabriela
dc.contributor.advisor.none.fl_str_mv Posada Buitrago, Martha Lucia
dc.contributor.author.none.fl_str_mv Castillo Vega, Leidy Gabriela
dc.subject.lemb.none.fl_str_mv Meningoencefalitis
Enfermedad
Especies
Animales experimentales
topic Meningoencefalitis
Enfermedad
Especies
Animales experimentales
Bioinformática
Proteína
NfCPB
proteína NfCPB-L
Naegleria fowleri
Catepsina
dc.subject.proposal.spa.fl_str_mv Bioinformática
Proteína
NfCPB
proteína NfCPB-L
Naegleria fowleri
Catepsina
description La meningoencefalitis amebiana primaria (PAM) es una enfermedad de amplia distribución a nivel mundial, con un porcentaje mayor de casos en climas tropicales. PAM es causada por una ameba de vida libre del genero Naegleria, de la cual han descrito 47 especies1, dos de estas especies son agentes causales de enfermedades en animales experimentales; mientras que solo una especie, Naegleria fowleri, es patógeno en los humanos. No existe un mecanismo de control para Naegleria fowleri, ya que se considera como una enfermedad poco frecuente. El análisis de proteínas actualmente se ha convertido en un principio fundamental para el estudio de posibles blancos terapéuticos que permitan la realización de vacunas que tengan un amplio rango de inmunización, y el conocimiento de las funciones de las proteínas. En el caso de Naegleria fowleri se han identificado factores de patogenicidad como las proteínas Catepsina B (NfCPB) y Catepsina B-L (NfCPB-L), primordiales en actividades proteolíticas sobre las Inmunoglobulinas, fibronectina, hemoglobina y albúmina, reconocimiento y anclaje celular.13 El objetivo de esta investigación fue proponer mediante el análisis bioinformático la estructura tridimensional de las proteínas NfCPB y NfCPB-L de Naegleria fowleri logrando así inferir las regiones funcionales asociadas importantes para su antigenicidad e inmunogenicidad. Para el análisis de la estructura primaria se determinaron las propiedades fisicoquímicas, el índice de hidrofobicidad y las regiones transmembranales. Para la estructura secundaria, se realizó un consenso 14 con seis algoritmos disponibles en el servidor NSP@. La aproximación de la estructura terciaria de la proteína se realizó por el programa I-TASSER y el modelamiento tridimensional se visualizó a través del servidor Swiss-Pdb Viewer 4.1.0, la validación del modelo se llevó a cabo por la gráfica de Ramachandran basándose en la distribución de ángulos de los aminoácidos que componen el modelo obtenido. Como resultado final de la investigación se obtuvieron dos modelos 3D consistentes, y una aproximación a la función de las proteínas NfCPB y NfCPB-L.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-01
dc.date.accessioned.none.fl_str_mv 2021-10-29T18:59:55Z
dc.date.available.none.fl_str_mv 2021-10-29T18:59:55Z
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TP
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unicolmayor.edu.co/handle/unicolmayor/3585
url https://repositorio.unicolmayor.edu.co/handle/unicolmayor/3585
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv De Jonckheere JF. What do we know by now about the genus Naegleria? |Experimental parasitology. 2014 Nov 30; 145:S2-9.
Yu Z, Miller HC, Puzon GJ, Clowers BH. Development of Untargeted Metabolomics Methods for the Rapid Detection of Pathogenic Naegleria fowleri. Environmental Science & Technology. 2017 Mar 29; 51(8):4210-9.
Naegleria fowleri -Primary Amebic Meningoencephalitis (PAM) –Amebic Encephalitis.https://www.cdc.gov/parasites/naegleria/infection-sources.html (consultado el 25 de septiembre de 2017).
Vélez M, Zapata AL, Ortiz DC, Trujillo M, Restrepo A, Garcés C. Case report and literature review of a patient with meningoencephalitis from free-living amoebae. Infectio. 2013 Sep; 17(3):153-9.
RÉVEILLER, F. L., SUH, S. J., SULLIVAN, K., CABANES, P. A., & MARCIANO‐CABRAL, F. R. A. N. C. I. N. E. (2001). Isolation of a unique membrane protein from Naegleria fowleri. Journal of Eukaryotic Microbiology, 48(6), 676-682.
Zysset-Burri DC, Müller N, Beuret C, Heller M, Schürch N, Gottstein B, Wittwer M. Genome-wide identification of pathogenicity factors of the free-living amoeba Naegleria fowleri. BMC genomics. 2014 Jun 19; 15(1):496.
Ilzins O, Isea R, Hoebeke J. Can Bioinformatics Be Considered as an Experimental Biological Science? . arXiv preprint arXiv: 1607.04836. 2016 Jul 17
Werner, E. (2005). «The Future and Limits of Systems Biology». Science Signaling 2005 (278). American Association for the Advancement of Science.Science's STKE. AAAS.
Isea, R. (2015). The Present-Day Meaning of the Word Bioinformatics. Global Journal of Advanced Research, 2, 70-73.
Cope, J. R., & Ali, I. K. (2016). Primary Amebic Meningoencephalitis: What Have We Learned in the Last 5 Years? Current infectious disease reports, 18(10), 31.
Butt CG. Primary amebic meningoencephalitis. New England Journal of Medicine. 1966 Jun 30; 274(26):1473-6.
Marciano-Cabral F, Cabral GA. The immune response to Naegleria fowleri amebae and pathogenesis of infection. FEMS Immunology & Medical Microbiology. 2007 Sep 25; 51(2):243-59.
Seong GS, Sohn HJ, Kang H, Seo GE, Kim JH, Shin HJ. Production and characterization of monoclonal antibodies against cathepsin B and cathepsin B-Like proteins of Naegleria fowleri. Experimental Parasitology. 2017 Sep 14
Lee J, Kim JH, Sohn HJ, Yang HJ, Na BK, Chwae YJ, Park S, Kim K, Shin HJ. Novel cathepsin B and cathepsin B-like cysteine protease of Naegleria fowleri excretory–secretory proteins and their biochemical properties. Parasitology research. 2014 Aug 1; 113(8):2765-76.
Siddiqui R, Ali IK, Cope JR, Khan NA. Biology and pathogenesis of Naegleria fowleri. Acta tropica. 2016 Dec 31; 164:375-94.
Grace E, Asbill S, Virga K. Naegleria fowleri: pathogenesis, diagnosis, and treatment options. Antimicrobial agents and chemotherapy. 2015 Nov 1; 59(11):6677-81.
Khwon WJ, Park JS. Morphology and Phylogenetic Analyses of Three Novel Naegleria Isolated from Freshwaters on Jeju Island, Korea, During the Winter Period. Journal of Eukaryotic Microbiology. 2017 Jun 12.
Tyml T, Skulinová K, Kavan J, Ditrich O, Kostka M, Dyková I. Heterolobosean amoebae from Arctic and Antarctic extremes: 18 novel strains of Allovahlkampfia, Vahlkampfia and Naegleria. European journal of protistology. 2016 Oct 31; 56:119-33.
DE JONCKHEERE JF. Brain-eating Amoebae: Biology and Pathogenesis of Naegleria fowleri Paperback–1 Jun 2016 by Ruqaiyyah Siddiqui, Ibne Karim M. Ali, Jennifer R. Cope, Naveed Ahmed Khan. Caister Academic Press. Book reviewer: Dr. Johan F. De Jonckheere. Epidemiology & Infection. 2017 Jun; 145(8):1737-.
SHIN HJ, CHO MS, JUNG SY, KIM HI, PARK S, KIM HJ, IM KI. Molecular cloning and characterization of a gene encoding a 13.1 kDa antigenic protein of Naegleria fowleri. Journal of Eukaryotic Microbiology. 2001 Nov 1; 48(6):713-7.
Young JD, Lowrey DM. Biochemical and functional characterization of a membrane-associated pore-forming protein from the pathogenic ameboflagellate Naegleria fowleri. Journal of Biological Chemistry. 1989 Jan 15; 264(2):1077-83
Herbst R, Ott C, Jacobs T, Marti T, Marciano-Cabral F, Leippe M. Pore-forming polypeptides of the pathogenic protozoon Naegleria fowleri. Journal of Biological Chemistry. 2002 Jun 21; 277(25):22353-60.
Rojas-Hernandez S, Jarillo-Luna A, Rodríguez-Monroy M, Moreno-Fierros L, Campos-Rodríguez R. Immunohistochemical characterization of the initial stages of Naegleria fowleri meningoencephalitis in mice. Parasitology research. 2004 Sep 1; 94(1):31-6.
