Respuesta hemodinámica a sílabas modificadas acústicamente en recién nacidos prematuros y a término adquirida por espectroscopía del infrarrojo cercano.

Esta investigación evalúa, en neonatos, la respuesta hemodinámica ante sílabas modificadas acústicamente (pronunciadas de manera prolongada) en comparación con la respuesta a sílabas no modificadas (pronunciadas a una velocidad normal). El objetivo fue evaluar cuál de estas condiciones de estimulaci...

Full description

Autores:
Carlier-Torres, María Elizabeth Mónica
Harmony, Thalia
Ricardo-Garcell, Josefina
Marroquín, José L.
Colmenero, Miguel
Tipo de recurso:
Article of investigation
Fecha de publicación:
2014
Institución:
Universidad Católica de Colombia
Repositorio:
RIUCaC - Repositorio U. Católica
Idioma:
eng
OAI Identifier:
oai:repository.ucatolica.edu.co:10983/27980
Acceso en línea:
https://hdl.handle.net/10983/27980
https://doi.org/10.14718/ACP.2014.17.2.2
Palabra clave:
Preterm neonates
Language acquisition
Acoustically modified syllables
Auditory temporal processing
Near infrared spectroscopy
Neonatos prematuros
Adquisición del lenguaje
Habla modificada acústicamente
Procesamiento auditivo temporal
Espectroscopia del infrarrojo cercano
Rights
openAccess
License
Acta Colombiana de Psicología - 2014
id UCATOLICA2_bd8bac8b859ff1db9d3481c24eb7615c
oai_identifier_str oai:repository.ucatolica.edu.co:10983/27980
network_acronym_str UCATOLICA2
network_name_str RIUCaC - Repositorio U. Católica
repository_id_str
dc.title.spa.fl_str_mv Respuesta hemodinámica a sílabas modificadas acústicamente en recién nacidos prematuros y a término adquirida por espectroscopía del infrarrojo cercano.
dc.title.translated.eng.fl_str_mv The hemodynamic response to acoustically modified syllables in premature and full term newborn infants acquired by near infrared spectroscopy.
title Respuesta hemodinámica a sílabas modificadas acústicamente en recién nacidos prematuros y a término adquirida por espectroscopía del infrarrojo cercano.
spellingShingle Respuesta hemodinámica a sílabas modificadas acústicamente en recién nacidos prematuros y a término adquirida por espectroscopía del infrarrojo cercano.
Preterm neonates
Language acquisition
Acoustically modified syllables
Auditory temporal processing
Near infrared spectroscopy
Neonatos prematuros
Adquisición del lenguaje
Habla modificada acústicamente
Procesamiento auditivo temporal
Espectroscopia del infrarrojo cercano
title_short Respuesta hemodinámica a sílabas modificadas acústicamente en recién nacidos prematuros y a término adquirida por espectroscopía del infrarrojo cercano.
title_full Respuesta hemodinámica a sílabas modificadas acústicamente en recién nacidos prematuros y a término adquirida por espectroscopía del infrarrojo cercano.
title_fullStr Respuesta hemodinámica a sílabas modificadas acústicamente en recién nacidos prematuros y a término adquirida por espectroscopía del infrarrojo cercano.
title_full_unstemmed Respuesta hemodinámica a sílabas modificadas acústicamente en recién nacidos prematuros y a término adquirida por espectroscopía del infrarrojo cercano.
title_sort Respuesta hemodinámica a sílabas modificadas acústicamente en recién nacidos prematuros y a término adquirida por espectroscopía del infrarrojo cercano.
dc.creator.fl_str_mv Carlier-Torres, María Elizabeth Mónica
Harmony, Thalia
Ricardo-Garcell, Josefina
Marroquín, José L.
Colmenero, Miguel
dc.contributor.author.spa.fl_str_mv Carlier-Torres, María Elizabeth Mónica
Harmony, Thalia
Ricardo-Garcell, Josefina
Marroquín, José L.
