Efectos de la estimulación eléctrica habenular en la modulación de respuestas emocionales en ratas Wistar.

A pesar del amplio uso de la estimulación cerebral profunda para controlar patologías neurológicas y neuropsiquiátricas, su mecanismo de acción aún no es claramente conocido, y existen pocos estudios sistemáticos que relacionen la variación de parámetros de estimulación eléctrica (frecuencia, intens...

Full description

Autores:
Herrera, María Laura
Rubio, Natalia Guisselle
Quintanilla, Juan Pablo
Huerta, Víctor Manuel
Osorio-Forero, Alejandro
Cárdenas-Molano, Melissa André
Corredor-Páez, Karen
Valderrama, Mario
Cárdenas, Fernando
Tipo de recurso:
Article of investigation
Fecha de publicación:
2018
Institución:
Universidad Católica de Colombia
Repositorio:
RIUCaC - Repositorio U. Católica
Idioma:
spa
OAI Identifier:
oai:repository.ucatolica.edu.co:10983/28415
Acceso en línea:
https://hdl.handle.net/10983/28415
https://doi.org/10.14718/ACP.2017.21.2.10
Palabra clave:
Eep brain stimulation
Emotional behavior
Habenula
Rats
Comportamiento emocional
Estimulación eléctrica cerebral profunda
Habénula
Ratas
Comportamento emocional
Estimulação elétrica cerebral profunda
Habênula
Ratos
Rights
openAccess
License
PreferenciasFernando Cárdenas - 2018
id UCATOLICA2_e37ae9b0e61c77d8bb92119c3f89e635
oai_identifier_str oai:repository.ucatolica.edu.co:10983/28415
network_acronym_str UCATOLICA2
network_name_str RIUCaC - Repositorio U. Católica
repository_id_str
dc.title.spa.fl_str_mv Efectos de la estimulación eléctrica habenular en la modulación de respuestas emocionales en ratas Wistar.
dc.title.translated.eng.fl_str_mv Effects of electrical stimulation of the habenula on the modulation of emotional responses in Wistar rats.
title Efectos de la estimulación eléctrica habenular en la modulación de respuestas emocionales en ratas Wistar.
spellingShingle Efectos de la estimulación eléctrica habenular en la modulación de respuestas emocionales en ratas Wistar.
Eep brain stimulation
Emotional behavior
Habenula
Rats
Comportamiento emocional
Estimulación eléctrica cerebral profunda
Habénula
Ratas
Comportamento emocional
Estimulação elétrica cerebral profunda
Habênula
Ratos
title_short Efectos de la estimulación eléctrica habenular en la modulación de respuestas emocionales en ratas Wistar.
title_full Efectos de la estimulación eléctrica habenular en la modulación de respuestas emocionales en ratas Wistar.
title_fullStr Efectos de la estimulación eléctrica habenular en la modulación de respuestas emocionales en ratas Wistar.
title_full_unstemmed Efectos de la estimulación eléctrica habenular en la modulación de respuestas emocionales en ratas Wistar.
title_sort Efectos de la estimulación eléctrica habenular en la modulación de respuestas emocionales en ratas Wistar.
dc.creator.fl_str_mv Herrera, María Laura
Rubio, Natalia Guisselle
Quintanilla, Juan Pablo
Huerta, Víctor Manuel
Osorio-Forero, Alejandro
Cárdenas-Molano, Melissa André
Corredor-Páez, Karen
Valderrama, Mario
Cárdenas, Fernando
dc.contributor.author.spa.fl_str_mv Herrera, María Laura
Rubio, Natalia Guisselle
Quintanilla, Juan Pablo
Huerta, Víctor Manuel
Osorio-Forero, Alejandro
Cárdenas-Molano, Melissa André
Corredor-Páez, Karen
Valderrama, Mario
Cárdenas, Fernando
dc.subject.eng.fl_str_mv Eep brain stimulation
Emotional behavior
Habenula
Rats
topic Eep brain stimulation
Emotional behavior
Habenula
Rats
Comportamiento emocional
Estimulación eléctrica cerebral profunda
Habénula
Ratas
Comportamento emocional
Estimulação elétrica cerebral profunda
Habênula
Ratos
dc.subject.spa.fl_str_mv Comportamiento emocional
Estimulación eléctrica cerebral profunda
Habénula
Ratas
Comportamento emocional
Estimulação elétrica cerebral profunda
Habênula
Ratos
description A pesar del amplio uso de la estimulación cerebral profunda para controlar patologías neurológicas y neuropsiquiátricas, su mecanismo de acción aún no es claramente conocido, y existen pocos estudios sistemáticos que relacionen la variación de parámetros de estimulación eléctrica (frecuencia, intensidad, duración del pulso) y la ejecución comportamental. La habénula es una estructura reguladora de respuestas emocionales diana en tratamientos para dolor crónico y depresión, pero la relación entre su estimulación crónica y el desempeño animal en pruebas conductuales no se ha establecido con claridad. Con el objetivo de evaluar el efecto emocional de la estimulación habenular crónica, en este estudio se utilizaron ratas Wistar que recibieron estimulación habenular a intensidad baja (10-80 µA) o alta (120-260 µA) y frecuencia baja (80-150 Hz) o alta (240- 380 Hz): BIBF-AIBF-BIAF-AIAF, durante 15 minutos a lo largo de tres días consecutivos. Al cuarto día, se hizo la evaluación en un laberinto elevado en cruz y en campo abierto. Los resultados indican un efecto de tipo ansiolítico en el tratamiento BIAF, en comparación con BIBF y AIBF (aumento del número de entradas, porcentaje de tiempo en brazos abiertos y de la distancia recorrida en ellos), efecto que no se explica por cambios en la locomotricidad (distancia recorrida en los brazos cerrados y la exploración en el campo abierto). Se concluye que el parámetro frecuencia posee mayor impacto sobre el efecto comportamental que la intensidad "lo que puede explicar algunos hallazgos paradójicos previos", que los parámetros utilizados no poseen efecto ansiogénico, y que los efectos potencialmente ansiogénicos de la estimulación a baja frecuencia y el papel de los sistemas dopaminérgicos y serotoninérgicos encontrados deben ser estudiados en futuras investigaciones.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-07-01 00:00:00
2023-01-23T15:42:27Z
dc.date.available.none.fl_str_mv 2018-07-01 00:00:00
2023-01-23T15:42:27Z
dc.date.issued.none.fl_str_mv 2018-07-01
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.doi.none.fl_str_mv 10.14718/ACP.2017.21.2.10
dc.identifier.eissn.none.fl_str_mv 1909-9711
dc.identifier.issn.none.fl_str_mv 0123-9155
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10983/28415
dc.identifier.url.none.fl_str_mv https://doi.org/10.14718/ACP.2017.21.2.10
identifier_str_mv 10.14718/ACP.2017.21.2.10
1909-9711
0123-9155
url https://hdl.handle.net/10983/28415
https://doi.org/10.14718/ACP.2017.21.2.10
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.bitstream.none.fl_str_mv https://actacolombianapsicologia.ucatolica.edu.co/article/download/1455/1830
https://actacolombianapsicologia.ucatolica.edu.co/article/download/1455/2028
https://actacolombianapsicologia.ucatolica.edu.co/article/download/1455/1831
https://actacolombianapsicologia.ucatolica.edu.co/article/download/1455/2029
https://actacolombianapsicologia.ucatolica.edu.co/article/download/1455/1986
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2018 : Volumen 21 No. 2
dc.relation.citationendpage.none.fl_str_mv 223
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 212
dc.relation.citationvolume.spa.fl_str_mv 21
dc.relation.ispartofjournal.spa.fl_str_mv Acta Colombiana de Psicología
dc.relation.references.spa.fl_str_mv Accolla, E. A., Aust, S., Merkl, A., Schneider, G. H., Kuhn, A. A., Draganski, B. (2016). Deep brain stimulation of the posterior gyrus rectus region for treatment resistant depression. Journal of Affective Disorders, 194, 33-37. Doi: https://doi:10.1016/j.jad.2016.01.022
Agarwal, P., Sarris, C. E., Herschman, Y., Agarwal, N., & Mammis, A. (2016). Schizophrenia and neurosurgery: A dark past with hope of a brighter future. Journal of Clinical Neuroscience, 34, 53-58. Doi: https://doi:10.1016/j.jocn.2016.08.009
Almeida, L., Martinez-Ramirez, D., Ahmed, B., Deeb, W., Jesus, S., & Okun, M. S. (2017). A pilot trial of square biphasic pulse deep brain stimulation for dystonia: The BIP dystonia study. Movement Disorders Journal, 32, 615-618. Doi: https://doi:10.1002/mds.26906
Amat, J., Sparks, P. D., Matus-Amat, P., Griggs, J., Watkins, L. R., & Maier, S. F. (2001). The role of the habenular complex in the elevation of dorsal raphe nucleus serotonin and the changes in the behavioral responses produced by uncontrollable stress. Brain Research Bulletin, 917, 118-126. Doi: https://doi.org/10.1016/S0006-8993(01)02934-1
Andersen, S. L., & Teicher, M. H. (1999). Serotonin laterality in amygdala predicts performance in the elevated plus maze in rats. Neuroreport Journal, 10, 3497-3500.
