Memoria espacial a largo plazo en humanos entrenados en un laberinto virtual.
En este estudio se evaluó la memoria espacial a largo plazo en humanos. Para ello, se empleó un diseño cuasiexperimental en el que se entrenó a tres grupos de estudiantes de pregrado en un laberinto virtual de agua para localizar una plataforma oculta cuya ubicación era señalada por un conjunto de c...
- Autores:
-
Luna, David
Manzanares-Silva, Moisés
Rodríguez-González, Katia
López-Cruz, Héctor
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2018
- Institución:
- Universidad Católica de Colombia
- Repositorio:
- RIUCaC - Repositorio U. Católica
- Idioma:
- spa
- OAI Identifier:
- oai:repository.ucatolica.edu.co:10983/28385
- Palabra clave:
- Retention
Spontaneous forgetting
Spatial memory
Virtual water maze
Retención
Olvido espontáneo
Memoria espacial
Laberinto virtual de agua
Labirinto virtual de água
Memória espacial
Retenção
Esquecimento espontâneo
- Rights
- openAccess
- License
- David Luna - 2017
id |
UCATOLICA2_ee736f50d551a01082c1a7f23b40dd82 |
---|---|
oai_identifier_str |
oai:repository.ucatolica.edu.co:10983/28385 |
network_acronym_str |
UCATOLICA2 |
network_name_str |
RIUCaC - Repositorio U. Católica |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Memoria espacial a largo plazo en humanos entrenados en un laberinto virtual. |
dc.title.translated.eng.fl_str_mv |
Long-term spatial memory in humans trained in a virtual maze. |
title |
Memoria espacial a largo plazo en humanos entrenados en un laberinto virtual. |
spellingShingle |
Memoria espacial a largo plazo en humanos entrenados en un laberinto virtual. Retention Spontaneous forgetting Spatial memory Virtual water maze Retención Olvido espontáneo Memoria espacial Laberinto virtual de agua Labirinto virtual de água Memória espacial Retenção Esquecimento espontâneo |
title_short |
Memoria espacial a largo plazo en humanos entrenados en un laberinto virtual. |
title_full |
Memoria espacial a largo plazo en humanos entrenados en un laberinto virtual. |
title_fullStr |
Memoria espacial a largo plazo en humanos entrenados en un laberinto virtual. |
title_full_unstemmed |
Memoria espacial a largo plazo en humanos entrenados en un laberinto virtual. |
title_sort |
Memoria espacial a largo plazo en humanos entrenados en un laberinto virtual. |
dc.creator.fl_str_mv |
Luna, David Manzanares-Silva, Moisés Rodríguez-González, Katia López-Cruz, Héctor |
dc.contributor.author.spa.fl_str_mv |
Luna, David Manzanares-Silva, Moisés Rodríguez-González, Katia López-Cruz, Héctor |
dc.subject.eng.fl_str_mv |
Retention Spontaneous forgetting Spatial memory Virtual water maze |
topic |
Retention Spontaneous forgetting Spatial memory Virtual water maze Retención Olvido espontáneo Memoria espacial Laberinto virtual de agua Labirinto virtual de água Memória espacial Retenção Esquecimento espontâneo |
dc.subject.spa.fl_str_mv |
Retención Olvido espontáneo Memoria espacial Laberinto virtual de agua Labirinto virtual de água Memória espacial Retenção Esquecimento espontâneo |
description |
En este estudio se evaluó la memoria espacial a largo plazo en humanos. Para ello, se empleó un diseño cuasiexperimental en el que se entrenó a tres grupos de estudiantes de pregrado en un laberinto virtual de agua para localizar una plataforma oculta cuya ubicación era señalada por un conjunto de claves. Se realizó un pretest sin plataforma antes del entrenamiento, e inmediatamente después se condujo un postest (Grupo 0 h), así como después de un intervalo de retención de dos días (Grupo 48 h) y siete días (Grupo 168 h). En el pretest no se encontró evidencia de preferencia por alguna zona del laberinto. A lo largo de los ensayos de entrenamiento, el tiempo para encontrar la meta disminuyó sin diferencias entre grupos. Durante el postest, todos los grupos mostraron una preferencia por el cuadrante reforzado, sin embargo, el tiempo de permanencia, la distancia de nado y la precisión de la conducta de búsqueda en dicha zona fue equivalente entre el Grupo 0 h y el Grupo 48 h, aunque mayor a la mostrada por el Grupo 168 h. Estos datos indican cambios ocurridos 48 h después de la adquisición en la memoria espacial a largo plazo en humanos. Se discuten los resultados a partir de procesos generales de memoria y procesos específicos propuestos por teorías particulares de memoria espacial; y al final se abordan las implicaciones clínicas y pertinentes al campo de la psicología comparada. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-01-01 00:00:00 2023-01-23T15:42:03Z |
dc.date.available.none.fl_str_mv |
2018-01-01 00:00:00 2023-01-23T15:42:03Z |
dc.date.issued.none.fl_str_mv |