Colmenero, Miguel
dc.subject.eng.fl_str_mv Preterm neonates
Language acquisition
Acoustically modified syllables
Auditory temporal processing
Near infrared spectroscopy
topic Preterm neonates
Language acquisition
Acoustically modified syllables
Auditory temporal processing
Near infrared spectroscopy
Neonatos prematuros
Adquisición del lenguaje
Habla modificada acústicamente
Procesamiento auditivo temporal
Espectroscopia del infrarrojo cercano
dc.subject.spa.fl_str_mv Neonatos prematuros
Adquisición del lenguaje
Habla modificada acústicamente
Procesamiento auditivo temporal
Espectroscopia del infrarrojo cercano
description Esta investigación evalúa, en neonatos, la respuesta hemodinámica ante sílabas modificadas acústicamente (pronunciadas de manera prolongada) en comparación con la respuesta a sílabas no modificadas (pronunciadas a una velocidad normal). El objetivo fue evaluar cuál de estas condiciones de estimulación producía una mejor discriminación silábica en dos grupos de neonatos: 13 prematuros (edad gestacional promedio de 30 semanas, DE 3 semanas) y 13 nacidos a término (edad gestacional promedio de 38 semanas, DE 1 semana). La discriminación de sílabas, en cada condición, se evaluó mediante un paradigma oddball (ensayos con sílabas iguales vs. ensayos con sílaba diferente). El análisis estadístico se basó en la comparación de la respuesta hemodinámica [oxyHb] obtenida por espectroscopia de infrarrojo cercano (NIRS) ante ensayos con sílabas iguales Vs. ensayos con una sílaba diferente en cada condición. Se encontró que la condición de sílabas modificadas obtuvo mejores resultados para la discriminación entre ensayos en ambos grupos. La amplitud de la respuesta hemodinámica ante el ensayo con una sílaba diferente fue significativamente mayor que ante el ensayo con sílabas iguales: en recién nacidos a término, t = 2,59, p = 0,024 y en los prematuros, t = 2,38, p = 0,035. Este hallazgo ocurrió en el lóbulo temporal izquierdo. Estos datos sugieren que las sílabas modificadas facilitan el procesamiento de fonemas desde el nacimiento. 
publishDate 2014
dc.date.accessioned.none.fl_str_mv 2014-07-01 00:00:00
2023-01-23T15:35:56Z
dc.date.available.none.fl_str_mv 2014-07-01 00:00:00
2023-01-23T15:35:56Z
dc.date.issued.none.fl_str_mv 2014-07-01
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.eng.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.doi.none.fl_str_mv 10.14718/ACP.2014.17.2.2
dc.identifier.eissn.none.fl_str_mv 1909-9711
dc.identifier.issn.none.fl_str_mv 0123-9155
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10983/27980
dc.identifier.url.none.fl_str_mv https://doi.org/10.14718/ACP.2014.17.2.2
identifier_str_mv 10.14718/ACP.2014.17.2.2
1909-9711
0123-9155
url https://hdl.handle.net/10983/27980
https://doi.org/10.14718/ACP.2014.17.2.2
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.bitstream.none.fl_str_mv https://actacolombianapsicologia.ucatolica.edu.co/article/download/160/200
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2014
dc.relation.citationendpage.none.fl_str_mv 21
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 13
dc.relation.citationvolume.spa.fl_str_mv 17
dc.relation.ispartofjournal.spa.fl_str_mv Acta Colombiana de Psicología
dc.relation.references.eng.fl_str_mv Avecilla-Ramírez, G. N., Ruiz-Correa, S., Marroquín, J. L., Harmony, T., Alba A., & Mendoza-Montoya, O. (2011). Electrophysiological auditory responses and language development in infants with leukomalacia. Brain and Language, 119, 175-183.
Benasich, A., & Tallal, P. (1996). Auditory temporal processing thresholds, habituation, and recognition memory over the 1st year. Infant Behavior and Development, 19, 339-357.