FISCHER‐STENGER KR, CABRAL GA, MARCIANO‐CABRAL FR. The interaction of Naegleria fowleri amoebae with murine macrophage cell lines. Journal of Eukaryotic Microbiology. 1990 May 1; 37(3):168-73.
Im KI, Ryu JS, Lee KT. Immunodepression during experimental Naegleria meningoencephalitis in mice. Kisaengch'unghak chapchi. The Korean journal of parasitology. 1987 Dec; 25(2):195-8.
TONEY DM, MARCIANO‐CABRAL FR. Modulation of complement resistance and virulence of Naegleria fowleri amoebae by alterations in growth media. Journal of Eukaryotic Microbiology. 1994 Jul 1; 41(4):337-43.
Carrasco-Yepez M, Campos-Rodriguez R, Lopez-Reyes I, Bonilla-Lemus P, Rodriguez-Cortes AY, de Oca AC, Jarillo-Luna A, Miliar-Garcia A, Rojas-Hernandez S. Intranasal coadministration of Cholera toxin with amoeba lysates modulates the secretion of IgA and IgG antibodies, production of cytokines and expression of pIgR in the nasal cavity of mice in the model of Naegleria fowleri meningoencephalitis. Experimental parasitology. 2014 Nov 30; 145:S84-92
Centers for Disease Control and Prevention. Primary amebic meningoencephalitis--Arizona, Florida, and Texas, 2007. MMWR Morb Mortal Wkly Rep. 2008 May 30. 57(21):573-7.
Kaushal V, Chhina DK, Ram S, Singh G, Kaushal RK, Kumar R. Primary amoebic meningoencephalitis due to Naegleria fowleri. JAPI. 2008 Jun 1; 56:459-62.
Shakoor S, Beg MA, Mahmood SF, Bandea R, Sriram R, Noman F, Ali F, Visvesvara GS, Zafar A. Primary amebic meningoencephalitis caused by Naegleria fowleri, Karachi, Pakistan. Emerging infectious diseases. 2011 Feb; 17(2):258.
Chappell CL, Dresden MH. Schistosoma mansoni: proteinase activity of “hemoglobinase” from the digestive tract of adult worms. Experimental parasitology. 1986 Apr 1;61(2):160-7.
Keene WE, Petitt MG, Allen S, Mckerrow JH. The major neutral proteinase of Entamoeba histolytica. Journal of Experimental Medicine. 1986 Mar 1;163(3):536-49.
Long Y, Cao B, Yu L, Tukayo M, Feng C, Wang Y, Luo D. Angiostrongylus cantonensis cathepsin B-like protease (Ac-cathB-1) is involved in host gut penetration. Parasite. 2015;22.
National Center for Biotechnology Information. NCBI REference Sequence (RefSeq). [Online]. Available from: http://www.ncbi.nlm.nih.gov/.
UniProt. Reference Sequence (RefSeq). [Online]. Available from: http://www.uniprot.org/
Ristow P, Bourhy P, Weykamp F, Pereira C, Huerre M, Ave P, et al. The OmpA-Like Protein Loa22 Is Essential for Leptospiral Virulence. PLoS Pathogens. 2007; 3(7): p. 894-903.
Dunn, A. L., Reed, T., Stewart, C., & Levy, R. A. (2016). Naegleria Fowleri that induces primary amoebic Meningoencephalitis: rapid diagnosis and rare case of survival in a 12-year-old Caucasian girl. Laboratory medicine, 47(2), 149-154.
Dunn, A. L., Reed, T., Stewart, C., & Levy, R. A. (2016). Naegleria Fowleri that induces primary amoebic Meningoencephalitis: rapid diagnosis and rare case of survival in a 12-year-old Caucasian girl. Laboratory medicine, 47(2), 149-154.
Pugh, J. J., & Levy, R. A. (2016). Naegleria fowleri: Diagnosis, pathophysiology of brain inflammation, and antimicrobial treatments.
Hinestroza Gil BP. Acercamiento al estado actual de meningoencefalitis amebiana primaria en Colombia producida por Naegleria fowleri (Bachelor's thesis, Facultad de Ciencias).
National Center for Biotechnology Information. NCBI REference Sequence (RefSeq). [Online]. Available from: http://www.ncbi.nlm.nih.gov/.
EMBL-EBI. Clustal Omega. [Online].; 2018. Available from: http://www.ebi.ac.uk/Tools/msa/clustalo/.
PROTPARAM. SIB Bioinformatics Resource Portal. [Online].; ExPASy. Available from: http://web.expasy.org/protparam/.
ExPASy. A View From The web. Gross, Robert H. 4, 2001, Biotech Software & Internet Report, Vol. 2, pág. 161.
M. Cserzo, E. Wallin, I. Simon, G. von Heijne and A. Elofsson: Prediction of transmembrane alpha-helices in procariotic membrane proteins: the Dense Alignment Surface method; Prot. Eng. vol. 10, no. 6, 673-676, 1997
TmDAS, "DAS" - Transmembrane Prediction server [Online], 2018; Available from: https://tmdas.bioinfo.se/DAS/index.html
Hirokawa T., Boon-Chieng S., and Mitaku S., Bioinformatics, 14 378-9 (1998) SOSUI: classification and secondary structure prediction system for membrane proteins.
SOSUI: Submit a protein sequence [Online]; Available from: http://harrier.nagahama-i-bio.ac.jp/sosui/sosui_submit.html
Resources for Bioinformatics Research; TOPPRED2 [Online]: Available from: https://bioweb.pasteur.fr/seqanal/interfaces/toppred.html
Alterovitz, Gil, Benson, Roseann y Ramoni, Marco. Automation In Proteomics and Genomics. an Engineering Case-Based Approach. New Delhi: John Wiley & Sons, 2009. pág. 340.
Emboss, TMap [Online]: Available from: http://www.bioinformatics.nl/cgi-bin/emboss/tmap
SIB Bioinformatics Resource Portal. [Online].; ExPASy. Available from: https://embnet.vital-it.ch/software/TMPRED_form.html .
Split 4.0 SERVER, [Online]: Available from: http://splitbioinf.pmfst.hr/split/4/
Juretic, D., Zoranic, L., Zucic, D. "Basic charge clusters and predictions of membrane protein topology" , J. Chem. Inf. Comput. Sci. Vol. 42, pp. 620-632, 2002.
PredictProtein, PHDhtm; [Online]: Available from: https://www.predictprotein.org/
DTU Bioinformatics, TMHMM Server v. 2.0, [Online]: Available from: http://www.cbs.dtu.dk/services/TMHMM-2.0/
Institute of Enzymology, Budapest, Hungary, HMMTOP v. 2.9, [Online]: Available from: http://www.enzim.hu/~tusi/hmmtop/
PROSTCALE. SIB Bioinformatics Resource Portal. [Online].; ExPASy. Available from: http://web.expasy.org/protscale/.
Understanding protein non-folding. Uversky, Vladimir N y Dunker, A Keith. 6, 2010, Biochimica et Biophysica Acta , Vol. 1804, págs. 1231-1264
Prediction of Intrinsic Disorder and Its Use in Functional Proteomics. Uversky, Vladimir N, y otros. 1, 2007, Methods in Molecular Biology, Vol. 408, págs. 69-92.
NPS@: network protein sequence analysis. Combet, C, y otros. 3, 2000, Trends in Biochemical Sciences, Vol. 25, págs. 147-150.
Rost B, Sander C. Prediction of protein secondary structure at better than 70% accuracy. Journal of molecular biology. 1993 Jul 20;232(2):584-99.
Frishman D, Argos P. Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence. Protein Engineering, Design and Selection. 1996 Feb 1;9(2):133-42.
Geourjon C, Deleage G. SOPM: a self-optimized method for protein secondary structure prediction. Protein Engineering, Design and Selection. 1994 Feb 1;7(2):157-64.
Garnier J, Osguthorpe DJ, Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. Journal of molecular biology. 1978 Mar 25;120(1):97-120
Voet , Voet , Pratt. Fundamentos de Bioquímica, la vida a nivel molecular. Panamericana Médica. 2007; Segunda edición.
Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nature methods. 2015 Jan;12(1):7.
Zhang Y. I-TASSER server for protein 3D structure prediction. BMC bioinformatics. 2008 Dec;9(1):40.
Hooft RW, Sander C, Vriend G. Objectively judging the quality of a protein structure from a Ramachandran plot. Bioinformatics. 1997 Aug 1;13(4):425-30.
Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. Journal of applied crystallography. 1993 Apr 1;26(2):283-91.
Ho BK, Thomas A, Brasseur R. Revisiting the Ramachandran plot: Hard‐sphere repulsion, electrostatics, and H‐bonding in the α‐helix. Protein Science. 2003 Nov 1;12(11):2508-22.
Nicolas G, Alexandre D, Manuel P, Torsten S. Swiss-Pdb. [Online].; 2016. Available from: http://spdbv.vital-it.ch/.
Network Protein Sequence @nalysis. DPM SECONDARY STRUCTURE PREDICTION METHOD. [Online]. Available from: https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_dpm.html.
Network Protein Sequence @nalysis. DSC SECONDARY STRUCTURE PREDICTION METHOD. [Online]. Available from: https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_dsc.html
Network Protein Sequence @nalysis. GOR IV SECONDARY STRUCTURE PREDICTION METHOD. [Online]. Available from: https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_gor4.htm
Network Protein Sequence @nalysis. PHD SECONDARY STRUCTURE PREDICTION METHOD. [Online]. Available from: https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_phd.html.
Network Protein Sequence @nalysis. PREDATOR SECONDARY STRUCTURE PREDICTION METHOD. [Online]. Available from: https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_predator.html
Network Protein Sequence @nalysis. SOPM SECONDARY STRUCTURE PREDICTION METHOD. [Online]. Available from: https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopm.html
Smith DK, Radivojac P, Obradovic Z, Dunker AK, Zhu G. Improved amino acid flexibility parameters. Protein Science. 2003 May 1;12(5):1060-72.
Yang J, Wang Y, Zhang Y. ResQ: an approach to unified estimation of B-factor and residue-specific error in protein structure prediction. Journal of molecular biology. 2016 Feb 22;428(4):693-701
Sherwood D, Cooper J. Crystals, X-rays and Proteins: Comprehensive Protein Crystallography: Oxford Univ Pr; 2011.
Wu S, Zhang Y. LOMETS: a local meta-threading-server for protein structure prediction. Nucleic acids research. 2007 May 1;35(10):3375-82.
Shi,J., Blundell,T.L. and Mizuguchi,K. (2001) FUGUE: sequence-structure homology recognition using environment specific substitution tables and structure-dependent gap penalties.J. Mol. Biol., 310, 243–257.
Soding,J. (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics (Oxford, England), 21, 951–960
Xu,Y. and Xu,D. (2000) Protein threading using PROSPECT: design and evaluation. Proteins, 40, 343–354.
Karplus,K., Karchin,R., Draper,J., Casper,J., MandelGutfreund,Y., Diekhans,M. and Hughey,R. (2003) Combining local-structure, fold-recognition, and new fold methods for protein structure prediction. Proteins, 53(Suppl. 6), 491–496
Zhou,H. and Zhou,Y. (2004) Single-body residue-level knowledge-based energy score combined with sequence-profile and secondary structure information for fold recognition. Proteins, 55, 1005–1013.
Zhou,H. and Zhou,Y. (2005) Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments. Proteins, 58, 321–328
Vermelho, A. B., Branquinha, M. H., Levy, C., Santos, A. L. S. D., Dias, E. P. D. S., & Melo, A. C. N. D. (2010). Biological roles of peptidases in trypanosomatids.
Groves MR, Taylor MA, Scott M, Cummings NJ, Pickersgill RW, Jenkins JA. The prosequence of procaricain forms an α-helical domain that prevents access to the substrate-binding cleft. Structure. 1996 Oct 15;4(10):1193-203.
I-TASSER. Results for job id S361168. [Online].; 2018 [cited 2018 Junio 8. Available from: http://zhanglab.ccmb.med.umich.edu/I-TASSER/output/S361168
I-TASSER. Results for job id S361593. [Online].; 2018 [cited 2018 Junio 8. Available from: http://zhanglab.ccmb.med.umich.edu/I-TASSER/output/S361593/
Jianyi Yang, Renxiang Yan, Ambrish Roy, Dong Xu, Jonathan Poisson, Yang Zhang. The I-TASSER Suite: Protein structure and function prediction. Nature Methods, 12: 7-8 (2015).
Ambrish Roy, Alper Kucukural, Yang Zhang. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 5: 725-738 (2010).
Yang Zhang. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9:40 (2008).
I-TASSER. More about C-Score. [Online].; 2018 [cited 2018 Junio 8. Available from: http://zhanglab.ccmb.med.umich.edu/I-TASSER/output/S361168/cscore.txt.
LaLonde JM, Zhao B, Janson CA, D'Alessio KJ, McQueney MS, Orsini MJ, Debouck CM, Smith WW. The crystal structure of human procathepsin K. Biochemistry. 1999 Jan 19;38(3):862-9.
Chengxin Zhang, Peter L. Freddolino, and Yang Zhang. COFACTOR: improved protein function prediction by combining structure, sequence and protein-protein interaction information. Nucleic Acids Research, 45: W291-299 (2017).
Jianyi Yang, Ambrish Roy, and Yang Zhang. Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment, Bioinformatics, 29:2588-2595 (2013)
Kleywegt, G. J., & Jones, T. A. (1996). Phi/psi-chology: Ramachandran revisited. Structure, 4(12), 1395-1400.
Muller-Esterl W. Bioquímica. Fundamentos para Medicina y Ciencias de la Vida Barcelona, España: Reverté; 2008.
Ho, B. K., Thomas, A., & Brasseur, R. (2003). Revisiting the Ramachandran plot: Hard‐sphere repulsion, electrostatics, and H‐bonding in the α‐helix. Protein Science, 12(11), 2508-2522.
Kleywegt, G. J., & Jones, T. A. (1996). Phi/psi-chology: Ramachandran revisited. Structure, 4(12), 1395-1400.
Matanock A, Mehal JM, Liu L, Blau DM, Cope JR. Estimation of Undiagnosed Naegleria fowleri Primary Amebic Meningoencephalitis, United States. Emerging infectious diseases. 2018 Jan;24(1):162.
Matanock A, Mehal JM, Liu L, Blau DM, Cope JR. Estimation of Undiagnosed Naegleria fowleri Primary Amebic Meningoencephalitis, United States. Emerging infectious diseases. 2018 Jan;24(1):162.
Peterson K, Barbel P, Heavey E. Nurse's guide to primary amebic meningoencephalitis. Nursing2018. 2018 Apr 1;48(4):42-5.
Bellini NK, Santos TM, da Silva MT, Thiemann OH. The therapeutic strategies against Naegleria fowleri. Experimental parasitology. 2018 Mar 1.
Battaner E. Biomoléculas, una introduccion estrutural a la bioquímica. primera ed. España: Ediciones Universidad Salamanca; 2012.
Khan, Fahim Halim. The Elements of Immunology. s.l.: Pearson Education, 2009. pág. 473.
Rojas E. Inmunología. Tercera ed. Panamericana, editor. México: Editorial Medica Internacional; 2006
Rojas E. Inmunología. Tercera ed. Panamericana, editor. México: Editorial Medica Internacional; 2006.
Gonzalez V. Departamento de Bioquímica y Biología Molecular. Ph y equilibrios acido-base. Universidad de Salamanca
Werner, Muller Sterl. Biología: Fundamentos para Medicina y Ciencias de la Vida. Barcelona: Reverté, 2008. pág. 661.
Uversky VN. Functions of short lifetime biological structures at large: the case of intrinsically disordered proteins. Briefings in Functional Genomics. 2018 Jul 3.
Uversky VN, Radivojac P, Iakoucheva LM, Obradovic Z, Dunker AK. Prediction of intrinsic disorder and its use in functional proteomics. InGene Function Analysis 2007 (pp. 69-92). Humana Press.
Kyte, J.; Doolittle, R.F., «A simple method for displaying the hydropathic character of a protein.,» J. Mol. Biol., 1982
Lieberman, Michael, Marks, Allan D y Smith, Colleen M. Marks' basic medical biochemistry: a clinical approach Third Edition. s.l: Wolters Kluwer Health, 2009. pág. 997.
Jinling C, Dandan Z, Pei S, Wei S, Gengfu X, Yinong D, Ying Z. Bioinformatics analysis on ORF1 protein of Torque teno virus (SANBAN isolate). Asian Pacific journal of tropical medicine. 2011 Nov 1;4(11):850-6.