2018-01-01 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.eng.fl_str_mv |
Journal article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.doi.none.fl_str_mv |
10.14718/ACP.2018.21.1.4 |
dc.identifier.eissn.none.fl_str_mv |
1909-9711 |
dc.identifier.issn.none.fl_str_mv |
0123-9155 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10983/28385 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.14718/ACP.2018.21.1.4 |
identifier_str_mv |
10.14718/ACP.2018.21.1.4 1909-9711 0123-9155 |
url |
https://hdl.handle.net/10983/28385 https://doi.org/10.14718/ACP.2018.21.1.4 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.bitstream.none.fl_str_mv |
https://actacolombianapsicologia.ucatolica.edu.co/article/download/1284/1680 https://actacolombianapsicologia.ucatolica.edu.co/article/download/1284/2050 https://actacolombianapsicologia.ucatolica.edu.co/article/download/1284/1681 https://actacolombianapsicologia.ucatolica.edu.co/article/download/1284/2051 https://actacolombianapsicologia.ucatolica.edu.co/article/download/1284/1997 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 1 , Año 2018 : ACTA COLOMBIANA DE PSICOLOGÍA |
dc.relation.citationendpage.none.fl_str_mv |
82 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationstartpage.none.fl_str_mv |
70 |
dc.relation.citationvolume.spa.fl_str_mv |
21 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Acta Colombiana de Psicología |
dc.relation.references.spa.fl_str_mv |
Aron. A., & Aron, E. N. (2001). Estadística para psicólogos. México: Prentice Hall. Astur, R. S., Ortiz, M. L., & Sutherland, R. J. (1998). A characterization of performance by men and women in a virtual Morris water task: a large and reliable sex difference. Behavioural Brain Research, 95(1-2), 185-190. doi: http://dx.doi.org/10.1016/S0166-4328(98)00019-9. Astur, R. S., Purton, A. J., Zaniewski, M. J., Cimadevilla, J., & Markus, E. J. (2016). Human sex differences in solving a virtual navigation problem. Behavioural Brain Research, 308, 236-243. doi:10.1016/j.bbr.2016.04.037. Ayaz, H., Shewokis, P. A., Curtin, A., Izzetoglu, M., Izzetoglu, K., & Onaral, B. (2011). Using maze suite and functional near infrared spectroscopy to study learning in spatial navigation. Journal of Visualized Experiments, 56, e3443. doi: 10.3791/3443. Baldi, E., Efoudebe, M., Lorenzini, C. A., & Bucherelli, C. (2005). Spatial navigation in the Morris water maze: working and long lasting reference memories. Neuroscience Letters, 378(3), 176-180. doi: http://dx.doi.org/10.1016/j.neulet.2004.12.029. Blokland, A., Geraerts, E., & Been, M. (2004). A detailed analysis of rats' spatial memory in a probe trial of a Morris task. Behavioural Brain Research, 154(1), 71-75. doi: 10.1016/j.bbr.2004.01.022. Burgess, N., Jackson, A., Hartley, T., & O'Keefe, J. (2000). Predictions derived from modelling the hippocampal role in navigation. Biological Cybernetics, 83(3), 301-312. doi: 10.1007/s004220000172. Burgess, N., Maguire, E. A., & O'Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35(4), 625-641. doi: http://dx.doi.org/10.1016/S0896-6273(02)00830-9. Carmack, S. A., Block, C. L., Howell, K. K., & Anagnostaras, S. G. (2014). Methylphenidate enhances acquisition and retention of spatial memory. Neuroscience Letters, 567, 45-50. doi:10.1016/j.neulet.2014.03.029. Chalfonte, B. L., & Johnson, M. K. (1996). Feature memory and binding in young and older adults. Memory & Cognition, 24(4), 403-416. doi:10.3758/BF03200930. Chamizo, V. D., Aznar-Casanova, J. A., & Artigas, A. A. (2003). Human overshadowing in a virtual pool: Simple guidance is a good competitor against locale learning. Learning and Motivation, 34(3), 262-281. doi: https://doi.org/10.1016/S0023-9690(03)00020-1. Clark, R. E., Broadbent, N. J., & Squire, L. R. (2005). Hippocampus and remote spatial memory in rats. Hippocampus, 15(2), 260-272. doi:10.1002/hipo.20056. Commins, S., Cunningham, L., Harvey, D., & Walsh, D. (2003). Massed but not spaced training impairs spatial memory. Behavioural Brain Research, 139(1-2), 215-223. doi: http://dx.doi.org/10.1016/S0166-4328(02)00270-X. Conejo, N. M., Cimadevilla, J. M., González-Pardo, H., Méndez-Couz, M., & Arias, J. L. (2013). Hippocampal inactivation with TTX impairs long-term spatial memory retrieval and modifies brain metabolic activity. PloS one, 8, e64749.doi: http://dx.doi.org/10.1371/journal.pone.0064749. D'Hooge, R., & De Deyn, P. P. (2001). Applications of the Morris water maze in the study of learning and memory. Brain Research Reviews, 36(1), 60-90. doi: 10.1016/S0165-0173(01)00067-4. De Winter, J. C. (2013). Using the Student's t-test with extremely small sample