Benasich, A., & Tallal, P. (2002). Infant discrimination of rapid auditory cues predicts later language impairment. Behavioral Brain Research, 136, 31-49.
Boemio, A, Fromm, S., Braun, A., & Poeppel, D. (2005). Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nature Neuroscience, 8, 389-395.
Boersma, P., & Weenink, D. (2013). Praat: doing phonetics by computer (Version 5.3.60). [Computer software]. Retrieved March 23, 2013 from http://www.praat.org.
Bortfeld, H., Wruck, E., & Boas, D. (2007). Assessing Infants’ Cortical Response to Speech Using Near-Infrared Spectroscopy. Neuroimage, 34 (1), 407-415.
Bosh, L. (2011). Precursors to language in preterm infants: Speech perception abilities in the first year of life. In O. Braddick, J. Atkinson, & G. Innocenti (Eds). Gene Expression to Neurobiology and Behavior Human Brain Development and Developmental Disorders (pp. 239-257). Oxford, UK.
Cannestra, A.F., Wartenburger, I., Obrig, H., Villringer, A., & Toga, A.W. (2003). Functional assessment of Broca’s area using near infrared spectroscopy in humans. Neuroreport, 4, 1961-1965.
Choudhury, N., & Benasich, A. (2011). Maturation of auditory evoked potentials from 6 to 48 months: prediction to 3 and 4 year language and cognitive abilities. Clinical Neurophysiology, 122, 320-338.
Cope, M., & Delpy, D.T. (1988). System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red illumination. Medical & Biological Engineering & Computing, 26, 289-294.
Dehaene-Lambertz, G., & Dehaene, S. (1994). Speed and cerebral correlates of syllable discrimination in infants. Nature, 370, 292-295.
Gervain, J., Macagno, F., Cogoi, S., Peña, M., & Mehler, J. (2008). The neonate brain detects speech structure. Proceedings of the National Academy of Sciences of the U.S.A., 105 (37), 14222-14227.
Gervain, J., Mehler, J., Werker, J. F., Nelson, C. A., Csibra, C., Lloyd-Fox S., et al. (2011). Near-infrared spectroscopy: a report from the McDonnell infant methodology consortium. Developmental Cognitive Neuroscience, 1, 22-46.
Harmony, T., Alba, A., Marroquín, J. L., Fernández-Bouzas, A., Avecilla, G., Ricardo-Garcell, J., et al. (2009). Quantitative electroencephalography in the normal and abnormal developing human brain. In C. E. Riback, C. Arámburo de la Hoz, E. G. Jones, J. A. Larriva, & L. W. Swanson (Eds), Development to degeneration and regeneration on the nervous system (pp. 103-117). Oxford University Press.
Heim, S., Friedman, J. T., Keil, A., & Benasich, A. (2011). Reduced sensory oscillatory activity during rapid auditory processing as a correlate of language-learning impairment. Journal of Neurolinguistics, 24, 538-555.
Kuhl, P. K., Andruski, J. E., Chistovich, I. A., Chistovich, L. A., Kozhevnikova, E. V., Ryskina,et al. (1997). Cross-language analysis of phonetics units in language addressed to infants. Science, 277, 684-686.
Kuhl, P. (2004). Early language acquisition: Cracking the speech code. Nature Review Neuroscience 5, 831-843.
Kurtzberg, D., Hilpert, P.L., Kreuzer, J. A., & Vaughan, H. G. (1984). Differential maturation of cortical auditory evoked potentials to speech sound and normal full term and very low-birth weight infants. Developmental Imaging and Child Neurology, 26, 466-475.
Li, H., Tak, S., & Ye, J. C. (2012). Lipschitz Killing curvature based expected Euler characteristics for p-value correction in FNIRS. Journal of Neuroscience Methods, 204, 61-67.
May, L., Byerss-Heinlein, K., Gervain, J., & Werker, J. (2011). Language and the newborn brain: does prenatal language experience shape the neonate neural response to speech? Frontiers in Psychology, 2, 3-9.