Arocho-Quinones, E. V., Hammer, M. J., Bock, J. M., & Pahapill, P. A. (2017). Effects of deep brain stimulation on vocal fold immobility in Parkinson's disease. Surgical Neurology International, 8, 22. Doi: https://doi:10.4103/2152-7806.200580.e
Bakay, R. A. (2009). Deep brain stimulation for schizophrenia. Stereotactic and functional neurosurgery, 87, 266. Doi: https://doi.org/10.1159/000225980
Baker, P. M., Jhou, T., Li, B., Matsumoto, M., Mizumori, S. J., ... Vicentic, A. (2016). The Lateral Habenula Circuitry: Reward Processing and Cognitive Control. Journal of Neuroscience, 36, 11482-11488. Doi: https://doi.org/10.1523/JNEUROSCI.2350-16.2016
Baker, P. M., Oh, S. E., Kidder, K. S., & Mizumori, S. J. (2015). Ongoing behavioral state information signaled in the lateral habenula guides choice flexibility in freely moving rats. Frontiers in Behavioral Neuroscience, 9, 295. Doi: https://doi:10.3389/fnbeh.2015.00295
Baker, P. M., Raynor, S. A., Francis, N. T., & Mizumori, S. J. (2017). Lateral habenula integration of proactive and retroactive information mediates behavioral flexibility. Neuroscience, 345, 89-98. Doi: https://doi:10.1016/j.neuroscien-ce.2016.02.010
Baldwin, P. R., Alanis, R., & Salas, R. (2011). The Role of the Habenula in Nicotine Addiction. Journal of Addiction Research & Therapy, SI. Doi: https://doi:10.4172/2155-6105.S1-002
Bergfeld, I. O., Mantione, M., Hoogendoorn, M. L., Ruhe, H. G., Notten, P., ... Denys, D. (2016). Deep Brain Stimulation of the Ventral Anterior Limb of the Internal Capsule for Treatment-Resistant Depression: A Randomized Clinical Trial. JAMA Psychiatry, 73, 456-464. Doi: https://doi:10.1017/S0033291717000113
Bewernick, B. H., Hurlemann, R., Matusch, A., Kayser, S., Grubert, C., . Schlaepfer, T (2010). Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biological Psychiatry, 67, 110-116. Doi: https://doi:10.1016/j.bio-psych.2009.09.013
Bewernick, B. H., Kayser, S., Gippert, S. M., Switala, C., Coenen, V. A., & Schlaepfer, T. E. (2017). Deep brain stimulation to the medial forebrain bundle for depression-long-term outcomes and a novel data analysis strategy. Brain Stimulation, 10, 664-671. Doi: https://doi:10.1016/j.brs.2017.01.581
Birchall, E. L., Walker, H. C., Cutter, G., Guthrie, S., Joop, A., ... Amara, A. W (2017). The effect of unilateral subthalamic nucleus deep brain stimulation on depression in Parkinson's disease. Brain Stimulation, 10, 651-656. Doi: https://doi:10.1016/j.brs.2016.12.014
Boadas-Vaello, P., Homs, J., Reina, F., Carrera, A., & Verdu, E. (2017). Neuroplasticity of Supraspinal Structures Associated with Pathological Pain. Anatomical Record, (Hoboken). Doi: https://doi:10.1002/ar.23587
Boccard, S. G., Pereira, E. A., & Aziz, T. Z. (2015). Deep brain stimulation for chronic pain. Journal of Clinical Neuroscience, 22, 1537-1543. Doi: https://doi:10.1016/j.jocn.2015.04.005
Borgonovo, J., Allende-Castro, C., Laliena, A., Guerrero, N., Silva, H., & Concha, M. L. (2017). Changes in neural circuitry associated with depression at pre-clinical, premotor and early motor phases of Parkinson's disease. Parkinsonism and Related Disorders, 35, 17-24. Doi: https://doi:10.1016/j.parkreldis.2016.11.009
Borsook, D., Linnman, C., Faria, V., Strassman, A. M., Becerra, L., & Elman, I. (2016). Reward deficiency and anti-reward in pain chronification. Neuroscience & Biobehavioral Reviews, 68, 282-297. Doi: https://doi:10.1016/j.neubio-rev.2016.05.033
Bromberg-Martin, E. S., & Hikosaka, O. (2011). Lateral habenula neurons signal errors in the prediction of reward information. Nature Neuroscience, 14, 1209-1216. Doi: https://doi:10.1038/nn.2902
Castelli, L., Perozzo, P., Zibetti, M., Crivelli, B., Morabito, U., Lanotte, M., ... Lopiano, L. (2006). Chronic deep brain stimulation of the subthalamic nucleus for Parkinson's disease: effects on cognition, mood, anxiety and personality traits. European Neurology, 55, 136-144. https://doi.org/10.1159/000093213
Chan, J., Guan, X., Ni, Y., Luo, L., Yang, L., Zhang, P., ... Chen, Y. (2017). Dopamine D1-like receptor in lateral habenula nucleus affects contextual fear memory and long-term potentiation in hippocampal CA1 in rats. Behavioral Brain Research, 321, 61-68. Doi: https://doi:10.1016/j.bbr.2016.12.026
Chang, C., Li, N., Wu, Y., Geng, N., Ge, S., . Wang, J. (2012). Associations between bilateral subthalamic nucleus deep brain stimulation (STN-DBS) and anxiety in Parkinson's disease patients: a controlled study. Journal of Neuropsychiatry & Clinical Neurosciences, 24, 316-325. Doi: https://doi:10.1176/appi.neuropsych.11070170
Choudhury, T. K., Davidson, J. E., Viswanathan, A., & Strutt, A. M. (2017). Deep brain stimulation of the anterior limb of the internal capsule for treatment of therapy-refractory obsessive compulsive disorder (OCD): a case study highlighting neurocognitive and psychiatric changes. Neurocase, 1-8. Doi: https://doi:10.1080/13554794.2017.1319958
Cif, L., & Coubes, P. (2017). Historical developments in children's deep brain stimulation. European Journal of Paediatric Neurology, 21, 109-117. Doi: https://doi:10.1016/j.ejpn.2016.08.010
Clark, C. R., Galletly, C. A., Ash, D. J., Moores, K. A., Penrose, R. A., & McFarlane, A. C. (2009). Evidence-based medicine evaluation of electrophysiological studies of the anxiety disorders. Clinical EEG and Neuroscience, 40, 84-112. Doi: https://doi/pdf/10.1177/155005940904000208
Coenen, V. A., Schlaepfer, T. E., Goll, P., Reinacher, P. C., Voderholzer, U., Tebartz van, E. L., ... Freyer, T. (2016). The medial forebrain bundle as a target for deep brain stimulation for obsessive-compulsive disorder. CNS Spectrums,1-8. Doi: https://doi:10.1017/S1092852916000286
Cruccu, G., Garcia-Larrea, L., Hansson, P., Keindl, M., Lefaucheur, J. P., ... Paulus, W (2016). EAN guidelines on central neurostimulation therapy in chronic pain conditions. European Journal of Neurology, 23, 1489-1499. Doi: https://doi:10.1111/ene.13103
Cukiert, A., & Lehtimaki, K. (2017). Deep brain stimulation targeting in refractory epilepsy. Epilepsia, 58, Supplement 1, 80-84. Doi: https://doi:10.1111/epi.13686
Dalkilic, E. B. (2017). Neurostimulation Devices Used in Treatment of Epilepsy. Current Treatment. Options in Neurology, 19, 7.