sizes. Practical Assessment, Research & Evaluation, 18(10), 1-12. Demas, G. E., Nelson, R. J., Krueger, B. K., & Yarowsky, P. J. (1996). Spatial memory deficits in segmental trisomic Ts65Dn mice. Behavioural Brain Research, 82(1), 85-92. doi: http://dx.doi.org/10.1016/S0166-4328(97)81111-4. Ferrara, M., Iaria, G., de Gennaro, L., Guariglia, C., Cursio, G., Tempesta, D., & Bertini, M. (2006). The role of sleep in the consolidation of route learning in humans: A behavioural study. Brain Research Bulletin, 71(1-3), 4-9. doi: http://dx.doi.org/10.1016/j.brainresbull.2006.07.015. Florian, C., & Roullet, P. (2004). Hippocampal CA3-region is crucial for acquisition and memory consolidation in Morris water maze task in mice. Behavioural Brain Research, 154(2), 365-374. doi: http://dx.doi.org/10.1016/j.bbr.2004.03.003. Goodrich-Hunsaker, N. J., Livingstone, S. A., Skelton, R. W., & Hopkins, R. O. (2009). Spatial deficits in a virtual water maze in amnesic participants with hippocampal damage. Hippocampus, 20(4), 481-491. doi:10.1002/hipo.20651. Hamilton, D., Driscoll, I., & Sutherland, R. J. (2002). Human place learning in a virtual Morris water task: some important constraints on the flexibility of place navigation. Behavioral Brain Research, 129(1-2), 159-170. doi: http://dx.doi.org/10.1016/S0166-4328(01)00343-6. Hamilton, D. A., Kodituwakku, P., Sutherland, R. J., & Savage, D. D. (2003). Children with Fetal Alcohol Syndrome are impaired at place learning but not cued-navigation in a virtual Morris water task. Behavioural Brain Research, 143(1), 85-94. doi: http://dx.doi.org/10.1016/S0166-4328(03)00028-7. Hardt, O., Hupbach, A., & Nadel, L. (2009). Factors moderating blocking in human place learning: The role of task instructions. Learning & Behavior, 37(1), 42-59. doi: 10.3758/LB.37.1.42. Izquierdo, I., Medina, J. H., Vianna, M. R. M., Izquierdo, L. A., & Barros, D. M. (1999). Separate mechanisms for short- and long-term memory. Behavioural Brain Research, 103(1), 1-11. doi: http://dx.doi.org/10.1016/S0166-4328(99)00036-4. Jacobs, W. J., Laurance, H. E., & Thomas, K. G. (1997). Place learning in virtual space I: Acquisition, overshadowing, and transfer. Learning and Motivation, 28, 521-541. doi: 10.1006/lmot.1997.0977. Jones, C. M., & Healy, S. D. (2006). Differences in cue use and spatial memory in men and women. Proceedings of the Royal Society of London B: Biological Sciences, 273(1598), 2241-2247. doi: 10.1098/rspb.2006.3572. Kelly, D. M., & Gibson, B. M. (2007). Spatial navigation: Spatial learning in real and virtual environments. Comparative Cognition & Behavior Reviews, 2, 111-124. doi: 10.3819/ccbr.2008.20007. Khan, A., & Rayner, G. D. (2003). Robustness to non-normality of common tests for the many-sample location problem. Journal of Applied Mathematics & Decision Sciences, 7(4), 187-206. Kolarik, B. S., Shahlaie, K., Hassan, A., Borders, A. A., Kaufman, K. C., Gurkoff, G., ... Ekstrom, A. D. (2016). Impairments in precision, rather than spatial strategy, characterize performance on the virtual Morris Water Maze: A case study. Neuropsychologia, 80, 90-101. doi: 10.1016/j.neuropsychologia.2015.11.013. Maguire, E. A., Nannery, R., & Spiers, H. J. (2006). Navigation around London by a taxi driver with bilateral hippocampal lesions. Brain, 129(11), 2894-2907. doi: https://doi.org/10.1093/brain/awl286. Manns, J. R., & Eichenbaum, H. (2009). A cognitive map for object memory in the hippocampus. Learning & Memory, 16(10), 616-624. doi: 10.1101/lm.1484509. Méndez-Couz, M., Conejo, N. M., González-Pardo, H., & Arias, J. L. (2015). Functional interactions between dentate gyrus, striatum and anterior thalamic nuclei on spatial memory retrieval. Brain research, 1605, 59-69. doi: 10.1016/j.brainres.2015.02.005. Mettke-Hofmann, C., & Gwinner, E. (2003). Long-term memory for a life on the move. Proceedings of the National Academy of Sciences, 100(10), 5863-5866. doi: 10.1073/pnas.1037505100. Morellini, F. (2013). Spatial memory tasks in rodents: What do they model? Cell Tissue Research, 354(1), 273-286. doi: 10.1007/s00441-013-1668-9. Morris, R. G. M. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods, 11(1), 47-60. doi: http://dx.doi.org/10.1016/0165-0270(84)90007-4 Morris, R. (2013). Neurobiology of Learning and Memory. En D. W. Pfaff (Ed.), Neuroscience in the 21st Century (pp.2173-2211). New York: Springer. Morris, R. G. M., Garrud, P., Rawlins, J. N. P., & O'Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesion. Nature, 297(5868), 681-683. doi: 10.1038/297681a0. Morris, R. G., & Mayes, A. R. (2004). Long-term spatial memory: introduction and guide to the special section. Neuropsychology, 18(3), 403-404. doi: http://dx.doi.org/10.1037/0894-4105.18.3.403. Moscovitch, M., Nadel, L., Winocur, G., Gilboa, A., & Rosenbaum, R. S. (2006). The cognitive neuroscience of remote episodic, semantic and spatial memory. Current Opinion in Neurobiology, 16(2), 179-190. doi: http://dx.doi.org/10.1016/j.conb.2006.03.013. Moser, M. B., & Moser, E. I. (1998). Distributed encoding and retrieval of spatial memory in the hippocampus. The Journal of Neuroscience, 18(18), 7535-7542. O'Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Oxford University Press. Odinot, G., & Wolters, G. (2006). Repeated recall, retention interval and the accuracy-confidence relation in eyewitness memory. Applied Cognitive Psychology, 20(7), 973-985. doi: 10.1002/acp.1263. Postma, A., Jager, G., Kessels, R. P., Koppeschaar, H. P., & Van Honk, J. (2004). Sex differences for selective forms of spatial memory. Brain and Cognition, 54(1), 24-34. doi: 10.1016/S0278-2626(03)00238-0. Rosenbaum, R. S., Cassidy, B. N., & Herdman, K. A. (2015). Patterns of preserved and impaired spatial memory in a case of developmental amnesia. Frontiers in Human Neuroscience, 9, 196. doi: 10.3389/fnhum.2015.00196. Rosenbaum, R. S., Winocur, G., Grady, C. L., Ziegler, M., & Moscovitch, M. (2007). Memory for familiar environments learned in the remote past: fMRI studies of healthy people and an amnesic person with extensive bilateral hippocampal lesions. Hippocampus, 17(12), 1241-1251. doi: 10.1002/hipo.20354. Ross, S. P., Skelton, R. W., & Mueller, S. C. (2006). Gender differences in spatial navigation in virtual space: implications when using virtual environments in instruction and assessment. Virtual Reality, 10(3), 175-184. doi: 10.1007/s10055-006-0041-7. Roth, T. C., LaDage, L. D., & Pravosudov, V. V. (2012). Evidence for long-term spatial memory in a parid. Animal Cognition, 15(2), 149-154. doi: 10.1007/s10071-011-0440-3. Ruetti, E., Justel, N., & Bentosela, M. (2009). Perspectivas clásicas y contemporáneas acerca de la memoria. Suma Psicológica, 16(1), 65-83. Sara, S. J. (2000). Retrieval and reconsolidation: Toward a neurobiology of remembering. Learning & Memory, 7(2), 73-84. doi: 10.1101/lm.7.2.73. Shiflett, M. W., Tomaszycki, M. L., Rankin, A. Z., & De-Voogd, T. J. (2004). Long-term memory for spatial locations in a food-storing bird (Poecile atricapilla) requires activation of NMDA receptors in the hippocampal formation during learning. Behavioral Neuroscience, 118(1), 121-130. doi: http://doi.apa.org/getdoi.cfm?doi=10.1037/0735-7044.118.1.12. Schoenfeld, R., Foreman, N., & Leplow, B. (2014). Ageing and spatial reversal learning in humans: Findings from a virtual water maze. Behavioural Brain Research, 270, 47-55. doi: 10.1016/j.bbr.2014.04.036. Sociedad Mexicana de Psicología. (2010). Código ético del psicólogo. México: Trillas. Spieker, E. A., Astur, R. S., West, J. T., Griego, J. A., & Rowland, L. M. (2012). Spatial memory deficits in a virtual reality eight-arm radial maze in schizophrenia. Schizophrenia Research, 135(1-3), 84-89. doi: 10.1016/j.schres.2011.11014. Spreng, M., Rossier, J., & Schenk, F. (2002). Spaced training facilitates long-term retention of place navigation in adult but not in adolescent rats. Behavioural Brain Research, 128(1), 103-108. doi: http://dx.doi.org/10.1016/S0166-4328(01)00266-2. Squire, L. R. (2004). Memory systems of the brain: A brief history and current perspective. Neurobiology of Learning and Memory, 82(3), 171-177. doi: 10.1016/j.nlm.2004.06.005. Teng, E., & Squire, L. R. (1999). Memory for places learned long ago is intact after hippocampal damage. Nature, 400(6745), 675-677. doi: 10.1038/23276. Tramoni, E., Felician, O., Barbeau, E. J., Guedj, E., Guye, M., Bartolomei, F., & Ceccaldi, M. (2011). Long-term consolidation of declarative memory: insight from temporal lobe epilepsy. Brain, 134(3), 816-831. doi: 10.1093/brain/awr002. Vorhees, C. V., & Williams, M. T. (2014). Assessing spatial learning and memory in rodents. ILAR Journal, 55(2), 310-332. doi: https://doi.org/10.1093/ilar/ilu013. Wilkie, D. M., & Willson, R. J. (1989). Pigeons' (Columba livia) spatial reference memory is stable over long retention intervals. Bulletin of the Psychonomic Society, 27(3), 271-273. doi: 10.3758/BF03334604. Winocur, G., Moscovitch, M., & Sekeres, M. (2007). Memory consolidation or transformation: context manipulation and hippocampal representations of memory. Nature Neuroscience, 10, 555-557. doi: 10.1038/nn1880. Woolley, D. G., Laeremans, A., Gantois, I., Mantini, D., Vermaercke, B., Op de Beeck, ... D'Hooge, R. (2013). Homologous involvement of striatum and prefrontal cortex in rodent and human water maze learning. Proceedings of the National Academy of Sciences, 110(8), 3131-3136. doi: doi/10.1073/pnas.1217832110. World Medical Association Declaration of Helsinki. (2008). Ethical principles for medical research involving human subjects. In World Medical Association. Recuperado de http://www.wma.net/en/30publications/10policies/b3/in-dex.html |