Merzenich, M. M., Jenkins, W. M., Jonson, P., Schreiner, C., Miller, S.L., Tallal, P. (1996). Temporal processing deficit of language-learning impaired children ameliorated by training. Science, 271, 77-81.
Minagawa-Kawai Y, Mori K, Hebden JC, & Dupoux E. (2008). Optical imaging of infants’ neurocognitive development: recent advances and perspectives. Developmental Neurobiology, 68, 712-728.
Minagawa-Kawai, Y., Mori, K., Naoi, N., & Kojima, S. (2007). Neural attunement processes in infants during the acquisition of a language-specific phonemic contrast. Journal of Neuroscience 27 (2), 315-321.
Montealegre, R., & Forero, L.D. (2006). Desarrollo de la lectoescritura: Adquisición y Dominio [Development of Reading/writing skills: acquisition and dominion]. Acta Colombiana de Psicología, 9 (1), 25-40.
Narajaran, S. S., Wang, X., Merzenich, M. M, Shreiner, C. E., Johnston, P., Jenkins, W. M., et al. (1998). Speech modification algorithms used for training language learningimpaired children. IEEE Transactions on Rehabilitation Engineering 6, 257-268.
Obrig, H., & Villringer, A. (2003). Beyond the visible—imaging the human brain with light. Journal of Cerebral Blood Flow & Metabolism, 23, 1-18.
Ortiz-Mantilla, S., Choudhury, N., Leevers, H., & Benasich, A. (2008). Understanding language and cognitive deficits in very low birth weight children. Developmental Psychobiology, 50, 107-126.
Peña, M., Maki, A., Kovacic, D., Dehaene-Lambertz, G., Koizumi, H., & Bouquet, F. (2003). Sounds and silence: an optical topography study of language recognition at birth. Proceedings of the National Academy of Sciences of the U.S.A., 100, 11702-11705.
Peña, M., Pittaluga, E., & Mehler, J. (2010). Language acquisition in premature and full-term infants. Proceedings of the National Academy of Sciences of the U.S.A., 107, 3823-3828.
Pisoni, D. (1973). Auditory and phonetic memory codes in the discrimination of consonants and vowels. Perception and Psychophysics, 13, 253-260.
Poeppel, D. (2003). The analysis of speech in different temporal integration windows: cerebral lateralization as “asymmetric sampling in time.” Speech Communication 41, 245-255.
Sakatani, K., Chenb, S., Lichtyc, W., & Zuoa, H. (2009). Cerebral blood oxygenation changes induced by auditory stimulation in newborn infants measured by near infrared spectroscopy. Early Human Development, 55, 229-236.
Stevens, K. N. (2000). Acoustic Phonetics. Cambridge, MA.: MIT Press.
Studdert-Kennedy, M., Mody, M. (1995) Auditory temporal perception deficits in the reading-impaired: A critical review of the evidence. Psychonomic Bulletin & Review 2 (4), 508-514.
Suehiro, A. C. B., & Dos Santos, A. A. A. (2011). Roteiro de avaliação da Consciência fonológica (RACF) [Roadmap assessment of phonological awareness (RACF)]. Acta Colombiana de Psicología, 14 (1), 147-154.
Taga, G., Asakawa, K., Hirasawa, K., & Konishi, Y. (2003). Hemodynamic responses to visual stimulation in occipital and frontal cortex of newborn infants: a near-infrared optical topography study. Early Human Development, 75, S203-S210.
Tallal, P., Miller, S., Bedi, G., Byma, G., Wang, X., Nagarajan, S., et al. (1996). Language comprehension in language learning impaired children improved with acoustically modified speech. Science, 271, 81-84.
Telkemeyer, S., Rossi, X., Koch, S.P., Nierhaus, T., Steinbrink, J., Poeppel, D., et al. (2009). Sensitivity of Newborn Auditory Cortex to the Temporal Structure of Sounds. The Journal of Neuroscience, 29, 14726 -14733.