PROTSITE. SIB Bioinformatics Resource Portal. [Online].; ExPASy. Available from: https://prosite.expasy.org/cgi-bin/prosite/nicedoc.pl?PS00139
PROTSITE. SIB Bioinformatics Resource Portal. [Online].; ExPASy. Available from: https://prosite.expasy.org/cgi-bin/prosite/nicedoc.pl?PS00639
PROTSITE. SIB Bioinformatics Resource Portal. [Online].; ExPASy. Available from: https://prosite.expasy.org/cgi-bin/prosite/nicedoc.pl?PS00640
Fersht A. Estructura y mecanismo de los enzimas. Reverté; 1980. Pag. 60
Renesto P, Rovery C, Schrenzel J, Leroy Q, Huyghe A, Li W, Lepidi H, François P, Raoult D. Rickettsia conorii transcriptional response within inoculation eschar. PloS one. 2008 Nov 10;3(11):e3681
Pollastri G, Martin AJ, Mooney C, Vullo A. Accurate prediction of protein secondary structure and solvent accessibility by consensus combiners of sequence and structure information. BMC bioinformatics. 2007 Dec;8(1):201.
Smith D, Radivojac P, Obradovic Z, Dunker K, Zhu G. Improved amino acid flexibility parameters. Rev. Protein Science. 2013; 12(5): p. 1060-1072.
Lu J, Wang M, Wang Z, Fu Z, Lu A, Zhang G. Advances in the discovery of cathepsin K inhibitors on bone resorption. Journal of enzyme inhibition and medicinal chemistry. 2018 Jan 1;33(1):890-904.
Tully DC, Liu H, Alper PB, Chatterjee AK, Epple R, Roberts MJ, Williams JA, Nguyen KT, Woodmansee DH, Tumanut C, Li J. Synthesis and evaluation of arylaminoethyl amides as noncovalent inhibitors of cathepsin S. Part 3: Heterocyclic P3. Bioorganic & medicinal chemistry letters. 2006 Apr 1;16(7):1975-80.
Lee-Dutra A, Wiener DK, Sun S. Cathepsin S inhibitors: 2004–2010. Expert opinion on therapeutic patents. 2011 Mar 1;21(3):311-37.
HOOk M, Switalski L, Wadstrom T, Lindberg M. Interactions of pathogenic microorganisms with fibronectin. Fibronectin. 1989;1:295-308.
Miller EJ. Collagen types: structure, distribution, and functions. InCollagen 2018 Jan 18 (pp. 139-156). CRC Press.
Jensen KK, Andreatta M, Marcatili P, Buus S, Greenbaum JA, Yan Z, Sette A, Peters B, Nielsen M. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology. 2018 Jul.
Sidhom JW, Pardoll D, Baras A. AI-MHC: an allele-integrated deep learning framework for improving Class I & Class II HLA-binding predictions. bioRxiv. 2018 Jan 1:318881.
Pannese E. Neurocytology: fine structure of neurons, nerve processes, and neuroglial cells. Springer; 2015 Mar 16.
Kang SY, Song KJ, Jeong SR, Kim JH, Park S, Kim K, Kwon MH, Shin HJ. Role of the Nfa1 protein in pathogenic Naegleria fowleri cocultured with CHO target cells. Clinical and diagnostic laboratory immunology. 2005 Jul 1;12(7):873-6.
FRITZINGER AE, MARCIANO‐CABRAL FR. Modulation of a “CD59‐like” Protein in Naegleria fowleri Amebae by Bacteria 1. Journal of Eukaryotic Microbiology. 2004 Sep;51(5):522-8.
Wang Q, Li J, Ji J, Yang L, Chen L, Zhou R, Yang Y, Zheng H, Yuan J, Li L, Bi Y. A case of Naegleria fowleri related primary amoebic meningoencephalitis in China diagnosed by next-generation sequencing. BMC infectious diseases. 2018 Dec;18(1):349.
Peterson K, Barbel P, Heavey E. Nurse's guide to primary amebic meningoencephalitis. Nursing2018. 2018 Apr 1;48(4):42-5.
Baig AM, Khan NA. Novel chemotherapeutic strategies in the management of primary amoebic meningoencephalitis due to Naegleria fowleri. CNS Neurosci Ther. 2014 Mar 1;20(3):289-90.
Debnath, A., Calvet, C. M., Jennings, G., Zhou, W., Aksenov, A., Luth, M. R., … Podust, L. M. (2017). CYP51 is an essential drug target for the
dc.rights.spa.fl_str_mv Universidad Colegio Mayor de Cundinamarca, 2019
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Universidad Colegio Mayor de Cundinamarca, 2019
https://creativecommons.org/licenses/by-nc-sa/4.0/
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.spa.fl_str_mv 97p.
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Colegio Mayor de Cundinamarca
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias de la Salud
dc.publisher.place.spa.fl_str_mv Bogotá D.C
dc.publisher.program.spa.fl_str_mv Bacteriología y Laboratorio Clínico
institution Colegio Mayor de Cundinamarca
bitstream.url.fl_str_mv https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/3585/5/MODELO%20TRIDIMENSIONAL%20DE%20LAS%20PROTE%c3%8dNAS%20NfCPB%20y%20NfCPB-L.pdf.txt
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/3585/7/Formato%20decanatura-%20Derechos%20de%20autor.pdf.txt
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/3585/9/Presentaci%c3%b3n%20final%20ModeloTridimensional%20FERTIG.pdf.txt
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/3585/6/MODELO%20TRIDIMENSIONAL%20DE%20LAS%20PROTE%c3%8dNAS%20NfCPB%20y%20NfCPB-L.pdf.jpg
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/3585/8/Formato%20decanatura-%20Derechos%20de%20autor.pdf.jpg
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/3585/10/Presentaci%c3%b3n%20final%20ModeloTridimensional%20FERTIG.pdf.jpg
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/3585/1/MODELO%20TRIDIMENSIONAL%20DE%20LAS%20PROTE%c3%8dNAS%20NfCPB%20y%20NfCPB-L.pdf
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/3585/2/Formato%20decanatura-%20Derechos%20de%20autor.pdf
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/3585/3/Presentaci%c3%b3n%20final%20ModeloTridimensional%20FERTIG.pdf
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/3585/4/license.txt
bitstream.checksum.fl_str_mv 751544cdaa4f5880f4e52f7e4925acc8
7d6ffb2a699666f5e78a5eb5adfc4b48
d2e9adaa24ceff561f493b3636037387
6209b1af5f5a38d7a3f015892fb686f0
f86c157db47ccc9afa22d4c29408b513
07c1be0454c050919f5307a0ea523108
6e92ea0dffda807324634e9eed6fe996
2946e1632cef6dc19cc41e7c61fdc867
2400422f386ab97a75c65509f374fb2b
2f9959eaf5b71fae44bbf9ec84150c7a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital Unicolmayor
repository.mail.fl_str_mv repositorio@unicolmayor.edu.co
_version_ 1812210027420712960
spelling Posada Buitrago, Martha Luciafdd7bd57ad8cc330c120db7d133e69cd600Castillo Vega, Leidy Gabrielae803975af4810e38fcb3751c134da0186002021-10-29T18:59:55Z2021-10-29T18:59:55Z2019-01https://repositorio.unicolmayor.edu.co/handle/unicolmayor/3585La meningoencefalitis amebiana primaria (PAM) es una enfermedad de amplia distribución a nivel mundial, con un porcentaje mayor de casos en climas tropicales. PAM es causada por una ameba de vida libre del genero Naegleria, de la cual han descrito 47 especies1, dos de estas especies son agentes causales de enfermedades en animales experimentales; mientras que solo una especie, Naegleria fowleri, es patógeno en los humanos. No existe un mecanismo de control para Naegleria fowleri, ya que se considera como una enfermedad poco frecuente. El análisis de proteínas actualmente se ha convertido en un principio fundamental para el estudio de posibles blancos terapéuticos que permitan la realización de vacunas que tengan un amplio rango de inmunización, y el conocimiento de las funciones de las proteínas. En el caso de Naegleria fowleri se han identificado factores de patogenicidad como las proteínas Catepsina B (NfCPB) y Catepsina B-L (NfCPB-L), primordiales en actividades proteolíticas sobre las Inmunoglobulinas, fibronectina, hemoglobina y albúmina, reconocimiento y anclaje celular.13 El