dc.rights.spa.fl_str_mv |
David Luna - 2017 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
rights_invalid_str_mv |
David Luna - 2017 http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf text/html application/pdf text/html application/xml |
dc.publisher.spa.fl_str_mv |
Universidad Católica de Colombia |
dc.source.spa.fl_str_mv |
https://actacolombianapsicologia.ucatolica.edu.co/article/view/1284 |
institution |
Universidad Católica de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucatolica.edu.co/bitstreams/df4dc7a1-5fe7-4bee-80ae-7abae46260d6/download |
bitstream.checksum.fl_str_mv |
fd690a13e20898ac4bc70133f0ef11f5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Católica de Colombia - RIUCaC |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1812183438433714176 |
spelling |
Luna, Daviddae22562-4376-4096-b349-1b0ae76be203300Manzanares-Silva, Moisés9f94a41f-d25e-4a64-af64-1eaa4be19c3d300Rodríguez-González, Katia22b0aaea-ef75-4cdc-8804-0f47cd19a1e4300López-Cruz, Héctorc84f37f1-ea66-4687-ac9a-deab388bbc583002018-01-01 00:00:002023-01-23T15:42:03Z2018-01-01 00:00:002023-01-23T15:42:03Z2018-01-01En este estudio se evaluó la memoria espacial a largo plazo en humanos. Para ello, se empleó un diseño cuasiexperimental en el que se entrenó a tres grupos de estudiantes de pregrado en un laberinto virtual de agua para localizar una plataforma oculta cuya ubicación era señalada por un conjunto de claves. Se realizó un pretest sin plataforma antes del entrenamiento, e inmediatamente después se condujo un postest (Grupo 0 h), así como después de un intervalo de retención de dos días (Grupo 48 h) y siete días (Grupo 168 h). En el pretest no se encontró evidencia de preferencia por alguna zona del laberinto. A lo largo de los ensayos de entrenamiento, el tiempo para encontrar la meta disminuyó sin diferencias entre grupos. Durante el postest, todos los grupos mostraron una preferencia por el cuadrante reforzado, sin embargo, el tiempo de permanencia, la distancia de nado y la precisión de la conducta de búsqueda en dicha zona fue equivalente entre el Grupo 0 h y el Grupo 48 h, aunque mayor a la mostrada por el Grupo 168 h. Estos datos indican cambios ocurridos 48 h después de la adquisición en la memoria espacial a largo plazo en humanos. Se discuten los resultados a partir de procesos generales de memoria y procesos específicos propuestos por teorías particulares de memoria espacial; y al final se abordan las implicaciones clínicas y pertinentes al campo de la psicología comparada.In this study we evaluated the long-term spatial memory in humans. A quasiexperimental design was used in which three groups of undergraduate students were trained in a virtual water maze to locate a hidden platform whose location was indicated by a set of cues. A pre-test without platform was performed prior to the training, and a post-test was conducted immediately after this (Group 0h), or after a retention interval of two (Group 48h) or seven days (Group 168h). For the pre-test, there was no evidence of preference for any area of the maze. Throughout the training trials, the time to find the goal decreased without differences between groups. During the post-test, all groups showed a preference for the reinforced quadrant, although the spent time, swimming distance, and accuracy of the search behavior in that area was equivalent between Group 0 h and Group 48 h, but higher than that shown by the Group 168 h. These data indicate changes in long-term spatial memory in humans, occurring after an interval of 48 h after its acquisition. The results are discussed on the basis of general memory processes and specific processes proposed by particular spatial memory theories. The clinical and comparative psychology implications are also addressed. application/pdftext/htmlapplication/pdftext/htmlapplication/xml10.14718/ACP.2018.21.1.41909-97110123-9155https://hdl.handle.net/10983/28385https://doi.org/10.14718/ACP.2018.21.1.4spaUniversidad Católica de Colombiahttps://actacolombianapsicologia.ucatolica.edu.co/article/download/1284/1680https://actacolombianapsicologia.ucatolica.edu.co/article/download/1284/2050https://actacolombianapsicologia.ucatolica.edu.co/article/download/1284/1681https://actacolombianapsicologia.ucatolica.edu.co/article/download/1284/2051https://actacolombianapsicologia.ucatolica.edu.co/article/download/1284/1997Núm. 