Dell'Osso, B., Cremaschi, L., Oldani, L., & Carlo, A. A. (2017). New Directions in the Use of Brain Stimulation Interventions in Patients with Obsessive-Compulsive Disorder. Current Medicinal Chemistry. Doi: https://doi:10.2174/0929867324666170505113631
Dos Santos, L., De Andrade, T. G., & Graeff, F. G. (2010). Social separation and diazepam withdrawal increase anxiety in the elevated plus-maze and serotonin turnover in the median raphe and hippocampus. Journal of Psychopharmacology, 24, 725-731. Doi: https://doi:10.1177/0269881109106954
Dupre, D. A., Tomycz, N., Oh, M. Y., & Whiting, D. (2015). Deep brain stimulation for obesity: past, present, and future targets. Neurosurgical Focus, 38, E7. Doi: https://doi:10.3171/2015.3.FOCUS1542
Faria, M. A. (2013). Violence, mental illness, and the brain - A brief history of psychosurgery: Part 3 - From deep brain stimulation to amygdalotomy for violent behavior, seizures, and pathological aggression in humans. Surgical Neurology International, 4, 91. Doi: https://doi:10.4103/2152-7806.115162
Faria, R., Magalhaes, A., Monteiro, P. R., Gomes-Da-Silva, J., Amelia, T. M., & Summavielle, T. (2006). MDMA in adolescent male rats: decreased serotonin in the amygdala and behavioral effects in the elevated plus-maze test. Annals of the New York Academy of Science, 1074, 643-649. Doi: http://doi.org/10.1196/annals.1369.062
Fukaya, C., Watanabe, M., Kobayashi, K., Oshima, H., Yoshino, A., & Yamamoto, T. (2017). Predictive Factors for Long-term Outcome of Subthalamic Nucleus Deep Brain Stimulation for Parkinson's Disease. Neurologia medico-chirurgica (Tokyo), 57, 166-171. Doi: https://doi:10.2176/nmc.oa.2016-0114
Gill, M. J., Ghee, S. M., Harper, S. M., & See, R. E. (2013). Inactivation of the lateral habenula reduces anxiogenic behavior and cocaine seeking under conditions of heightened stress. Pharmacology, Biochemistry and Behavior, 111, 24-29. Doi: https://doi:10.1016/j.pbb.2013.08.002
Golden, S. A., Heshmati, M., Flanigan, M., Christoffel, D. J., Guise, K., ... Pfau, M. L. (2016). Basal forebrain projections to the lateral habenula modulate aggression reward. Nature, 534, 688-692. Doi: https://doi:10.1038/nature18601
Han, B., Jin, H. J., Song, M. Y., Wang, T., & Zhao, H. (2014). A potential target for the treatment of Parkinson's disease: effect of lateral habenula lesions. Parkinsonism and Related Disorders, 20, 1191-1195. Doi: https://doi:10.1016/j.parkreldis.2014.08.022
Harat, M., Rudas, M., Zielinski, P., Birska, J., & Sokal, P. (2015). Deep Brain Stimulation in Pathological Aggression. Stereotactic and Functional Neurosurgery, 93, 310-315. Doi: https://doi:10.1159/000431373
Heldt, S. A., & Ressler, K. J. (2006). Lesions of the habenula produce stress- and dopamine-dependent alterations in prepulse inhibition and locomotion. Brain Research, 1073-1074, 229-239. Doi: http://doi.org/10.1016/j.brainres.2005.12.053
Hennigan, K., D'Ardenne, K., & McClure, S. M. (2015). Distinct midbrain and habenula pathways are involved in processing aversive events in humans. Journal of Neurosciences, 35, 198-208. Doi: https://doi:10.1523/JNEURO-SCI.0927-14.2015
Hikosaka, O., Sesack, S. R., Lecourtier, L., & Shepard, P. D. (2008). Habenula: crossroad between the basal ganglia and the limbic system. Journal of Neurosciences, 28, 11825-11829. Doi: https://doi:10.1523/JNEURO-SCI.3463-08.2008
Hong, S., & Hikosaka, O. (2008). The globus pallidus sends reward-related signals to the lateral habenula. Neuron, 60, 720-729. Doi: https://doi:10.1016/j.neuron.2008.09.035
Howland, R. H. (2013). Deep brain stimulation and aggression. Journal of Neurosurgery, 119, 273-275. Doi: https://doi:10.3171/2013.1.JNS122308
Jean-Richard Dit, B. P., & McNally, G. P. (2014). The role of the lateral habenula in punishment. PLOSONE, 9, e111699. Doi: https://doi:10.1371/journal.pone.0111699
John, C. S., & Currie, P. J. (2012). N-arachidonoyl-serotonin in the basolateral amygdala increases anxiolytic behavior in the elevated plus maze. Behavioral Brain Research, 233, 382-388. Doi: https://doi:10.1016/j.bbr.2012.05.025
Kim, J. H., Chang, W. S., Jung, H. H., & Chang, J. W. (2015). Effect of Subthalamic Deep Brain Stimulation on Levodo-pa-Induced Dyskinesia in Parkinson's Disease. Yonsei Medical Journal, 56, 1316-1321. Doi: https://doi:10.3349/ymj.2015.56.5.1316
Kim, Y., Morath, B., Hu, C., Byrne, L. K., Sutor, S. L., Frye, M. A., ... Tye, S. J. (2016). Antidepressant actions of lateral habenula deep brain stimulation differentially correlate with CaMKII/GSK3/AMPK signaling locally and in the infralimbic cortex. Behavioral Brain Research, 306, 170-177. Doi: https://doi:10.1016/j.bbr.2016.02.039
Klinger, N. V., & Mittal, S. (2016). Clinical efficacy of deep brain stimulation for the treatment of medically refractory epilepsy. Clinical Neurology and Neurosurgery, 140, 11-25. Doi: https://doi:10.1016/j.clineuro.2015.11.009
Krishna, V., Sammartino, F., King, N. K., So, R. Q., & Wennberg, R. (2016). Neuromodulation for Epilepsy. Neurosurgery Clinics of North America, 27, 123-131. Doi: https://doi:10.1016/j.nec.2015.08.010
Lecca, S., Meye, F. J., & Mameli, M. (2014). The lateral habenula in addiction and depression: an anatomical, synaptic and behavioral overview. European Journal of Neuroscience, 39, 1170-1178. Doi: https://doi:10.1111/ejn.12480
Lecourtier, L., Deschaux, O., Arnaud, C., Chessel, A., Kelly, P. H., & Garcia, R. (2006). Habenula lesions alter synaptic plasticity within the fimbria-accumbens pathway in the rat. Neuroscience, 141, 1025-1032. Doi: https://doi.org/10.1016/j.neuroscience.2006.04.018
Lecourtier, L., Neijt, H. C., & Kelly, P. H. (2004). Habenula lesions cause impaired cognitive performance in rats: implications for schizophrenia. European Journal of Neuroscience, 19, 2551-2560. https://doi.org/10.1111/j.0953-816X.2004.03356.x
Li, J., Zuo, W., Fu, R., Xie, G., Kaur, A., . Ye, J. H. (2016). High Frequency Electrical Stimulation of Lateral Habenula Reduces Voluntary Ethanol Consumption in Rats. International Journal of Neuropsychopharmacology, pyw050. Doi: https://doi:10.1093/ijnp/pyw050
Li, Y., Wang, Y., Xuan, C., Li, Y., Piao, L., ... Zhao, H. (2017). Role of the Lateral Habenula in Pain-Associated Depression. Frontiers in Behaioral Neuroscience, 11, 31. Doi: https://doi:10.3389/fnbeh.2017.00031
Lim, L. W, Prickaerts, J., Huguet, G., Kadar, E., Hartung, H., Temel, Y. (2015). Electrical stimulation alleviates depressive-like behaviors of rats: investigation of brain targets and potential mechanisms. Transational Psychiatry, 5, e535. Doi: https://doi:10.1038/tp.2015.24
Lin, D., & Parsons, L. H. (2002). Anxiogenic-like effect of serotonin(1B) receptor stimulation in the rat elevated plusmaze. Pharmacology, Biochemistry and Behavior, 71, 581-587. Doi: https://doi.org/10.1016/S0091-3057(01)00712-2
Lumsden, D. E., Kaminska, M., Ashkan, K., Selway, R., & Lin, J. P. (2017). Deep brain stimulation for childhood dystonia: Is 'where' as important as in 'whom'? European Journal of Paediatric Neurology, 21, 176-184. Doi: https://doi:10.1016/j.ejpn.2016.10.002
Maisonnette, S., Morato, S., & Brandao, M. L. (1993). Role of resocialization and of 5-HT1A receptor activation on the anxiogenic effects induced by isolation in the elevated plus-maze test. Physiology and Behavior, 54, 753-758. Doi: https://doi.org/10.1016/0031-9384(93)90087-V
Margolis, E. B., & Fields, H. L. (2016). Mu Opioid Receptor Actions in the Lateral Habenula. PLOS ONE, 11, e0159097. Doi: https://doi:10.1371/journal.pone.0159097
Moraes, C. L., Bertoglio, L. J., & Carobrez, A. P. (2008). Interplay between glutamate and serotonin within the dorsal periaqueductal gray modulates anxiety-related behavior of rats exposed to the elevated plus-maze. Behavioral Brain Research, 194, 181-186. Doi: https://doi:10.1016/j.bbr.2008.07.005
Moreines, J. L., Owrutsky, Z. L., & Grace, A. A. (2017). Involvement of Infralimbic Prefrontal Cortex but not Lateral Habenula in Dopamine Attenuation After Chronic Mild Stress. Neuropsychopharmacology, 42, 904-913. Doi: https://doi:10.1038/npp.2016.249
Motta, V., Maisonnette, S., Morato, S., Castrechini, P., & Brandao, M. L. (1992). Effects of blockade of 5-HT2 receptors and activation of 5-HT1A receptors on the exploratory activity of rats in the elevated plus-maze. Psychopharmacology (Berl), 107, 135-139.