objetivo de esta investigación fue proponer mediante el análisis bioinformático la estructura tridimensional de las proteínas NfCPB y NfCPB-L de Naegleria fowleri logrando así inferir las regiones funcionales asociadas importantes para su antigenicidad e inmunogenicidad. Para el análisis de la estructura primaria se determinaron las propiedades fisicoquímicas, el índice de hidrofobicidad y las regiones transmembranales. Para la estructura secundaria, se realizó un consenso 14 con seis algoritmos disponibles en el servidor NSP@. La aproximación de la estructura terciaria de la proteína se realizó por el programa I-TASSER y el modelamiento tridimensional se visualizó a través del servidor Swiss-Pdb Viewer 4.1.0, la validación del modelo se llevó a cabo por la gráfica de Ramachandran basándose en la distribución de ángulos de los aminoácidos que componen el modelo obtenido. Como resultado final de la investigación se obtuvieron dos modelos 3D consistentes, y una aproximación a la función de las proteínas NfCPB y NfCPB-L.RESUMEN 11 1. INTRODUCCIÓN 13 2. OBJETIVOS 15 2.1. General 15 2.2. Específicos 15 3. ANTECEDENTES 16 4. MARCO DE REFERENCIA 18 4.1. Origen 18 4.2. Etiología y Morfología 18 4.3. Taxonomía 19 4.4. Transmisión 20 4.5. Patogenia 21 4.5.1. Mecanismos dependientes de contacto 22 4.5.2. Mecanismos independientes de contacto 23 4.6. Inmunología 24 4.6.1. Evasión Inmune 24 4.6.2. Inmunización 25 4.7. Meningoencefalitis amebiana primaria (PAM) 26 4.8. Epidemiología 27 8 4.9. Diagnóstico 28 4.10. Tratamiento 29 4.11. Proteínas NfCPB y NfCPB-L 29 4.12. Bioinformática 32 4.13. Predicción estructural de proteínas 33 4.13.1. Predicción de la estructura secundaria de proteínas 34 4.13.2. Predicción de la estructura terciaria de proteínas (I-TASSER) 34 5. DISEÑO METODOLÓGICO 36 5.1. Tipo de investigación 36 5.2. Hipótesis 36 6. TÉCNICAS Y PROCEDIMIENTOS 37 6.1. Herramientas para la búsqueda de similitud y homología de secuencias 37 6.2. Herramientas para el análisis de estructura primaria 37 6.3. Herramientas para el análisis de estructura secundaria 37 6.4. Herramientas para el análisis de estructura terciaria 38 7. RESULTADOS 40 7.1 Alineamiento de secuencias NfCPB y NfCPB-L de Naegleria fowleri con Clustal Omega 40 7.2. Análisis de la estructura primaria de NfCPB y NfCPB-L 41 7.3 Determinación de la estructura secundaria de las proteínas NfCPB y NfCPB-L de Naegleria fowleri 48 9 7.4 Determinación de la estructura tridimensional de las proteínas NfCPB y NfCPB-L de Naegleria fowleri 51 8. DISCUSIÓN 64 9. CONCLUSIONES 75 10. BIBLIOGRAFÍA 77PregradoBacteriólogo(a) y Laboratorista Clínico97p.application/pdfspaUniversidad Colegio Mayor de CundinamarcaFacultad de Ciencias de la SaludBogotá D.CBacteriología y Laboratorio ClínicoUniversidad Colegio Mayor de Cundinamarca, 2019https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/closedAccessAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)http://purl.org/coar/access_right/c_14cbModelo tridimensional de las proteínas Nfcpb y Nfcpb-l de Naegleria FowleriTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/bachelorThesishttps://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/publishedVersionDe Jonckheere JF. What do we know by now about the genus Naegleria? |Experimental parasitology. 2014 Nov 30; 145:S2-9.Yu Z, Miller HC, Puzon GJ, Clowers BH. Development of Untargeted Metabolomics Methods for the Rapid Detection of Pathogenic Naegleria fowleri. Environmental Science & Technology. 2017 Mar 29; 51(8):4210-9.Naegleria fowleri -Primary Amebic Meningoencephalitis (PAM) –Amebic Encephalitis.https://www.cdc.gov/parasites/naegleria/infection-sources.html (consultado el 25 de septiembre de 2017).Vélez M, Zapata AL, Ortiz DC, Trujillo M, Restrepo A, Garcés C. Case report and literature review of a patient with meningoencephalitis from free-living amoebae. Infectio. 2013 Sep; 17(3):153-9.RÉVEILLER, F. L., SUH, S. J., SULLIVAN, K., CABANES, P. A., & MARCIANO‐CABRAL, F. R. A. N. C. I. N. E. (2001). Isolation of a unique membrane protein from Naegleria fowleri. Journal of Eukaryotic Microbiology, 48(6), 676-682.Zysset-Burri DC, Müller N, Beuret C, Heller M, Schürch N, Gottstein B, Wittwer M. Genome-wide identification of pathogenicity factors of the free-living amoeba Naegleria fowleri. BMC genomics. 2014 Jun 19; 15(1):496.Ilzins O, Isea R, Hoebeke J. Can Bioinformatics Be Considered as an Experimental Biological Science? . arXiv preprint arXiv: 1607.04836. 2016 Jul 17Werner, E. (2005). «The Future and Limits of Systems Biology». Science Signaling 2005 (278). American Association for the Advancement of Science.Science's STKE. AAAS.Isea, R. (2015). The Present-Day Meaning of the Word Bioinformatics. Global Journal of Advanced Research, 2, 70-73.Cope, J. R., & Ali, I. K. (2016). Primary Amebic Meningoencephalitis: What Have We Learned in the Last 5 Years? Current infectious disease reports, 18(10), 31.Butt CG. Primary amebic meningoencephalitis. New England Journal of Medicine. 1966 Jun 30; 274(26):1473-6.Marciano-Cabral F, Cabral GA. The immune response to Naegleria fowleri amebae and pathogenesis of infection. FEMS Immunology & Medical Microbiology. 2007 Sep 25; 51(2):243-59.Seong GS, Sohn HJ, Kang H, Seo GE, Kim JH, Shin HJ. Production and characterization of monoclonal antibodies against cathepsin B and cathepsin B-Like proteins of Naegleria fowleri. Experimental Parasitology. 2017 Sep 14Lee J, Kim JH, Sohn HJ, Yang HJ, Na BK, Chwae YJ, Park S, Kim K, Shin HJ. Novel cathepsin B and cathepsin B-like cysteine protease of Naegleria fowleri excretory–secretory proteins and their biochemical properties. Parasitology research. 2014 Aug 1; 113(8):2765-76.Siddiqui R, Ali IK, Cope JR, Khan NA. Biology and pathogenesis of Naegleria fowleri. Acta tropica. 2016 Dec 31; 164:375-94.Grace E, Asbill S, Virga K. Naegleria fowleri: pathogenesis, diagnosis, and treatment options. Antimicrobial agents and chemotherapy. 2015 Nov 1; 59(11):6677-81.Khwon WJ, Park JS. Morphology and Phylogenetic Analyses of Three Novel Naegleria Isolated from Freshwaters on Jeju Island, Korea, During the Winter Period. Journal of Eukaryotic Microbiology. 2017 Jun 12.Tyml T, Skulinová K, Kavan J, Ditrich O, Kostka M, Dyková I. Heterolobosean amoebae from Arctic and Antarctic extremes: 18 novel strains of Allovahlkampfia, Vahlkampfia and Naegleria. European journal of protistology. 2016 Oct 31; 56:119-33.DE JONCKHEERE JF. Brain-eating Amoebae: Biology and Pathogenesis of Naegleria fowleri Paperback–1 Jun 2016 by Ruqaiyyah Siddiqui, Ibne Karim M. Ali, Jennifer R. Cope, Naveed Ahmed Khan. Caister Academic Press. Book reviewer: Dr. Johan F. De Jonckheere. Epidemiology & Infection. 2017 Jun; 145(8):1737-.SHIN HJ, CHO MS, JUNG SY, KIM HI, PARK S, KIM HJ, IM KI. Molecular cloning and characterization of a gene encoding a 13.1 kDa antigenic protein of Naegleria fowleri. Journal of Eukaryotic Microbiology. 2001 Nov 1; 48(6):713-7.Young JD, Lowrey DM. Biochemical and functional characterization of a membrane-associated pore-forming protein from the pathogenic ameboflagellate Naegleria fowleri. Journal of Biological Chemistry. 