1 , Año 2018 : ACTA COLOMBIANA DE PSICOLOGÍA8217021Acta Colombiana de PsicologíaAron. A., & Aron, E. N. (2001). Estadística para psicólogos. México: Prentice Hall.Astur, R. S., Ortiz, M. L., & Sutherland, R. J. (1998). A characterization of performance by men and women in a virtual Morris water task: a large and reliable sex difference. Behavioural Brain Research, 95(1-2), 185-190. doi: http://dx.doi.org/10.1016/S0166-4328(98)00019-9.Astur, R. S., Purton, A. J., Zaniewski, M. J., Cimadevilla, J., & Markus, E. J. (2016). Human sex differences in solving a virtual navigation problem. Behavioural Brain Research, 308, 236-243. doi:10.1016/j.bbr.2016.04.037.Ayaz, H., Shewokis, P. A., Curtin, A., Izzetoglu, M., Izzetoglu, K., & Onaral, B. (2011). Using maze suite and functional near infrared spectroscopy to study learning in spatial navigation. Journal of Visualized Experiments, 56, e3443. doi: 10.3791/3443.Baldi, E., Efoudebe, M., Lorenzini, C. A., & Bucherelli, C. (2005). Spatial navigation in the Morris water maze: working and long lasting reference memories. Neuroscience Letters, 378(3), 176-180. doi: http://dx.doi.org/10.1016/j.neulet.2004.12.029.Blokland, A., Geraerts, E., & Been, M. (2004). A detailed analysis of rats' spatial memory in a probe trial of a Morris task. Behavioural Brain Research, 154(1), 71-75. doi: 10.1016/j.bbr.2004.01.022.Burgess, N., Jackson, A., Hartley, T., & O'Keefe, J. (2000). Predictions derived from modelling the hippocampal role in navigation. Biological Cybernetics, 83(3), 301-312. doi: 10.1007/s004220000172.Burgess, N., Maguire, E. A., & O'Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35(4), 625-641. doi: http://dx.doi.org/10.1016/S0896-6273(02)00830-9.Carmack, S. A., Block, C. L., Howell, K. K., & Anagnostaras, S. G. (2014). Methylphenidate enhances acquisition and retention of spatial memory. Neuroscience Letters, 567, 45-50. doi:10.1016/j.neulet.2014.03.029.Chalfonte, B. L., & Johnson, M. K. (1996). Feature memory and binding in young and older adults. Memory & Cognition, 24(4), 403-416. doi:10.3758/BF03200930.Chamizo, V. D., Aznar-Casanova, J. A., & Artigas, A. A. (2003). Human overshadowing in a virtual pool: Simple guidance is a good competitor against locale learning. Learning and Motivation, 34(3), 262-281. doi: https://doi.org/10.1016/S0023-9690(03)00020-1.Clark, R. E., Broadbent, N. J., & Squire, L. R. (2005). Hippocampus and remote spatial memory in rats. Hippocampus, 15(2), 260-272. doi:10.1002/hipo.20056.Commins, S., Cunningham, L., Harvey, D., & Walsh, D. (2003). Massed but not spaced training impairs spatial memory. Behavioural Brain Research, 139(1-2), 215-223. doi: http://dx.doi.org/10.1016/S0166-4328(02)00270-X.Conejo, N. M., Cimadevilla, J. M., González-Pardo, H., Méndez-Couz, M., & Arias, J. L. (2013). Hippocampal inactivation with TTX impairs long-term spatial memory retrieval and modifies brain metabolic activity. PloS one, 8, e64749.doi: http://dx.doi.org/10.1371/journal.pone.0064749.D'Hooge, R., & De Deyn, P. P. (2001). Applications of the Morris water maze in the study of learning and memory. Brain Research Reviews, 36(1), 60-90. doi: 10.1016/S0165-0173(01)00067-4.De Winter, J. C. (2013). Using the Student's t-test with extremely small sample sizes. Practical Assessment, Research & Evaluation, 18(10), 1-12.Demas, G. E., Nelson, R. J., Krueger, B. K., & Yarowsky, P. J. (1996). Spatial memory deficits in segmental trisomic Ts65Dn mice. Behavioural Brain Research, 82(1), 85-92. doi: http://dx.doi.org/10.1016/S0166-4328(97)81111-4.Ferrara, M., Iaria, G., de Gennaro, L., Guariglia, C., Cursio, G., Tempesta, D., & Bertini, M. (2006). The role of sleep in the consolidation of route learning in humans: A behavioural study. Brain Research Bulletin, 71(1-3), 4-9. doi: http://dx.doi.org/10.1016/j.brainresbull.2006.07.015.Florian, C., & Roullet, P. (2004). Hippocampal CA3-region is crucial for acquisition and memory consolidation in Morris water maze task in mice. Behavioural Brain Research, 154(2), 365-374. doi: http://dx.doi.org/10.1016/j.bbr.2004.03.003.Goodrich-Hunsaker, N. J., Livingstone, S. A., Skelton, R. W., & Hopkins, R. O. (2009). Spatial deficits in a virtual water maze in amnesic participants with hippocampal damage. Hippocampus, 20(4), 481-491. doi:10.1002/hipo.20651.Hamilton, D., Driscoll, I., & Sutherland, R. J. (2002). Human place learning in a virtual Morris water task: some important constraints on the flexibility of place navigation. Behavioral Brain Research, 129(1-2), 159-170. doi: http://dx.doi.org/10.1016/S0166-4328(01)00343-6.Hamilton, D. A., Kodituwakku, P., Sutherland, R. J., & Savage, D. D. (2003). Children with Fetal Alcohol Syndrome are impaired at place learning but not cued-navigation in a virtual Morris water task. Behavioural Brain Research, 143(1), 85-94. doi: http://dx.doi.org/10.1016/S0166-4328(03)00028-7.Hardt, O., Hupbach, A., & Nadel, L. (2009). Factors moderating blocking in human place learning: The role of task instructions. Learning & Behavior, 37(1), 42-59. doi: 10.3758/LB.37.1.42.Izquierdo, I., Medina, J. H., Vianna, M. R. M., Izquierdo, L. A., & Barros, D. M. (1999). Separate mechanisms for short- and long-term memory. Behavioural Brain Research, 103(1), 1-11. doi: http://dx.doi.org/10.1016/S0166-4328(99)00036-4.Jacobs, W. J., Laurance, H. E., & Thomas, K. G. (1997).Place learning in virtual space I: Acquisition, overshadowing, and transfer. Learning and Motivation, 28, 521-541. doi: 10.1006/lmot.1997.0977.Jones, C. M., & Healy, S. D. (2006). Differences in cue use and spatial memory in men and women. Proceedings of the Royal Society of London B: Biological Sciences, 273(1598), 2241-2247. doi: 10.1098/rspb.2006.3572.Kelly, D. M., & Gibson, B. M. (2007). Spatial navigation: Spatial learning in real and virtual environments. Comparative Cognition & Behavior Reviews, 2, 111-124. doi: 10.3819/ccbr.2008.20007.Khan, A., & Rayner, G. D. (2003). Robustness to non-normality of common tests for the many-sample location problem. Journal of Applied Mathematics & Decision Sciences, 7(4), 187-206.Kolarik, B. S., Shahlaie, K., Hassan, A., Borders, A. A., Kaufman, K. C., Gurkoff, G., ... Ekstrom, A. D. (2016). Impairments in precision, rather than spatial strategy, characterize performance on the virtual Morris Water Maze: A case study. Neuropsychologia, 80, 90-101. doi: 10.1016/j.neuropsychologia.2015.11.013.Maguire, E. A., Nannery, R., & Spiers, H. J. (2006). Navigation around London by a taxi driver with bilateral hippocampal lesions. Brain, 129(11), 2894-2907. doi: https://doi.org/10.1093/brain/awl286.Manns, J. R., & Eichenbaum, H. (2009). A cognitive map for object memory in the hippocampus. Learning & Memory, 16(10), 616-624. doi: 10.1101/lm.1484509.Méndez-Couz, M., Conejo, N. M., González-Pardo, H., & Arias, J. L. (2015). Functional interactions between dentate gyrus, striatum and anterior thalamic nuclei on spatial memory retrieval. Brain research, 1605, 59-69. doi: 10.1016/j.brainres.2015.02.005.Mettke-Hofmann, C., & Gwinner, E. (2003). Long-term memory for a life on the move. Proceedings of the National Academy of Sciences, 100(10), 5863-5866. doi: 10.1073/pnas.1037505100.Morellini, F. (2013). Spatial memory tasks in rodents: What do they model? Cell Tissue Research, 354(1), 273-286. doi: 10.1007/s00441-013-1668-9.Morris, R. G. M. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods, 11(1), 47-60. doi: http://dx.doi.org/10.1016/0165-0270(84)90007-4Morris, R. (2013). Neurobiology of Learning and Memory. En D. W. Pfaff (Ed.), Neuroscience in the 21st Century (pp.2173-2211). New York: Springer.Morris, R. G. M., Garrud, P., Rawlins, J. N. P., & O'Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesion. Nature, 297(5868), 681-683. doi: 10.1038/297681a0.Morris, R. G., & Mayes, A. R. (2004). Long-term spatial memory: introduction and guide to the special section. Neuropsychology, 18(3), 403-404. doi: http://dx.doi.org/10.1037/0894-4105.18.3.403.Moscovitch, M., Nadel, L., Winocur, G., Gilboa, A., & Rosenbaum, R. S. (2006). The cognitive neuroscience of remote episodic, semantic and spatial memory. Current Opinion in Neurobiology, 16(2), 179-190. doi: http://dx.doi.org/10.1016/j.conb.2006.03.013.Moser, M. B., & Moser, E. I. (1998). Distributed encoding and retrieval of spatial memory in the hippocampus. The Journal of Neuroscience, 18(18), 7535-7542.O'Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Oxford University Press.Odinot, G., & Wolters, G. (2006). Repeated recall, retention interval and the accuracy-confidence relation in eyewitness memory. Applied Cognitive Psychology, 20(7), 973-985. doi: 10.1002/acp.1263.Postma, A., Jager, G., Kessels, R. P., Koppeschaar, H. P., & Van Honk, J. (2004). Sex differences for selective forms of spatial memory. Brain and Cognition, 54(1), 24-34. doi: 10.1016/S0278-2626(03)00238-0.Rosenbaum, R. S., Cassidy, B. N., & Herdman, K. A. (2015). Patterns of preserved and impaired spatial memory in a case of developmental amnesia. Frontiers in Human Neuroscience, 9, 196. doi: 10.3389/fnhum.2015.00196.Rosenbaum, R. S., Winocur, G., Grady, C. L., Ziegler, M., & Moscovitch, M. (2007). Memory for familiar environments