Trehub, S.E., & Henderson, J. L. (1996). Temporal resolution in infancy and subsequent language development. Journal of Speech and Hearing Research, 39, 1315-1320.
Villringer, A., & Chance, B. (1997). Non-invasive optical spectroscopy and imaging of human brain function. Trends in Neurosciences, 20, 435-442. Wartenburger, I., Steinbrink, J., Telkemeyer, S., Friedrich, M., Friederici, A.D., Obrig, H. (2007). The processing of prosody: evidence of interhemispheric specialization at the age of four. Neuroimage, 34, 416-425.
Ye, J.C., Tak, S., Jang, K.E., Jung, J., Jang, J. (2009). NIRSSPM: Statistical parametric mapping for near-infrared spectroscopy. NeuroImage, 44, 428-447.
Zatorre, R.J., Belin, P. (2001). Spectral and temporal processing in human auditory cortex. Cerebral Cortex, 11, 946-953.
dc.rights.eng.fl_str_mv Acta Colombiana de Psicología - 2014
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.eng.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
rights_invalid_str_mv Acta Colombiana de Psicología - 2014
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Católica de Colombia
dc.source.eng.fl_str_mv https://actacolombianapsicologia.ucatolica.edu.co/article/view/160
institution Universidad Católica de Colombia
bitstream.url.fl_str_mv https://repository.ucatolica.edu.co/bitstreams/5d061df6-7efb-454f-a5e7-9dfb62c6fc53/download
bitstream.checksum.fl_str_mv d5bfab189f5d0855ee191417c49043b0
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Católica de Colombia - RIUCaC
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1828172962243543040
spelling Carlier-Torres, María Elizabeth Mónica7189dda6-a01c-470d-aecf-e85fba4bb44aHarmony, Thalia4e72edbb-8359-476f-8545-9fb6543435ad300Ricardo-Garcell, Josefina104821e0-6322-4598-b129-ac0da9e7f03fMarroquín, José L.351902ed-0600-414f-a7f5-fb5d363fa466300Colmenero, Miguelc3c37c77-96a1-451a-ba20-bce64305bdd33002014-07-01 00:00:002023-01-23T15:35:56Z2014-07-01 00:00:002023-01-23T15:35:56Z2014-07-01Esta investigación evalúa, en neonatos, la respuesta hemodinámica ante sílabas modificadas acústicamente (pronunciadas de manera prolongada) en comparación con la respuesta a sílabas no modificadas (pronunciadas a una velocidad normal). El objetivo fue evaluar cuál de estas condiciones de estimulación producía una mejor discriminación silábica en dos grupos de neonatos: 13 prematuros (edad gestacional promedio de 30 semanas, DE 3 semanas) y 13 nacidos a término (edad gestacional promedio de 38 semanas, DE 1 semana). La discriminación de sílabas, en cada condición, se evaluó mediante un paradigma oddball (ensayos con sílabas iguales vs. ensayos con sílaba diferente). El análisis estadístico se basó en la comparación de la respuesta hemodinámica [oxyHb] obtenida por espectroscopia de infrarrojo cercano (NIRS) ante ensayos con sílabas iguales Vs. ensayos con una sílaba diferente en cada condición. Se encontró que la condición de sílabas modificadas obtuvo mejores resultados para la discriminación entre ensayos en ambos grupos. La amplitud de la respuesta hemodinámica ante el ensayo con una sílaba diferente fue significativamente mayor que ante el ensayo con sílabas iguales: en recién nacidos a término, t = 2,59, p = 0,024 y en los prematuros, t = 2,38, p = 0,035. Este hallazgo ocurrió en el lóbulo temporal izquierdo. Estos datos sugieren que las sílabas modificadas facilitan el procesamiento de fonemas desde el nacimiento. This research assesses, in newborns, the hemodynamic response to acoustically modified syllables (pronounced in a prolonged manner), versus the response to unmodified syllables (pronounced at