Mulders, A. E. P., Plantinga, B. R., Schruers, K., Duits, A., Janssen, M. L. F., Ackermans, L., ... Temel, Y. (2016). Deep brain stimulation of the subthalamic nucleus in obsessive-compulsive disorder: Neuroanatomical and pathophysiological considerations. European Neuropsychopharmacology, 26, 1909-1919. Doi: https://doi:10.1016/j.euro-neuro.2016.10.011
Murphy, C. A., DiCamillo, A. M., Haun, F., & Murray, M. (1996). Lesion of the habenular efferent pathway produces anxiety and locomotor hyperactivity in rats: a comparison of the effects of neonatal and adult lesions. Behavioral Brain Research, 81, 43-52. Doi: https://doi.org/10.1016/S0166-4328(96)00041-1
Murrow, R. W. (2014). Penfield's Prediction: A Mechanism for Deep Brain Stimulation. Frontiers in Neurology, 5, 213. Doi: https://doi:10.3389/fneur.2014.00213
Nicolaidis, S. (2017). Neurosurgery of the future: Deep brain stimulations and manipulations. Metabolism, 69S, S16-S20. Doi: https://doi:10.1016/j.metabol.2017.01.013
Ootsuka, Y., & Mohammed, M. (2015). Activation of the habenula complex evokes autonomic physiological responses similar to those associated with emotional stress. PhysiologicalReports, 3. Doi:https://doi:10.14814/phy2.12297
Ostrem, J. L., San, L. M., Dodenhoff, K. A., Ziman, N., Markun, L. C., Racine, C. A., ... Starr, P. A. (2017). Subthalamic nucleus deep brain stimulation in isolated dystonia: A 3-year follow-up study. Neurology, 88, 25-35. Doi: https://doi:10.1212/WNL.0000000000003451
Paxinos, G., & Watson, C. (2006). The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition. Elsevier Science.
Plotkin, R. (1982). Results in 60 cases of deep brain stimulation for chronic intractable pain. Applied Neurophysiology, 45, 173-178.
Pobbe, R. L., & Zangrossi, H., Jr. (2010). The lateral habenula regulates defensive behaviors through changes in 5-HT-mediated neurotransmission in the dorsal periaqueductal gray matter. Neuroscience Letters, 479, 87-91. Doi: https://doi:10.1016/j.neulet.2010.05.021
Ray, C. D., & Burton, C. V. (1980). Deep brain stimulation for severe, chronic pain. Acta Neurochirurgica Supplement (Wien.), 30, 289-293.
Rolls, E. T. (2017). The roles of the orbitofrontal cortex via the habenula in non-reward and depression, and in the responses of serotonin and dopamine neurons. Neuroscience & Biobehavioral Reviews, 75, 331-334. Doi: https://doi:10.1016/j.neubiorev.2017.02.013
Rosenow, J. M., Mogilnert, A. Y., Ahmed, A., & Rezai, A. R. (2004). Deep brain stimulation for movement disorders. Neurological Research, 26, 9-20. Doi: https://doi:10.1179/016164104773026480
Roth, R. M., Flashman, L. A., Saykin, A. J., & Roberts, D. W. (2001). Deep brain stimulation in neuropsychiatric disorders. Current Psychiatry Reports, 3, 366-372.
Salgado-Lopez, L., Pomarol-Clotet, E., Roldan, A., Rodriguez, R., Molet, J., ... Sarro, S. (2016). Letter to the Editor: Deep brain stimulation for schizophrenia. Journal of Neurosurgery, 125, 229-230. Doi: https://doi:10.3171/2015.12.JNS152874
Schwalb, J. M., & Hamani, C. (2008). The history and future of deep brain stimulation. Neurotherapeutics, 5, 3-13. Doi: https://doi:10.1016/j.nurt.2007.11.003
Setem, J., Pinheiro, A. P., Motta, V. A., Morato, S., & Cruz, A. P. (1999). Ethopharmacological analysis of 5-HT ligands on the rat elevated plus-maze. Pharmacology, Biochemistry and Behavior, 62, 515-521. https://doi.org/10.1016/S0091-3057(98)00193-2
Shelton, L., Becerra, L., & Borsook, D. (2012). Unmasking the mysteries of the habenula in pain and analgesia. Progress in Neurobiology, 96, 208-219. Doi: https://doi:10.1016/j.pneurobio.2012.01.004
Song, M., Jo, Y. S., Lee, Y. K., & Choi, J. S. (2017). Lesions of the lateral habenula facilitate active avoidance learning and threat extinction. Behavioral Brain Research, 318, 12-17. Doi: https://doi:10.1016/j.bbr.2016.10.013
Sourani, D., Eitan, R., Gordon, N., & Goelman, G. (2012). The habenula couples the dopaminergic and the serotonergic systems: application to depression in Parkinson's disease. European Journal of Neuroscience, 36, 2822-2829. Doi: https://doi:10.1111/j.1460-9568.2012.08200.x
Sturm, V., Lenartz, D., Koulousakis, A., Treuer, H., Herholz, K., Klein, J. C., ... Klosterkõtter, J. (2003). The nucleus accumbens: a target for deep brain stimulation in obsessive-compulsive- and anxiety-disorders. Journal of Chemical. Neuroanatomy, 26, 293-299. https://doi.org/10.1016/j.jchemneu.2003.09.003
Thornton, E. W, & Bradbury, G. E. (1989). Effort and stress influence the effect of lesion of the habenula complex in one-way active avoidance learning. Physiology & Behavior, 45, 929-935. https://doi.org/10.1016/0031-9384(89)90217-5
Toda, H., Saiki, H., Nishida, N., & Iwasaki, K. (2016). Update on Deep Brain Stimulation for Dyskinesia and Dystonia: A Literature Review. Neurologia Medico-Chirurgica (Tokyo), 56, 236-248. Doi: https://doi:10.2176/nmc.ra.2016-0002
Udupa, K., & Chen, R. (2015). The mechanisms of action of deep brain stimulation and ideas for the future development. Progress in Neurobiology, 133, 27-49. Doi: https://doi:10.1016/j.pneurobio.2015.08.001
Vadovicova, K. (2014). Affective and cognitive prefrontal cortex projections to the lateral habenula in humans. Frontiers in Human Neuroscience, 8, 819. Doi: https://doi:10.3389/fnhum.2014.00819
Velasquez, K. M., Molfese, D. L., & Salas, R. (2014). The role of the habenula in drug addiction. Frontiers in Human Neurosciences, 8, 174. Doi: https://doi:10.3389/fnhum.2014.00174
Wickens, A. P., & Thornton, E. W. (1996). Circling behaviour induced by apomorphine after lesions of the habenula. Experimental Brain Research, 109, 17-21.
Yadid, G., Gispan, I., & Lax, E. (2013). Lateral habenula deep brain stimulation for personalized treatment of drug addiction. Frontiers in Human Neuroscience, 7, 806. Doi: https://doi:10.3389/fnhum.2013.00806
Yang, L. M., Hu, B., Xia, Y. H., Zhang, B. L., & Zhao, H. (2008). Lateral habenula lesions improve the behavioral response in depressed rats via increasing the serotonin level in dorsal raphe nucleus. Behavioral Brain Research, 188, 84-90. Doi: https://doi.org/10.1016Zj.bbr.2007.10.022
Yeomans, J. S. (1990). Principles of brain stimulation. New York: Oxford University Press.