1989 Jan 15; 264(2):1077-83Herbst R, Ott C, Jacobs T, Marti T, Marciano-Cabral F, Leippe M. Pore-forming polypeptides of the pathogenic protozoon Naegleria fowleri. Journal of Biological Chemistry. 2002 Jun 21; 277(25):22353-60.Rojas-Hernandez S, Jarillo-Luna A, Rodríguez-Monroy M, Moreno-Fierros L, Campos-Rodríguez R. Immunohistochemical characterization of the initial stages of Naegleria fowleri meningoencephalitis in mice. Parasitology research. 2004 Sep 1; 94(1):31-6.FISCHER‐STENGER KR, CABRAL GA, MARCIANO‐CABRAL FR. The interaction of Naegleria fowleri amoebae with murine macrophage cell lines. Journal of Eukaryotic Microbiology. 1990 May 1; 37(3):168-73.Im KI, Ryu JS, Lee KT. Immunodepression during experimental Naegleria meningoencephalitis in mice. Kisaengch'unghak chapchi. The Korean journal of parasitology. 1987 Dec; 25(2):195-8.TONEY DM, MARCIANO‐CABRAL FR. Modulation of complement resistance and virulence of Naegleria fowleri amoebae by alterations in growth media. Journal of Eukaryotic Microbiology. 1994 Jul 1; 41(4):337-43.Carrasco-Yepez M, Campos-Rodriguez R, Lopez-Reyes I, Bonilla-Lemus P, Rodriguez-Cortes AY, de Oca AC, Jarillo-Luna A, Miliar-Garcia A, Rojas-Hernandez S. Intranasal coadministration of Cholera toxin with amoeba lysates modulates the secretion of IgA and IgG antibodies, production of cytokines and expression of pIgR in the nasal cavity of mice in the model of Naegleria fowleri meningoencephalitis. Experimental parasitology. 2014 Nov 30; 145:S84-92Centers for Disease Control and Prevention. Primary amebic meningoencephalitis--Arizona, Florida, and Texas, 2007. MMWR Morb Mortal Wkly Rep. 2008 May 30. 57(21):573-7.Kaushal V, Chhina DK, Ram S, Singh G, Kaushal RK, Kumar R. Primary amoebic meningoencephalitis due to Naegleria fowleri. JAPI. 2008 Jun 1; 56:459-62.Shakoor S, Beg MA, Mahmood SF, Bandea R, Sriram R, Noman F, Ali F, Visvesvara GS, Zafar A. Primary amebic meningoencephalitis caused by Naegleria fowleri, Karachi, Pakistan. Emerging infectious diseases. 2011 Feb; 17(2):258.Chappell CL, Dresden MH. Schistosoma mansoni: proteinase activity of “hemoglobinase” from the digestive tract of adult worms. Experimental parasitology. 1986 Apr 1;61(2):160-7.Keene WE, Petitt MG, Allen S, Mckerrow JH. The major neutral proteinase of Entamoeba histolytica. Journal of Experimental Medicine. 1986 Mar 1;163(3):536-49.Long Y, Cao B, Yu L, Tukayo M, Feng C, Wang Y, Luo D. Angiostrongylus cantonensis cathepsin B-like protease (Ac-cathB-1) is involved in host gut penetration. Parasite. 2015;22.National Center for Biotechnology Information. NCBI REference Sequence (RefSeq). [Online]. Available from: http://www.ncbi.nlm.nih.gov/.UniProt. Reference Sequence (RefSeq). [Online]. Available from: http://www.uniprot.org/Ristow P, Bourhy P, Weykamp F, Pereira C, Huerre M, Ave P, et al. The OmpA-Like Protein Loa22 Is Essential for Leptospiral Virulence. PLoS Pathogens. 2007; 3(7): p. 894-903.Dunn, A. L., Reed, T., Stewart, C., & Levy, R. A. (2016). Naegleria Fowleri that induces primary amoebic Meningoencephalitis: rapid diagnosis and rare case of survival in a 12-year-old Caucasian girl. Laboratory medicine, 47(2), 149-154.Dunn, A. L., Reed, T., Stewart, C., & Levy, R. A. (2016). Naegleria Fowleri that induces primary amoebic Meningoencephalitis: rapid diagnosis and rare case of survival in a 12-year-old Caucasian girl. Laboratory medicine, 47(2), 149-154.Pugh, J. J., & Levy, R. A. (2016). Naegleria fowleri: Diagnosis, pathophysiology of brain inflammation, and antimicrobial treatments.Hinestroza Gil BP. Acercamiento al estado actual de meningoencefalitis amebiana primaria en Colombia producida por Naegleria fowleri (Bachelor's thesis, Facultad de Ciencias).National Center for Biotechnology Information. NCBI REference Sequence (RefSeq). [Online]. Available from: http://www.ncbi.nlm.nih.gov/.EMBL-EBI. Clustal Omega. [Online].; 2018. Available from: http://www.ebi.ac.uk/Tools/msa/clustalo/.PROTPARAM. SIB Bioinformatics Resource Portal. [Online].; ExPASy. Available from: http://web.expasy.org/protparam/.ExPASy. A View From The web. Gross, Robert H. 4, 2001, Biotech Software & Internet Report, Vol. 2, pág. 161.M. Cserzo, E. Wallin, I. Simon, G. von Heijne and A. Elofsson: Prediction of transmembrane alpha-helices in procariotic membrane proteins: the Dense Alignment Surface method; Prot. Eng. vol. 10, no. 6, 673-676, 1997TmDAS, "DAS" - Transmembrane Prediction server [Online], 2018; Available from: https://tmdas.bioinfo.se/DAS/index.htmlHirokawa T., Boon-Chieng S., and Mitaku S., Bioinformatics, 14 378-9 (1998) SOSUI: classification and secondary structure prediction system for membrane proteins.SOSUI: Submit a protein sequence [Online]; Available from: http://harrier.nagahama-i-bio.ac.jp/sosui/sosui_submit.htmlResources for Bioinformatics Research; TOPPRED2 [Online]: Available from: https://bioweb.pasteur.fr/seqanal/interfaces/toppred.htmlAlterovitz, Gil, Benson, Roseann y Ramoni, Marco. Automation In Proteomics and Genomics. an Engineering Case-Based Approach. New Delhi: John Wiley & Sons, 2009. pág. 340.Emboss, TMap [Online]: Available from: http://www.bioinformatics.nl/cgi-bin/emboss/tmapSIB Bioinformatics Resource Portal. [Online].; ExPASy. Available from: https://embnet.vital-it.ch/software/TMPRED_form.html .Split 4.0 SERVER, [Online]: Available from: http://splitbioinf.pmfst.hr/split/4/Juretic, D., Zoranic, L., Zucic, D. "Basic charge clusters and predictions of membrane protein topology" , J. Chem. Inf. Comput. Sci. Vol. 42, pp. 620-632, 2002.PredictProtein, PHDhtm; [Online]: Available from: https://www.predictprotein.org/DTU Bioinformatics, TMHMM Server v. 2.0, [Online]: Available from: http://www.cbs.dtu.dk/services/TMHMM-2.0/Institute of Enzymology, Budapest, Hungary, HMMTOP v. 2.9, [Online]: Available from: http://www.enzim.hu/~tusi/hmmtop/PROSTCALE. SIB Bioinformatics Resource Portal. [Online].; ExPASy. Available from: http://web.expasy.org/protscale/.Understanding protein non-folding. Uversky, Vladimir N y Dunker, A Keith. 6, 2010, Biochimica et Biophysica Acta , Vol. 1804, págs. 1231-1264Prediction of Intrinsic Disorder and Its Use in Functional Proteomics. Uversky, Vladimir N, y otros. 1, 2007, Methods in Molecular Biology, Vol. 408, págs. 69-92.NPS@: network protein sequence analysis. Combet, C, y otros. 3, 2000, Trends in Biochemical Sciences, Vol. 25, págs. 147-150.Rost B, Sander C. Prediction of protein secondary structure at better than 70% accuracy. Journal of molecular biology. 1993 Jul 20;232(2):584-99.Frishman D, Argos P. Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence. Protein Engineering, Design and Selection. 1996 Feb 1;9(2):133-42.Geourjon C, Deleage G. SOPM: a self-optimized method for protein secondary structure prediction. Protein Engineering, Design and Selection. 1994 Feb 1;7(2):157-64.Garnier J, Osguthorpe DJ, Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. Journal of molecular biology. 1978 Mar 25;120(1):97-120Voet , Voet , Pratt. Fundamentos de Bioquímica, la vida a nivel molecular. Panamericana Médica. 2007; Segunda edición.Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nature methods. 2015 Jan;12(1):7.Zhang Y. I-TASSER server for protein 3D structure prediction. BMC bioinformatics. 