learned in the remote past: fMRI studies of healthy people and an amnesic person with extensive bilateral hippocampal lesions. Hippocampus, 17(12), 1241-1251. doi: 10.1002/hipo.20354.Ross, S. P., Skelton, R. W., & Mueller, S. C. (2006). Gender differences in spatial navigation in virtual space: implications when using virtual environments in instruction and assessment. Virtual Reality, 10(3), 175-184. doi: 10.1007/s10055-006-0041-7.Roth, T. C., LaDage, L. D., & Pravosudov, V. V. (2012). Evidence for long-term spatial memory in a parid. Animal Cognition, 15(2), 149-154. doi: 10.1007/s10071-011-0440-3.Ruetti, E., Justel, N., & Bentosela, M. (2009). Perspectivas clásicas y contemporáneas acerca de la memoria. Suma Psicológica, 16(1), 65-83.Sara, S. J. (2000). Retrieval and reconsolidation: Toward a neurobiology of remembering. Learning & Memory, 7(2), 73-84. doi: 10.1101/lm.7.2.73.Shiflett, M. W., Tomaszycki, M. L., Rankin, A. Z., & De-Voogd, T. J. (2004). Long-term memory for spatial locations in a food-storing bird (Poecile atricapilla) requires activation of NMDA receptors in the hippocampal formation during learning. Behavioral Neuroscience, 118(1), 121-130. doi: http://doi.apa.org/getdoi.cfm?doi=10.1037/0735-7044.118.1.12.Schoenfeld, R., Foreman, N., & Leplow, B. (2014). Ageing and spatial reversal learning in humans: Findings from a virtual water maze. Behavioural Brain Research, 270, 47-55. doi: 10.1016/j.bbr.2014.04.036.Sociedad Mexicana de Psicología. (2010). Código ético del psicólogo. México: Trillas.Spieker, E. A., Astur, R. S., West, J. T., Griego, J. A., & Rowland, L. M. (2012). Spatial memory deficits in a virtual reality eight-arm radial maze in schizophrenia. Schizophrenia Research, 135(1-3), 84-89. doi: 10.1016/j.schres.2011.11014.Spreng, M., Rossier, J., & Schenk, F. (2002). Spaced training facilitates long-term retention of place navigation in adult but not in adolescent rats. Behavioural Brain Research, 128(1), 103-108. doi: http://dx.doi.org/10.1016/S0166-4328(01)00266-2.Squire, L. R. (2004). Memory systems of the brain: A brief history and current perspective. Neurobiology of Learning and Memory, 82(3), 171-177. doi: 10.1016/j.nlm.2004.06.005.Teng, E., & Squire, L. R. (1999). Memory for places learned long ago is intact after hippocampal damage. Nature, 400(6745), 675-677. doi: 10.1038/23276.Tramoni, E., Felician, O., Barbeau, E. J., Guedj, E., Guye, M., Bartolomei, F., & Ceccaldi, M. (2011). Long-term consolidation of declarative memory: insight from temporal lobe epilepsy. Brain, 134(3), 816-831. doi: 10.1093/brain/awr002.Vorhees, C. V., & Williams, M. T. (2014). Assessing spatial learning and memory in rodents. ILAR Journal, 55(2), 310-332. doi: https://doi.org/10.1093/ilar/ilu013.Wilkie, D. M., & Willson, R. J. (1989). Pigeons' (Columba livia) spatial reference memory is stable over long retention intervals. Bulletin of the Psychonomic Society, 27(3), 271-273. doi: 10.3758/BF03334604.Winocur, G., Moscovitch, M., & Sekeres, M. (2007). Memory consolidation or transformation: context manipulation and hippocampal representations of memory. Nature Neuroscience, 10, 555-557. doi: 10.1038/nn1880.Woolley, D. G., Laeremans, A., Gantois, I., Mantini, D., Vermaercke, B., Op de Beeck, ... D'Hooge, R. (2013). Homologous involvement of striatum and prefrontal cortex in rodent and human water maze learning. Proceedings of the National Academy of Sciences, 110(8), 3131-3136. doi: doi/10.1073/pnas.1217832110.World Medical Association Declaration of Helsinki. (2008). Ethical principles for medical research involving human subjects. In World Medical Association. Recuperado de http://www.wma.net/en/30publications/10policies/b3/in-dex.htmlDavid Luna - 2017info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/https://actacolombianapsicologia.ucatolica.edu.co/article/view/1284RetentionSpontaneous forgettingSpatial memoryVirtual water mazeRetenciónOlvido espontáneoMemoria espacialLaberinto virtual de aguaLabirinto virtual de águaMemória espacialRetençãoEsquecimento espontâneoMemoria espacial a largo plazo en humanos entrenados en un laberinto virtual.Long-term spatial memory in humans trained in a virtual maze.Artículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml3299https://repository.ucatolica.edu.co/bitstreams/df4dc7a1-5fe7-4bee-80ae-7abae46260d6/downloadfd690a13e20898ac4bc70133f0ef11f5MD5110983/28385oai:repository.ucatolica.edu.co:10983/283852023-03-24 17:42:38.573https://creativecommons.org/licenses/by-nc-sa/4.0/David Luna - 2017https://repository.ucatolica.edu.coRepositorio Institucional Universidad Católica de Colombia - RIUCaCbdigital@metabiblioteca.com |