Zhao, H., Zhang, B. L., Yang, S. J., & Rusak, B. (2015). The role of lateral habenula-dorsal raphe nucleus circuits in higher brain functions and psychiatric illness. Behavioral Brain Research, 277, 89-98. Doi: https://doi:10.1016/j.bbr.2014.09.016
dc.rights.spa.fl_str_mv PreferenciasFernando Cárdenas - 2018
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
rights_invalid_str_mv PreferenciasFernando Cárdenas - 2018
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
text/html
application/pdf
text/html
application/xml
dc.publisher.spa.fl_str_mv Universidad Católica de Colombia
dc.source.spa.fl_str_mv https://actacolombianapsicologia.ucatolica.edu.co/article/view/1455
institution Universidad Católica de Colombia
bitstream.url.fl_str_mv https://repository.ucatolica.edu.co/bitstreams/a257bea2-1bfe-4446-aaa9-46c394b7d855/download
bitstream.checksum.fl_str_mv 5b3d6676108c14061e6ad614019b1f31
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Católica de Colombia - RIUCaC
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1812183391940902912
spelling Herrera, María Laura8f7dfdf2-8f53-4832-879f-8ab4ace91f58300Rubio, Natalia Guissellebc9f2289-3827-4962-b8d9-0bb13b4f88a5300Quintanilla, Juan Pablo2faa22c5-1943-4d73-abcc-88433525942f300Huerta, Víctor Manuel2199de64-8b4a-4efc-b08a-b96bebf79e58Osorio-Forero, Alejandro57ef82e7-8b71-4e3e-9318-d3d43713432e300Cárdenas-Molano, Melissa Andrébb4ecbec-67ab-4802-aa32-56fc99e28555Corredor-Páez, Karencfb07a1f-a016-4ec0-b664-f506b3935f83Valderrama, Mariobbf4fcd2-9626-4948-8c4f-2a93cfa51e7d300Cárdenas, Fernandod803bba3-57ee-4175-aa7c-b7eab3d2f1093002018-07-01 00:00:002023-01-23T15:42:27Z2018-07-01 00:00:002023-01-23T15:42:27Z2018-07-01A pesar del amplio uso de la estimulación cerebral profunda para controlar patologías neurológicas y neuropsiquiátricas, su mecanismo de acción aún no es claramente conocido, y existen pocos estudios sistemáticos que relacionen la variación de parámetros de estimulación eléctrica (frecuencia, intensidad, duración del pulso) y la ejecución comportamental. La habénula es una estructura reguladora de respuestas emocionales diana en tratamientos para dolor crónico y depresión, pero la relación entre su estimulación crónica y el desempeño animal en pruebas conductuales no se ha establecido con claridad. Con el objetivo de evaluar el efecto emocional de la estimulación habenular crónica, en este estudio se utilizaron ratas Wistar que recibieron estimulación habenular a intensidad baja (10-80 µA) o alta (120-260 µA) y frecuencia baja (80-150 Hz) o alta (240- 380 Hz): BIBF-AIBF-BIAF-AIAF, durante 15 minutos a lo largo de tres días consecutivos. Al cuarto día, se hizo la evaluación en un laberinto elevado en cruz y en campo abierto. Los resultados indican un efecto de tipo ansiolítico en el tratamiento BIAF, en comparación con BIBF y AIBF (aumento del número de entradas, porcentaje de tiempo en brazos abiertos y de la distancia recorrida en ellos), efecto que no se explica por cambios en la locomotricidad (distancia recorrida en los brazos cerrados y la exploración en el campo abierto). Se concluye que el parámetro frecuencia posee mayor impacto sobre el efecto comportamental que la intensidad "lo que puede explicar algunos hallazgos paradójicos previos", que los parámetros utilizados no poseen efecto ansiogénico, y que los efectos potencialmente ansiogénicos de la estimulación a baja frecuencia y el papel de los sistemas dopaminérgicos y serotoninérgicos encontrados deben ser estudiados en futuras investigaciones.Deep brain stimulation is a widely-used approach to the treatment of neurologic and neuropsychiatric diseases. However, its mechanisms remain unclear. There are few systematic studies relating variations on electrical stimulation parameters (frequency, intensity, pulse duration) and behavioral outcome. The habenula relates to emotional behavior and is a main target for chronic pain and depression stimulation treatment. The relation between habenular electrical stimulation and performance in behavioral tests has not been clearly defined. In order to assess the emotional effects of chronic habenular electrical stimulation, Wistar male rats were unilaterally implanted with electrodes aimed to the lateral habenula and assigned to low (10-80 µA) or high (120-260 µA) intensity and low (80-150 Hz) or high (240-380 Hz) frequency conditions: BIBF-AIBF-BIAF-AIAF. They received electrical stimulation 15 minutes/day for three consecutive days and on the fourth day were tested in the elevated plus maze and the open field. The results of these study show that BIAF stimulation has a possible anxiolytic-like effect when compared to BIBF and AIBF (increase in the percentage of open-arms time, entries into the open-arms and total-distance-run in the open-arms). This is not due to any changes in locomotion (total-distance-run and open field exploration). It is concluded that frequency is more important than intensity for behavioral modification. This could explain some previous inconsistent results. The data also suggest that these parameters of stimulation have no anxiogenic effects. The role for dopaminergic and serotonergic systems must be subsequently evaluated as well as potential anxiogenic-like effects of low frequency stimulation.application/pdftext/htmlapplication/pdftext/htmlapplication/xml10.14718/ACP.2017.21.2.101909-97110123-9155https://hdl.handle.net/10983/28415https://doi.org/10.14718/ACP.2017.21.2.10spaUniversidad Católica de Colombiahttps://actacolombianapsicologia.ucatolica.edu.co/article/download/1455/1830https://actacolombianapsicologia.ucatolica.edu.co/article/download/1455/2028https://actacolombianapsicologia.ucatolica.edu.co/article/download/1455/1831https://actacolombianapsicologia.ucatolica.edu.co/article/download/1455/2029https://actacolombianapsicologia.ucatolica.edu.co/article/download/1455/1986Núm. 2 , Año 2018 : Volumen 21 No. 2223221221Acta Colombiana de PsicologíaAccolla, E. A., Aust, S., Merkl, A., Schneider, G. H., Kuhn, A. A., Draganski, B. (2016). Deep brain stimulation of the posterior gyrus rectus region for treatment resistant depression. Journal of Affective Disorders, 194, 33-37. Doi: https://doi:10.1016/j.jad.2016.01.022Agarwal, P., Sarris, C. E., Herschman, Y., Agarwal, N., & Mammis, A. (2016). Schizophrenia and neurosurgery: A dark past with hope of a brighter future. Journal of Clinical Neuroscience, 34, 53-58. Doi: https://doi:10.1016/j.jocn.2016.08.009Almeida, L., Martinez-Ramirez, D., Ahmed, B., Deeb, W., Jesus, S., & Okun, M. S. (2017). A pilot trial of square biphasic pulse deep brain stimulation for dystonia: The BIP dystonia study. Movement Disorders Journal, 32, 615-618. Doi: https://doi:10.1002/mds.26906Amat, J., Sparks, P. D., Matus-Amat, P., Griggs, J., Watkins, L. R., & Maier, S. F. (2001). The role of the habenular complex in the elevation of dorsal raphe nucleus serotonin and the changes in the behavioral responses produced by uncontrollable stress. Brain Research Bulletin, 917, 118-126. Doi: https://doi.org/10.1016/S0006-8993(01)02934-1Andersen, S. L., & Teicher, M. H. (1999). Serotonin laterality in amygdala predicts performance in the elevated plus maze in rats. Neuroreport Journal, 10, 3497-3500.Arocho-Quinones, E. V., Hammer, M. J., Bock, J. M., & Pahapill, P. A. (2017). Effects