a normal rate). The aim was to assess which of these stimulation conditions produced better syllable discrimination in two groups of neonates: 13 preterm (mean gestational age 30 weeks, SD 3 weeks), and 13 full term newborns (mean age 38 weeks, SD 1 week). Syllable discrimination, in each condition, was assessed by using an oddball paradigm (equal syllable trials vs. different syllable trials). The statistical analysis was based on the comparison between the hemodynamic response [oxyHbO] obtained by Near Infrared Spectroscopy (NIRS) to different syllable trials vs. equal syllable trials, in each condition. The modified syllable condition was better in producing trial discrimination in both groups. The amplitude of the hemodynamic response to the different syllable trials was greater than the one to the equal syllable trials: for term infants, t = 2.59, p = 0.024, and for preterm t = 2.38, p = 0.035. This finding occurred in the left temporal lobe. These data suggest that the modified syllables facilitate processing of phonemes from birth.application/pdf10.14718/ACP.2014.17.2.21909-97110123-9155https://hdl.handle.net/10983/27980https://doi.org/10.14718/ACP.2014.17.2.2engUniversidad Católica de Colombiahttps://actacolombianapsicologia.ucatolica.edu.co/article/download/160/200Núm. 2 , Año 20142121317Acta Colombiana de PsicologíaAvecilla-Ramírez, G. N., Ruiz-Correa, S., Marroquín, J. L., Harmony, T., Alba A., & Mendoza-Montoya, O. (2011). Electrophysiological auditory responses and language development in infants with leukomalacia. Brain and Language, 119, 175-183.Benasich, A., & Tallal, P. (1996). Auditory temporal processing thresholds, habituation, and recognition memory over the 1st year. Infant Behavior and Development, 19, 339-357.Benasich, A., & Tallal, P. (2002). Infant discrimination of rapid auditory cues predicts later language impairment. Behavioral Brain Research, 136, 31-49.Boemio, A, Fromm, S., Braun, A., & Poeppel, D. (2005). Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nature Neuroscience, 8, 389-395.Boersma, P., & Weenink, D. (2013). Praat: doing phonetics by computer (Version 5.3.60). [Computer software]. Retrieved March 23, 2013 from http://www.praat.org.Bortfeld, H., Wruck, E., & Boas, D. (2007). Assessing Infants’ Cortical Response to Speech Using Near-Infrared Spectroscopy. Neuroimage, 34 (1), 407-415.Bosh, L. (2011). Precursors to language in preterm infants: Speech perception abilities in the first year of life. In O. Braddick, J. Atkinson, & G. Innocenti (Eds). Gene Expression to Neurobiology and Behavior Human Brain Development and Developmental Disorders (pp. 239-257). Oxford, UK.Cannestra, A.F., Wartenburger, I., Obrig, H., Villringer, A., & Toga, A.W. (2003). Functional assessment of Broca’s area using near infrared spectroscopy in humans. Neuroreport, 4, 1961-1965.Choudhury, N., & Benasich, A. (2011). Maturation of auditory evoked potentials from 6 to 48 months: prediction to 3 and 4 year language and cognitive abilities. Clinical Neurophysiology, 122, 320-338.Cope, M., & Delpy, D.T. (1988). System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red illumination. Medical & Biological Engineering & Computing, 26, 289-294.Dehaene-Lambertz, G., & Dehaene, S. (1994). Speed and cerebral correlates of syllable discrimination in infants. Nature, 370, 292-295.Gervain, J., Macagno, F., Cogoi, S., Peña, M., & Mehler, J. (2008). The neonate brain detects speech structure. Proceedings of the National Academy of Sciences of the U.S.A., 105 (37), 14222-14227.Gervain, J., Mehler, J., Werker, J. F., Nelson, C. A., Csibra, C., Lloyd-Fox