2008 Dec;9(1):40.Hooft RW, Sander C, Vriend G. Objectively judging the quality of a protein structure from a Ramachandran plot. Bioinformatics. 1997 Aug 1;13(4):425-30.Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. Journal of applied crystallography. 1993 Apr 1;26(2):283-91.Ho BK, Thomas A, Brasseur R. Revisiting the Ramachandran plot: Hard‐sphere repulsion, electrostatics, and H‐bonding in the α‐helix. Protein Science. 2003 Nov 1;12(11):2508-22.Nicolas G, Alexandre D, Manuel P, Torsten S. Swiss-Pdb. [Online].; 2016. Available from: http://spdbv.vital-it.ch/.Network Protein Sequence @nalysis. DPM SECONDARY STRUCTURE PREDICTION METHOD. [Online]. Available from: https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_dpm.html.Network Protein Sequence @nalysis. DSC SECONDARY STRUCTURE PREDICTION METHOD. [Online]. Available from: https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_dsc.htmlNetwork Protein Sequence @nalysis. GOR IV SECONDARY STRUCTURE PREDICTION METHOD. [Online]. Available from: https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_gor4.htmNetwork Protein Sequence @nalysis. PHD SECONDARY STRUCTURE PREDICTION METHOD. [Online]. Available from: https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_phd.html.Network Protein Sequence @nalysis. PREDATOR SECONDARY STRUCTURE PREDICTION METHOD. [Online]. Available from: https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_predator.htmlNetwork Protein Sequence @nalysis. SOPM SECONDARY STRUCTURE PREDICTION METHOD. [Online]. Available from: https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopm.htmlSmith DK, Radivojac P, Obradovic Z, Dunker AK, Zhu G. Improved amino acid flexibility parameters. Protein Science. 2003 May 1;12(5):1060-72.Yang J, Wang Y, Zhang Y. ResQ: an approach to unified estimation of B-factor and residue-specific error in protein structure prediction. Journal of molecular biology. 2016 Feb 22;428(4):693-701Sherwood D, Cooper J. Crystals, X-rays and Proteins: Comprehensive Protein Crystallography: Oxford Univ Pr; 2011.Wu S, Zhang Y. LOMETS: a local meta-threading-server for protein structure prediction. Nucleic acids research. 2007 May 1;35(10):3375-82.Shi,J., Blundell,T.L. and Mizuguchi,K. (2001) FUGUE: sequence-structure homology recognition using environment specific substitution tables and structure-dependent gap penalties.J. Mol. Biol., 310, 243–257.Soding,J. (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics (Oxford, England), 21, 951–960Xu,Y. and Xu,D. (2000) Protein threading using PROSPECT: design and evaluation. Proteins, 40, 343–354.Karplus,K., Karchin,R., Draper,J., Casper,J., MandelGutfreund,Y., Diekhans,M. and Hughey,R. (2003) Combining local-structure, fold-recognition, and new fold methods for protein structure prediction. Proteins, 53(Suppl. 6), 491–496Zhou,H. and Zhou,Y. (2004) Single-body residue-level knowledge-based energy score combined with sequence-profile and secondary structure information for fold recognition. Proteins, 55, 1005–1013.Zhou,H. and Zhou,Y. (2005) Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments. Proteins, 58, 321–328Vermelho, A. B., Branquinha, M. H., Levy, C., Santos, A. L. S. D., Dias, E. P. D. S., & Melo, A. C. N. D. (2010). Biological roles of peptidases in trypanosomatids.Groves MR, Taylor MA, Scott M, Cummings NJ, Pickersgill RW, Jenkins JA. The prosequence of procaricain forms an α-helical domain that prevents access to the substrate-binding cleft. Structure. 1996 Oct 15;4(10):1193-203.I-TASSER. Results for job id S361168. [Online].; 2018 [cited 2018 Junio 8. Available from: http://zhanglab.ccmb.med.umich.edu/I-TASSER/output/S361168I-TASSER. Results for job id S361593. [Online].; 2018 [cited 2018 Junio 8. Available from: http://zhanglab.ccmb.med.umich.edu/I-TASSER/output/S361593/Jianyi Yang, Renxiang Yan, Ambrish Roy, Dong Xu, Jonathan Poisson, Yang Zhang. The I-TASSER Suite: Protein structure and function prediction. Nature Methods, 12: 7-8 (2015).Ambrish Roy, Alper Kucukural, Yang Zhang. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 5: 725-738 (2010).Yang Zhang. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9:40 (2008).I-TASSER. More about C-Score. [Online].; 2018 [cited 2018 Junio 8. Available from: http://zhanglab.ccmb.med.umich.edu/I-TASSER/output/S361168/cscore.txt.LaLonde JM, Zhao B, Janson CA, D'Alessio KJ, McQueney MS, Orsini MJ, Debouck CM, Smith WW. The crystal structure of human procathepsin K. Biochemistry. 1999 Jan 19;38(3):862-9.Chengxin Zhang, Peter L. Freddolino, and Yang Zhang. COFACTOR: improved protein function prediction by combining structure, sequence and protein-protein interaction information. Nucleic Acids Research, 45: W291-299 (2017).Jianyi Yang, Ambrish Roy, and Yang Zhang. Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment, Bioinformatics, 29:2588-2595 (2013)Kleywegt, G. J., & Jones, T. A. (1996). Phi/psi-chology: Ramachandran revisited. Structure, 4(12), 1395-1400.Muller-Esterl W. Bioquímica. Fundamentos para Medicina y Ciencias de la Vida Barcelona, España: Reverté; 2008.Ho, B. K., Thomas, A., & Brasseur, R. (2003). Revisiting the Ramachandran plot: Hard‐sphere repulsion, electrostatics, and H‐bonding in the α‐helix. Protein Science, 12(11), 2508-2522.Kleywegt, G. J., & Jones, T. A. (1996). Phi/psi-chology: Ramachandran revisited. Structure, 4(12), 1395-1400.Matanock A, Mehal JM, Liu L, Blau DM, Cope JR. Estimation of Undiagnosed Naegleria fowleri Primary Amebic Meningoencephalitis, United States. Emerging infectious diseases. 2018 Jan;24(1):162.Matanock A, Mehal JM, Liu L, Blau DM, Cope JR. Estimation of Undiagnosed Naegleria fowleri Primary Amebic Meningoencephalitis, United States. Emerging infectious diseases. 2018 Jan;24(1):162.Peterson K, Barbel P, Heavey E. Nurse's guide to primary amebic meningoencephalitis. Nursing2018. 2018 Apr 1;48(4):42-5.Bellini NK, Santos TM, da Silva MT, Thiemann OH. The therapeutic strategies against Naegleria fowleri. Experimental parasitology. 2018 Mar 1.Battaner E. Biomoléculas, una introduccion estrutural a la bioquímica. primera ed. España: Ediciones Universidad Salamanca; 2012.Khan, Fahim Halim. The Elements of Immunology. s.l.: Pearson Education, 2009. pág. 473.Rojas E. Inmunología. Tercera ed. Panamericana, editor. México: Editorial Medica Internacional; 2006Rojas E. Inmunología. Tercera ed. Panamericana, editor. México: Editorial Medica Internacional; 2006.Gonzalez V. Departamento de Bioquímica y Biología Molecular. Ph y equilibrios acido-base. Universidad de SalamancaWerner, Muller Sterl. Biología: Fundamentos para Medicina y Ciencias de la Vida. Barcelona: Reverté, 2008. pág. 661.Uversky VN. Functions of short lifetime biological structures at large: the case of intrinsically disordered proteins. Briefings in Functional Genomics. 2018 Jul 3.Uversky VN, Radivojac P, Iakoucheva LM, Obradovic Z, Dunker AK. Prediction of intrinsic disorder and its use in functional proteomics. InGene Function Analysis 2007 (pp. 69-92). Humana Press.Kyte, J.; Doolittle, R.F., «A simple method for displaying the hydropathic character of a protein.,» J. Mol. Biol., 1982Lieberman, Michael, Marks, Allan D y Smith, Colleen M. Marks' basic medical biochemistry: a clinical approach Third Edition. s.l: Wolters Kluwer Health, 2009. pág. 997.Jinling C, Dandan Z, Pei S, Wei S, Gengfu X, Yinong D, Ying Z. Bioinformatics analysis on ORF1 protein of Torque teno virus (SANBAN isolate). Asian Pacific journal of tropical medicine. 