of deep brain stimulation on vocal fold immobility in Parkinson's disease. Surgical Neurology International, 8, 22. Doi: https://doi:10.4103/2152-7806.200580.eBakay, R. A. (2009). Deep brain stimulation for schizophrenia. Stereotactic and functional neurosurgery, 87, 266. Doi: https://doi.org/10.1159/000225980Baker, P. M., Jhou, T., Li, B., Matsumoto, M., Mizumori, S. J., ... Vicentic, A. (2016). The Lateral Habenula Circuitry: Reward Processing and Cognitive Control. Journal of Neuroscience, 36, 11482-11488. Doi: https://doi.org/10.1523/JNEUROSCI.2350-16.2016Baker, P. M., Oh, S. E., Kidder, K. S., & Mizumori, S. J. (2015). Ongoing behavioral state information signaled in the lateral habenula guides choice flexibility in freely moving rats. Frontiers in Behavioral Neuroscience, 9, 295. Doi: https://doi:10.3389/fnbeh.2015.00295Baker, P. M., Raynor, S. A., Francis, N. T., & Mizumori, S. J. (2017). Lateral habenula integration of proactive and retroactive information mediates behavioral flexibility. Neuroscience, 345, 89-98. Doi: https://doi:10.1016/j.neuroscien-ce.2016.02.010Baldwin, P. R., Alanis, R., & Salas, R. (2011). The Role of the Habenula in Nicotine Addiction. Journal of Addiction Research & Therapy, SI. Doi: https://doi:10.4172/2155-6105.S1-002Bergfeld, I. O., Mantione, M., Hoogendoorn, M. L., Ruhe, H. G., Notten, P., ... Denys, D. (2016). Deep Brain Stimulation of the Ventral Anterior Limb of the Internal Capsule for Treatment-Resistant Depression: A Randomized Clinical Trial. JAMA Psychiatry, 73, 456-464. Doi: https://doi:10.1017/S0033291717000113Bewernick, B. H., Hurlemann, R., Matusch, A., Kayser, S., Grubert, C., . Schlaepfer, T (2010). Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biological Psychiatry, 67, 110-116. Doi: https://doi:10.1016/j.bio-psych.2009.09.013Bewernick, B. H., Kayser, S., Gippert, S. M., Switala, C., Coenen, V. A., & Schlaepfer, T. E. (2017). Deep brain stimulation to the medial forebrain bundle for depression-long-term outcomes and a novel data analysis strategy. Brain Stimulation, 10, 664-671. Doi: https://doi:10.1016/j.brs.2017.01.581Birchall, E. L., Walker, H. C., Cutter, G., Guthrie, S., Joop, A., ... Amara, A. W (2017). The effect of unilateral subthalamic nucleus deep brain stimulation on depression in Parkinson's disease. Brain Stimulation, 10, 651-656. Doi: https://doi:10.1016/j.brs.2016.12.014Boadas-Vaello, P., Homs, J., Reina, F., Carrera, A., & Verdu, E. (2017). Neuroplasticity of Supraspinal Structures Associated with Pathological Pain. Anatomical Record, (Hoboken). Doi: https://doi:10.1002/ar.23587Boccard, S. G., Pereira, E. A., & Aziz, T. Z. (2015). Deep brain stimulation for chronic pain. Journal of Clinical Neuroscience, 22, 1537-1543. Doi: https://doi:10.1016/j.jocn.2015.04.005Borgonovo, J., Allende-Castro, C., Laliena, A., Guerrero, N., Silva, H., & Concha, M. L. (2017). Changes in neural circuitry associated with depression at pre-clinical, premotor and early motor phases of Parkinson's disease. Parkinsonism and Related Disorders, 35, 17-24. Doi: https://doi:10.1016/j.parkreldis.2016.11.009Borsook, D., Linnman, C., Faria, V., Strassman, A. M., Becerra, L., & Elman, I. (2016). Reward deficiency and anti-reward in pain chronification. Neuroscience & Biobehavioral Reviews, 68, 282-297. Doi: https://doi:10.1016/j.neubio-rev.2016.05.033Bromberg-Martin, E. S., & Hikosaka, O. (2011). Lateral habenula neurons signal errors in the prediction of reward information. Nature Neuroscience, 14, 1209-1216. Doi: https://doi:10.1038/nn.2902Castelli, L., Perozzo, P., Zibetti, M., Crivelli, B., Morabito, U., Lanotte, M., ... Lopiano, L. (2006). Chronic deep brain stimulation of the subthalamic nucleus for Parkinson's disease: effects on cognition, mood, anxiety and personality traits. European Neurology, 55, 136-144. https://doi.org/10.1159/000093213Chan, J., Guan, X., Ni, Y., Luo, L., Yang, L., Zhang, P., ... Chen, Y. (2017). Dopamine D1-like receptor in lateral habenula nucleus affects contextual fear memory and long-term potentiation in hippocampal CA1 in rats. Behavioral Brain Research, 321, 61-68. Doi: https://doi:10.1016/j.bbr.2016.12.026Chang, C., Li, N., Wu, Y., Geng, N., Ge, S., . Wang, J. (2012). Associations between bilateral subthalamic nucleus deep brain stimulation (STN-DBS) and anxiety in Parkinson's disease patients: a controlled study. Journal of Neuropsychiatry & Clinical Neurosciences, 24, 316-325. Doi: https://doi:10.1176/appi.neuropsych.11070170Choudhury, T. K., Davidson, J. E., Viswanathan, A., & Strutt, A. M. (2017). Deep brain stimulation of the anterior limb of the internal capsule for treatment of therapy-refractory obsessive compulsive disorder (OCD): a case study highlighting neurocognitive and psychiatric changes. Neurocase, 1-8. Doi: https://doi:10.1080/13554794.2017.1319958Cif, L., & Coubes, P. (2017). Historical developments in children's deep brain stimulation. European Journal of Paediatric Neurology, 21, 109-117. Doi: https://doi:10.1016/j.ejpn.2016.08.010Clark, C. R., Galletly, C. A., Ash, D. J., Moores, K. A., Penrose, R. A., & McFarlane, A. C. (2009). Evidence-based medicine evaluation of electrophysiological studies of the anxiety disorders. Clinical EEG and Neuroscience, 40, 84-112. Doi: https://doi/pdf/10.1177/155005940904000208Coenen, V. A., Schlaepfer, T. E., Goll, P., Reinacher, P. C., Voderholzer, U., Tebartz van, E. L., ... Freyer, T. (2016). The medial forebrain bundle as a target for deep brain stimulation for obsessive-compulsive disorder. CNS Spectrums,1-8. Doi: https://doi:10.1017/S1092852916000286Cruccu, G., Garcia-Larrea, L., Hansson, P., Keindl, M., Lefaucheur, J. P., ... Paulus, W (2016). EAN guidelines on central neurostimulation therapy in chronic pain conditions. European Journal of Neurology, 23, 1489-1499. Doi: https://doi:10.1111/ene.13103Cukiert, A., & Lehtimaki, K. (2017). Deep brain stimulation targeting in refractory epilepsy. Epilepsia, 58, Supplement 1, 80-84. Doi: https://doi:10.1111/epi.13686Dalkilic, E. B. (2017). Neurostimulation Devices Used in Treatment of Epilepsy. Current Treatment. Options in Neurology, 19, 7.Dell'Osso, B., Cremaschi, L., Oldani, L., & Carlo, A. A. (2017). New Directions in the Use of Brain Stimulation Interventions in Patients with Obsessive-Compulsive Disorder. Current Medicinal Chemistry. Doi: https://doi:10.2174/0929867324666170505113631Dos Santos, L., De Andrade, T. G., & Graeff, F. G. (2010). Social separation and diazepam withdrawal increase anxiety in the elevated plus-maze and serotonin turnover in the median raphe and hippocampus. Journal of Psychopharmacology, 24, 725-731. Doi: https://doi:10.1177/0269881109106954Dupre, D. A., Tomycz, N., Oh, M. Y., & Whiting, D. (2015). Deep brain stimulation for obesity: past, present, and future targets. Neurosurgical Focus, 38, E7. Doi: https://doi:10.3171/2015.3.FOCUS1542Faria, M. A. (2013). Violence, mental illness, and the brain - A brief history of psychosurgery: Part 3 - From deep brain stimulation to amygdalotomy for violent behavior, seizures, and pathological aggression in humans. Surgical Neurology International, 4, 91. Doi: https://doi:10.4103/2152-7806.115162Faria, R., Magalhaes, A., Monteiro, P. R., Gomes-Da-Silva, J., Amelia, T. M., & Summavielle, T. (2006). MDMA in adolescent