S., et al. (2011). Near-infrared spectroscopy: a report from the McDonnell infant methodology consortium. Developmental Cognitive Neuroscience, 1, 22-46.Harmony, T., Alba, A., Marroquín, J. L., Fernández-Bouzas, A., Avecilla, G., Ricardo-Garcell, J., et al. (2009). Quantitative electroencephalography in the normal and abnormal developing human brain. In C. E. Riback, C. Arámburo de la Hoz, E. G. Jones, J. A. Larriva, & L. W. Swanson (Eds), Development to degeneration and regeneration on the nervous system (pp. 103-117). Oxford University Press.Heim, S., Friedman, J. T., Keil, A., & Benasich, A. (2011). Reduced sensory oscillatory activity during rapid auditory processing as a correlate of language-learning impairment. Journal of Neurolinguistics, 24, 538-555.Kuhl, P. K., Andruski, J. E., Chistovich, I. A., Chistovich, L. A., Kozhevnikova, E. V., Ryskina,et al. (1997). Cross-language analysis of phonetics units in language addressed to infants. Science, 277, 684-686.Kuhl, P. (2004). Early language acquisition: Cracking the speech code. Nature Review Neuroscience 5, 831-843.Kurtzberg, D., Hilpert, P.L., Kreuzer, J. A., & Vaughan, H. G. (1984). Differential maturation of cortical auditory evoked potentials to speech sound and normal full term and very low-birth weight infants. Developmental Imaging and Child Neurology, 26, 466-475.Li, H., Tak, S., & Ye, J. C. (2012). Lipschitz Killing curvature based expected Euler characteristics for p-value correction in FNIRS. Journal of Neuroscience Methods, 204, 61-67.May, L., Byerss-Heinlein, K., Gervain, J., & Werker, J. (2011). Language and the newborn brain: does prenatal language experience shape the neonate neural response to speech? Frontiers in Psychology, 2, 3-9.Merzenich, M. M., Jenkins, W. M., Jonson, P., Schreiner, C., Miller, S.L., Tallal, P. (1996). Temporal processing deficit of language-learning impaired children ameliorated by training. Science, 271, 77-81.Minagawa-Kawai Y, Mori K, Hebden JC, & Dupoux E. (2008). Optical imaging of infants’ neurocognitive development: recent advances and perspectives. Developmental Neurobiology, 68, 712-728.Minagawa-Kawai, Y., Mori, K., Naoi, N., & Kojima, S. (2007). Neural attunement processes in infants during the acquisition of a language-specific phonemic contrast. Journal of Neuroscience 27 (2), 315-321.Montealegre, R., & Forero, L.D. (2006). Desarrollo de la lectoescritura: Adquisición y Dominio [Development of Reading/writing skills: acquisition and dominion]. Acta Colombiana de Psicología, 9 (1), 25-40.Narajaran, S. S., Wang, X., Merzenich, M. M, Shreiner, C. E., Johnston, P., Jenkins, W. M., et al. (1998). Speech modification algorithms used for training language learningimpaired children. IEEE Transactions on Rehabilitation Engineering 6, 257-268.Obrig, H., & Villringer, A. (2003). Beyond the visible—imaging the human brain with light. Journal of Cerebral Blood Flow & Metabolism, 23, 1-18.Ortiz-Mantilla, S., Choudhury, N., Leevers, H., & Benasich, A. (2008). Understanding language and cognitive deficits in very low birth weight children. Developmental Psychobiology, 50, 107-126.Peña, M., Maki, A., Kovacic, D., Dehaene-Lambertz, G., Koizumi, H., & Bouquet, F. (2003). Sounds and silence: an optical topography study of language recognition at birth. Proceedings of the National Academy of Sciences of the U.S.A., 100, 11702-11705.Peña, M., Pittaluga, E., & Mehler, J. (2010). Language acquisition in premature and full-term infants. Proceedings of the National Academy of Sciences of the U.S.A., 107, 3823-3828.Pisoni, D. (1973). Auditory and phonetic memory