2011 Nov 1;4(11):850-6.PROTSITE. SIB Bioinformatics Resource Portal. [Online].; ExPASy. Available from: https://prosite.expasy.org/cgi-bin/prosite/nicedoc.pl?PS00139PROTSITE. SIB Bioinformatics Resource Portal. [Online].; ExPASy. Available from: https://prosite.expasy.org/cgi-bin/prosite/nicedoc.pl?PS00639PROTSITE. SIB Bioinformatics Resource Portal. [Online].; ExPASy. Available from: https://prosite.expasy.org/cgi-bin/prosite/nicedoc.pl?PS00640Fersht A. Estructura y mecanismo de los enzimas. Reverté; 1980. Pag. 60Renesto P, Rovery C, Schrenzel J, Leroy Q, Huyghe A, Li W, Lepidi H, François P, Raoult D. Rickettsia conorii transcriptional response within inoculation eschar. PloS one. 2008 Nov 10;3(11):e3681Pollastri G, Martin AJ, Mooney C, Vullo A. Accurate prediction of protein secondary structure and solvent accessibility by consensus combiners of sequence and structure information. BMC bioinformatics. 2007 Dec;8(1):201.Smith D, Radivojac P, Obradovic Z, Dunker K, Zhu G. Improved amino acid flexibility parameters. Rev. Protein Science. 2013; 12(5): p. 1060-1072.Lu J, Wang M, Wang Z, Fu Z, Lu A, Zhang G. Advances in the discovery of cathepsin K inhibitors on bone resorption. Journal of enzyme inhibition and medicinal chemistry. 2018 Jan 1;33(1):890-904.Tully DC, Liu H, Alper PB, Chatterjee AK, Epple R, Roberts MJ, Williams JA, Nguyen KT, Woodmansee DH, Tumanut C, Li J. Synthesis and evaluation of arylaminoethyl amides as noncovalent inhibitors of cathepsin S. Part 3: Heterocyclic P3. Bioorganic & medicinal chemistry letters. 2006 Apr 1;16(7):1975-80.Lee-Dutra A, Wiener DK, Sun S. Cathepsin S inhibitors: 2004–2010. Expert opinion on therapeutic patents. 2011 Mar 1;21(3):311-37.HOOk M, Switalski L, Wadstrom T, Lindberg M. Interactions of pathogenic microorganisms with fibronectin. Fibronectin. 1989;1:295-308.Miller EJ. Collagen types: structure, distribution, and functions. InCollagen 2018 Jan 18 (pp. 139-156). CRC Press.Jensen KK, Andreatta M, Marcatili P, Buus S, Greenbaum JA, Yan Z, Sette A, Peters B, Nielsen M. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology. 2018 Jul.Sidhom JW, Pardoll D, Baras A. AI-MHC: an allele-integrated deep learning framework for improving Class I & Class II HLA-binding predictions. bioRxiv. 2018 Jan 1:318881.Pannese E. Neurocytology: fine structure of neurons, nerve processes, and neuroglial cells. Springer; 2015 Mar 16.Kang SY, Song KJ, Jeong SR, Kim JH, Park S, Kim K, Kwon MH, Shin HJ. Role of the Nfa1 protein in pathogenic Naegleria fowleri cocultured with CHO target cells. Clinical and diagnostic laboratory immunology. 2005 Jul 1;12(7):873-6.FRITZINGER AE, MARCIANO‐CABRAL FR. Modulation of a “CD59‐like” Protein in Naegleria fowleri Amebae by Bacteria 1. Journal of Eukaryotic Microbiology. 2004 Sep;51(5):522-8.Wang Q, Li J, Ji J, Yang L, Chen L, Zhou R, Yang Y, Zheng H, Yuan J, Li L, Bi Y. A case of Naegleria fowleri related primary amoebic meningoencephalitis in China diagnosed by next-generation sequencing. BMC infectious diseases. 2018 Dec;18(1):349.Peterson K, Barbel P, Heavey E. Nurse's guide to primary amebic meningoencephalitis. Nursing2018. 2018 Apr 1;48(4):42-5.Baig AM, Khan NA. Novel chemotherapeutic strategies in the management of primary amoebic meningoencephalitis due to Naegleria fowleri. CNS Neurosci Ther. 2014 Mar 1;20(3):289-90.Debnath, A., Calvet, C. M., Jennings, G., Zhou, W., Aksenov, A., Luth, M. R., … Podust, L. M. (2017). CYP51 is an essential drug target for theMeningoencefalitisEnfermedadEspeciesAnimales experimentalesBioinformáticaProteínaNfCPBproteína NfCPB-LNaegleria fowleriCatepsinaTEXTMODELO TRIDIMENSIONAL DE LAS PROTEÍNAS NfCPB y NfCPB-L.pdf.txtMODELO TRIDIMENSIONAL DE LAS PROTEÍNAS NfCPB y NfCPB-L.pdf.txtExtracted texttext/plain117523https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/3585/5/MODELO%20TRIDIMENSIONAL%20DE%20LAS%20PROTE%c3%8dNAS%20NfCPB%20y%20NfCPB-L.pdf.txt751544cdaa4f5880f4e52f7e4925acc8MD55open accessFormato decanatura- Derechos de autor.pdf.txtFormato decanatura- Derechos de autor.pdf.txtExtracted texttext/plain17https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/3585/7/Formato%20decanatura-%20Derechos%20de%20autor.pdf.txt7d6ffb2a699666f5e78a5eb5adfc4b48MD57metadata only accessPresentación final ModeloTridimensional FERTIG.pdf.txtPresentación final ModeloTridimensional FERTIG.pdf.txtExtracted texttext/plain11742https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/3585/9/Presentaci%c3%b3n%20final%20ModeloTridimensional%20FERTIG.pdf.txtd2e9adaa24ceff561f493b3636037387MD59open accessTHUMBNAILMODELO TRIDIMENSIONAL DE LAS PROTEÍNAS NfCPB y NfCPB-L.pdf.jpgMODELO TRIDIMENSIONAL DE LAS PROTEÍNAS NfCPB y NfCPB-L.pdf.jpgGenerated Thumbnailimage/jpeg7287https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/3585/6/MODELO%20TRIDIMENSIONAL%20DE%20LAS%20PROTE%c3%8dNAS%20NfCPB%20y%20NfCPB-L.pdf.jpg6209b1af5f5a38d7a3f015892fb686f0MD56open accessFormato decanatura- Derechos de autor.pdf.jpgFormato decanatura- Derechos de autor.pdf.jpgGenerated Thumbnailimage/jpeg5560https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/3585/8/Formato%20decanatura-%20Derechos%20de%20autor.pdf.jpgf86c157db47ccc9afa22d4c29408b513MD58metadata only accessPresentación final ModeloTridimensional FERTIG.pdf.jpgPresentación final ModeloTridimensional FERTIG.pdf.jpgGenerated Thumbnailimage/jpeg4294https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/3585/10/Presentaci%c3%b3n%20final%20ModeloTridimensional%20FERTIG.pdf.jpg07c1be0454c050919f5307a0ea523108MD510open accessORIGINALMODELO TRIDIMENSIONAL DE LAS PROTEÍNAS NfCPB y NfCPB-L.pdfMODELO TRIDIMENSIONAL DE LAS PROTEÍNAS NfCPB y NfCPB-L.pdfapplication/pdf1606535https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/3585/1/MODELO%20TRIDIMENSIONAL%20DE%20LAS%20PROTE%c3%8dNAS%20NfCPB%20y%20NfCPB-L.pdf6e92ea0dffda807324634e9eed6fe996MD51open accessFormato decanatura- Derechos de autor.pdfFormato decanatura- Derechos de autor.pdfapplication/pdf347389https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/3585/2/Formato%20decanatura-%20Derechos%20de%20autor.pdf2946e1632cef6dc19cc41e7c61fdc867MD52metadata only accessPresentación final ModeloTridimensional FERTIG.pdfPresentación final ModeloTridimensional FERTIG.pdfapplication/pdf3993280https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/3585/3/Presentaci%c3%b3n%20final%20ModeloTridimensional%20FERTIG.pdf2400422f386ab97a75c65509f374fb2bMD53open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/3585/4/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD54open accessunicolmayor/3585oai:repositorio.unicolmayor.edu.co:unicolmayor/35852021-10-30 03:00:40.929An error occurred on the license name.|||https://creativecommons.org/licenses/by-nc-sa/4.0/open accessBiblioteca Digital Unicolmayorrepositorio@unicolmayor.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=