male rats: decreased serotonin in the amygdala and behavioral effects in the elevated plus-maze test. Annals of the New York Academy of Science, 1074, 643-649. Doi: http://doi.org/10.1196/annals.1369.062Fukaya, C., Watanabe, M., Kobayashi, K., Oshima, H., Yoshino, A., & Yamamoto, T. (2017). Predictive Factors for Long-term Outcome of Subthalamic Nucleus Deep Brain Stimulation for Parkinson's Disease. Neurologia medico-chirurgica (Tokyo), 57, 166-171. Doi: https://doi:10.2176/nmc.oa.2016-0114Gill, M. J., Ghee, S. M., Harper, S. M., & See, R. E. (2013). Inactivation of the lateral habenula reduces anxiogenic behavior and cocaine seeking under conditions of heightened stress. Pharmacology, Biochemistry and Behavior, 111, 24-29. Doi: https://doi:10.1016/j.pbb.2013.08.002Golden, S. A., Heshmati, M., Flanigan, M., Christoffel, D. J., Guise, K., ... Pfau, M. L. (2016). Basal forebrain projections to the lateral habenula modulate aggression reward. Nature, 534, 688-692. Doi: https://doi:10.1038/nature18601Han, B., Jin, H. J., Song, M. Y., Wang, T., & Zhao, H. (2014). A potential target for the treatment of Parkinson's disease: effect of lateral habenula lesions. Parkinsonism and Related Disorders, 20, 1191-1195. Doi: https://doi:10.1016/j.parkreldis.2014.08.022Harat, M., Rudas, M., Zielinski, P., Birska, J., & Sokal, P. (2015). Deep Brain Stimulation in Pathological Aggression. Stereotactic and Functional Neurosurgery, 93, 310-315. Doi: https://doi:10.1159/000431373Heldt, S. A., & Ressler, K. J. (2006). Lesions of the habenula produce stress- and dopamine-dependent alterations in prepulse inhibition and locomotion. Brain Research, 1073-1074, 229-239. Doi: http://doi.org/10.1016/j.brainres.2005.12.053Hennigan, K., D'Ardenne, K., & McClure, S. M. (2015). Distinct midbrain and habenula pathways are involved in processing aversive events in humans. Journal of Neurosciences, 35, 198-208. Doi: https://doi:10.1523/JNEURO-SCI.0927-14.2015Hikosaka, O., Sesack, S. R., Lecourtier, L., & Shepard, P. D. (2008). Habenula: crossroad between the basal ganglia and the limbic system. Journal of Neurosciences, 28, 11825-11829. Doi: https://doi:10.1523/JNEURO-SCI.3463-08.2008Hong, S., & Hikosaka, O. (2008). The globus pallidus sends reward-related signals to the lateral habenula. Neuron, 60, 720-729. Doi: https://doi:10.1016/j.neuron.2008.09.035Howland, R. H. (2013). Deep brain stimulation and aggression. Journal of Neurosurgery, 119, 273-275. Doi: https://doi:10.3171/2013.1.JNS122308Jean-Richard Dit, B. P., & McNally, G. P. (2014). The role of the lateral habenula in punishment. PLOSONE, 9, e111699. Doi: https://doi:10.1371/journal.pone.0111699John, C. S., & Currie, P. J. (2012). N-arachidonoyl-serotonin in the basolateral amygdala increases anxiolytic behavior in the elevated plus maze. Behavioral Brain Research, 233, 382-388. Doi: https://doi:10.1016/j.bbr.2012.05.025Kim, J. H., Chang, W. S., Jung, H. H., & Chang, J. W. (2015). Effect of Subthalamic Deep Brain Stimulation on Levodo-pa-Induced Dyskinesia in Parkinson's Disease. Yonsei Medical Journal, 56, 1316-1321. Doi: https://doi:10.3349/ymj.2015.56.5.1316Kim, Y., Morath, B., Hu, C., Byrne, L. K., Sutor, S. L., Frye, M. A., ... Tye, S. J. (2016). Antidepressant actions of lateral habenula deep brain stimulation differentially correlate with CaMKII/GSK3/AMPK signaling locally and in the infralimbic cortex. Behavioral Brain Research, 306, 170-177. Doi: https://doi:10.1016/j.bbr.2016.02.039Klinger, N. V., & Mittal, S. (2016). Clinical efficacy of deep brain stimulation for the treatment of medically refractory epilepsy. Clinical Neurology and Neurosurgery, 140, 11-25. Doi: https://doi:10.1016/j.clineuro.2015.11.009Krishna, V., Sammartino, F., King, N. K., So, R. Q., & Wennberg, R. (2016). Neuromodulation for Epilepsy. Neurosurgery Clinics of North America, 27, 123-131. Doi: https://doi:10.1016/j.nec.2015.08.010Lecca, S., Meye, F. J., & Mameli, M. (2014). The lateral habenula in addiction and depression: an anatomical, synaptic and behavioral overview. European Journal of Neuroscience, 39, 1170-1178. Doi: https://doi:10.1111/ejn.12480Lecourtier, L., Deschaux, O., Arnaud, C., Chessel, A., Kelly, P. H., & Garcia, R. (2006). Habenula lesions alter synaptic plasticity within the fimbria-accumbens pathway in the rat. Neuroscience, 141, 1025-1032. Doi: https://doi.org/10.1016/j.neuroscience.2006.04.018Lecourtier, L., Neijt, H. C., & Kelly, P. H. (2004). Habenula lesions cause impaired cognitive performance in rats: implications for schizophrenia. European Journal of Neuroscience, 19, 2551-2560. https://doi.org/10.1111/j.0953-816X.2004.03356.xLi, J., Zuo, W., Fu, R., Xie, G., Kaur, A., . Ye, J. H. (2016). High Frequency Electrical Stimulation of Lateral Habenula Reduces Voluntary Ethanol Consumption in Rats. International Journal of Neuropsychopharmacology, pyw050. Doi: https://doi:10.1093/ijnp/pyw050Li, Y., Wang, Y., Xuan, C., Li, Y., Piao, L., ... Zhao, H. (2017). Role of the Lateral Habenula in Pain-Associated Depression. Frontiers in Behaioral Neuroscience, 11, 31. Doi: https://doi:10.3389/fnbeh.2017.00031Lim, L. W, Prickaerts, J., Huguet, G., Kadar, E., Hartung, H., Temel, Y. (2015). Electrical stimulation alleviates depressive-like behaviors of rats: investigation of brain targets and potential mechanisms. Transational Psychiatry, 5, e535. Doi: https://doi:10.1038/tp.2015.24Lin, D., & Parsons, L. H. (2002). Anxiogenic-like effect of serotonin(1B) receptor stimulation in the rat elevated plusmaze. Pharmacology, Biochemistry and Behavior, 71, 581-587. Doi: https://doi.org/10.1016/S0091-3057(01)00712-2Lumsden, D. E., Kaminska, M., Ashkan, K., Selway, R., & Lin, J. P. (2017). Deep brain stimulation for childhood dystonia: Is 'where' as important as in 'whom'? European Journal of Paediatric Neurology, 21, 176-184. Doi: https://doi:10.1016/j.ejpn.2016.10.002Maisonnette, S., Morato, S., & Brandao, M. L. (1993). Role of resocialization and of 5-HT1A receptor activation on the anxiogenic effects induced by isolation in the elevated plus-maze test. Physiology and Behavior, 54, 753-758. Doi: https://doi.org/10.1016/0031-9384(93)90087-VMargolis, E. B., & Fields, H. L. (2016). Mu Opioid Receptor Actions in the Lateral Habenula. PLOS ONE, 11, e0159097. Doi: https://doi:10.1371/journal.pone.0159097Moraes, C. L., Bertoglio, L. J., & Carobrez, A. P. (2008). Interplay between glutamate and serotonin within the dorsal periaqueductal gray modulates anxiety-related behavior of rats exposed to the elevated plus-maze. Behavioral Brain Research, 194, 181-186. Doi: https://doi:10.1016/j.bbr.2008.07.005Moreines, J. L., Owrutsky, Z. L., & Grace, A. A. (2017). Involvement of Infralimbic Prefrontal Cortex but not Lateral Habenula in Dopamine Attenuation After Chronic Mild Stress. Neuropsychopharmacology, 42, 904-913. Doi: https://doi:10.1038/npp.2016.249Motta, V., Maisonnette, S., Morato, S., Castrechini, P., & Brandao, M. L. (1992). Effects of blockade of 5-HT2 receptors and activation of 5-HT1A receptors on the exploratory activity of rats in the elevated plus-maze. Psychopharmacology (Berl), 107, 135-139.Mulders, A. E. P., Plantinga, B. R., Schruers, K., Duits, A., Janssen, M. L. F., Ackermans, L., ... Temel, Y. (2016). Deep brain stimulation of the subthalamic nucleus in obsessive-compulsive