codes in the discrimination of consonants and vowels. Perception and Psychophysics, 13, 253-260.Poeppel, D. (2003). The analysis of speech in different temporal integration windows: cerebral lateralization as “asymmetric sampling in time.” Speech Communication 41, 245-255.Sakatani, K., Chenb, S., Lichtyc, W., & Zuoa, H. (2009). Cerebral blood oxygenation changes induced by auditory stimulation in newborn infants measured by near infrared spectroscopy. Early Human Development, 55, 229-236.Stevens, K. N. (2000). Acoustic Phonetics. Cambridge, MA.: MIT Press.Studdert-Kennedy, M., Mody, M. (1995) Auditory temporal perception deficits in the reading-impaired: A critical review of the evidence. Psychonomic Bulletin & Review 2 (4), 508-514.Suehiro, A. C. B., & Dos Santos, A. A. A. (2011). Roteiro de avaliação da Consciência fonológica (RACF) [Roadmap assessment of phonological awareness (RACF)]. Acta Colombiana de Psicología, 14 (1), 147-154.Taga, G., Asakawa, K., Hirasawa, K., & Konishi, Y. (2003). Hemodynamic responses to visual stimulation in occipital and frontal cortex of newborn infants: a near-infrared optical topography study. Early Human Development, 75, S203-S210.Tallal, P., Miller, S., Bedi, G., Byma, G., Wang, X., Nagarajan, S., et al. (1996). Language comprehension in language learning impaired children improved with acoustically modified speech. Science, 271, 81-84.Telkemeyer, S., Rossi, X., Koch, S.P., Nierhaus, T., Steinbrink, J., Poeppel, D., et al. (2009). Sensitivity of Newborn Auditory Cortex to the Temporal Structure of Sounds. The Journal of Neuroscience, 29, 14726 -14733.Trehub, S.E., & Henderson, J. L. (1996). Temporal resolution in infancy and subsequent language development. Journal of Speech and Hearing Research, 39, 1315-1320.Villringer, A., & Chance, B. (1997). Non-invasive optical spectroscopy and imaging of human brain function. Trends in Neurosciences, 20, 435-442. Wartenburger, I., Steinbrink, J., Telkemeyer, S., Friedrich, M., Friederici, A.D., Obrig, H. (2007). The processing of prosody: evidence of interhemispheric specialization at the age of four. Neuroimage, 34, 416-425.Ye, J.C., Tak, S., Jang, K.E., Jung, J., Jang, J. (2009). NIRSSPM: Statistical parametric mapping for near-infrared spectroscopy. NeuroImage, 44, 428-447.Zatorre, R.J., Belin, P. (2001). Spectral and temporal processing in human auditory cortex. Cerebral Cortex, 11, 946-953.Acta Colombiana de Psicología - 2014info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/https://actacolombianapsicologia.ucatolica.edu.co/article/view/160Preterm neonatesLanguage acquisitionAcoustically modified syllablesAuditory temporal processingNear infrared spectroscopyNeonatos prematurosAdquisición del lenguajeHabla modificada acústicamenteProcesamiento auditivo temporalEspectroscopia del infrarrojo cercanoRespuesta hemodinámica a sílabas modificadas acústicamente en recién nacidos prematuros y a término adquirida por espectroscopía del infrarrojo cercano.The hemodynamic response to acoustically modified syllables in premature and full term newborn infants acquired by near infrared spectroscopy.Artículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2914https://repository.ucatolica.edu.co/bitstreams/5d061df6-7efb-454f-a5e7-9dfb62c6fc53/downloadd5bfab189f5d0855ee191417c49043b0MD5110983/27980oai:repository.ucatolica.edu.co:10983/279802023-03-24 14:34:34.862https://creativecommons.org/licenses/by-nc-sa/4.0/Acta Colombiana de Psicología - 2014https://repository.ucatolica.edu.coRepositorio Institucional Universidad Católica de Colombia - RIUCaCbdigital@metabiblioteca.com