disorder: Neuroanatomical and pathophysiological considerations. European Neuropsychopharmacology, 26, 1909-1919. Doi: https://doi:10.1016/j.euro-neuro.2016.10.011Murphy, C. A., DiCamillo, A. M., Haun, F., & Murray, M. (1996). Lesion of the habenular efferent pathway produces anxiety and locomotor hyperactivity in rats: a comparison of the effects of neonatal and adult lesions. Behavioral Brain Research, 81, 43-52. Doi: https://doi.org/10.1016/S0166-4328(96)00041-1Murrow, R. W. (2014). Penfield's Prediction: A Mechanism for Deep Brain Stimulation. Frontiers in Neurology, 5, 213. Doi: https://doi:10.3389/fneur.2014.00213Nicolaidis, S. (2017). Neurosurgery of the future: Deep brain stimulations and manipulations. Metabolism, 69S, S16-S20. Doi: https://doi:10.1016/j.metabol.2017.01.013Ootsuka, Y., & Mohammed, M. (2015). Activation of the habenula complex evokes autonomic physiological responses similar to those associated with emotional stress. PhysiologicalReports, 3. Doi:https://doi:10.14814/phy2.12297Ostrem, J. L., San, L. M., Dodenhoff, K. A., Ziman, N., Markun, L. C., Racine, C. A., ... Starr, P. A. (2017). Subthalamic nucleus deep brain stimulation in isolated dystonia: A 3-year follow-up study. Neurology, 88, 25-35. Doi: https://doi:10.1212/WNL.0000000000003451Paxinos, G., & Watson, C. (2006). The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition. Elsevier Science.Plotkin, R. (1982). Results in 60 cases of deep brain stimulation for chronic intractable pain. Applied Neurophysiology, 45, 173-178.Pobbe, R. L., & Zangrossi, H., Jr. (2010). The lateral habenula regulates defensive behaviors through changes in 5-HT-mediated neurotransmission in the dorsal periaqueductal gray matter. Neuroscience Letters, 479, 87-91. Doi: https://doi:10.1016/j.neulet.2010.05.021Ray, C. D., & Burton, C. V. (1980). Deep brain stimulation for severe, chronic pain. Acta Neurochirurgica Supplement (Wien.), 30, 289-293.Rolls, E. T. (2017). The roles of the orbitofrontal cortex via the habenula in non-reward and depression, and in the responses of serotonin and dopamine neurons. Neuroscience & Biobehavioral Reviews, 75, 331-334. Doi: https://doi:10.1016/j.neubiorev.2017.02.013Rosenow, J. M., Mogilnert, A. Y., Ahmed, A., & Rezai, A. R. (2004). Deep brain stimulation for movement disorders. Neurological Research, 26, 9-20. Doi: https://doi:10.1179/016164104773026480Roth, R. M., Flashman, L. A., Saykin, A. J., & Roberts, D. W. (2001). Deep brain stimulation in neuropsychiatric disorders. Current Psychiatry Reports, 3, 366-372.Salgado-Lopez, L., Pomarol-Clotet, E., Roldan, A., Rodriguez, R., Molet, J., ... Sarro, S. (2016). Letter to the Editor: Deep brain stimulation for schizophrenia. Journal of Neurosurgery, 125, 229-230. Doi: https://doi:10.3171/2015.12.JNS152874Schwalb, J. M., & Hamani, C. (2008). The history and future of deep brain stimulation. Neurotherapeutics, 5, 3-13. Doi: https://doi:10.1016/j.nurt.2007.11.003Setem, J., Pinheiro, A. P., Motta, V. A., Morato, S., & Cruz, A. P. (1999). Ethopharmacological analysis of 5-HT ligands on the rat elevated plus-maze. Pharmacology, Biochemistry and Behavior, 62, 515-521. https://doi.org/10.1016/S0091-3057(98)00193-2Shelton, L., Becerra, L., & Borsook, D. (2012). Unmasking the mysteries of the habenula in pain and analgesia. Progress in Neurobiology, 96, 208-219. Doi: https://doi:10.1016/j.pneurobio.2012.01.004Song, M., Jo, Y. S., Lee, Y. K., & Choi, J. S. (2017). Lesions of the lateral habenula facilitate active avoidance learning and threat extinction. Behavioral Brain Research, 318, 12-17. Doi: https://doi:10.1016/j.bbr.2016.10.013Sourani, D., Eitan, R., Gordon, N., & Goelman, G. (2012). The habenula couples the dopaminergic and the serotonergic systems: application to depression in Parkinson's disease. European Journal of Neuroscience, 36, 2822-2829. Doi: https://doi:10.1111/j.1460-9568.2012.08200.xSturm, V., Lenartz, D., Koulousakis, A., Treuer, H., Herholz, K., Klein, J. C., ... Klosterkõtter, J. (2003). The nucleus accumbens: a target for deep brain stimulation in obsessive-compulsive- and anxiety-disorders. Journal of Chemical. Neuroanatomy, 26, 293-299. https://doi.org/10.1016/j.jchemneu.2003.09.003Thornton, E. W, & Bradbury, G. E. (1989). Effort and stress influence the effect of lesion of the habenula complex in one-way active avoidance learning. Physiology & Behavior, 45, 929-935. https://doi.org/10.1016/0031-9384(89)90217-5Toda, H., Saiki, H., Nishida, N., & Iwasaki, K. (2016). Update on Deep Brain Stimulation for Dyskinesia and Dystonia: A Literature Review. Neurologia Medico-Chirurgica (Tokyo), 56, 236-248. Doi: https://doi:10.2176/nmc.ra.2016-0002Udupa, K., & Chen, R. (2015). The mechanisms of action of deep brain stimulation and ideas for the future development. Progress in Neurobiology, 133, 27-49. Doi: https://doi:10.1016/j.pneurobio.2015.08.001Vadovicova, K. (2014). Affective and cognitive prefrontal cortex projections to the lateral habenula in humans. Frontiers in Human Neuroscience, 8, 819. Doi: https://doi:10.3389/fnhum.2014.00819Velasquez, K. M., Molfese, D. L., & Salas, R. (2014). The role of the habenula in drug addiction. Frontiers in Human Neurosciences, 8, 174. Doi: https://doi:10.3389/fnhum.2014.00174Wickens, A. P., & Thornton, E. W. (1996). Circling behaviour induced by apomorphine after lesions of the habenula. Experimental Brain Research, 109, 17-21.Yadid, G., Gispan, I., & Lax, E. (2013). Lateral habenula deep brain stimulation for personalized treatment of drug addiction. Frontiers in Human Neuroscience, 7, 806. Doi: https://doi:10.3389/fnhum.2013.00806Yang, L. M., Hu, B., Xia, Y. H., Zhang, B. L., & Zhao, H. (2008). Lateral habenula lesions improve the behavioral response in depressed rats via increasing the serotonin level in dorsal raphe nucleus. Behavioral Brain Research, 188, 84-90. Doi: https://doi.org/10.1016Zj.bbr.2007.10.022Yeomans, J. S. (1990). Principles of brain stimulation. New York: Oxford University Press.Zhao, H., Zhang, B. L., Yang, S. J., & Rusak, B. (2015). The role of lateral habenula-dorsal raphe nucleus circuits in higher brain functions and psychiatric illness. Behavioral Brain Research, 277, 89-98. Doi: https://doi:10.1016/j.bbr.2014.09.016PreferenciasFernando Cárdenas - 2018info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/https://actacolombianapsicologia.ucatolica.edu.co/article/view/1455Eep brain stimulationEmotional behaviorHabenulaRatsComportamiento emocionalEstimulación eléctrica cerebral profundaHabénulaRatasComportamento emocionalEstimulação elétrica cerebral profundaHabênulaRatosEfectos de la estimulación eléctrica habenular en la modulación de respuestas emocionales en ratas Wistar.Effects of electrical stimulation of the habenula on the modulation of emotional responses in Wistar rats.Artículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml3644https://repository.ucatolica.edu.co/bitstreams/a257bea2-1bfe-4446-aaa9-46c394b7d855/download5b3d6676108c14061e6ad614019b1f31MD5110983/28415oai:repository.ucatolica.edu.co:10983/284152023-03-24 16:57:02.349https://creativecommons.org/licenses/by-nc-sa/4.0/PreferenciasFernando Cárdenas - 2018https://repository.ucatolica.edu.coRepositorio Institucional Universidad Católica de Colombia - RIUCaCbdigital@metabiblioteca.com