Análisis de redes para la transferencia de tecnologías sostenibles entre firmas de construcción internacional.

La transferencia de tecnología sostenible es compleja para las firmas de construcción. Una posible solución es analizar esa clase de transferencia como una red social ya que, si se identifican las diferentes relaciones entre los actores del sector construcción, es posible evaluar la capacidad de ada...

Full description

Autores:
Cubillos-González, Rolando Arturo
Cubillos-González, Rolando Arturo
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad Católica de Colombia
Repositorio:
RIUCaC - Repositorio U. Católica
Idioma:
spa
OAI Identifier:
oai:repository.ucatolica.edu.co:10983/28875
Acceso en línea:
https://hdl.handle.net/10983/28875
https://doi.org/10.14718/RevArq.2020.2562
Palabra clave:
Technology adaptation
Green buildings
Construction industry
Construction field
Technology transfer
Affordable housing
Social housing
Adaptación tecnológica
Edificaciones sostenibles
Industria de la construcción
Sector de la construcción
Transferencia tecnología
Vivienda accesible
Vivienda social
Análisis de redes
Sostenibilidad
Rights
openAccess
License
Rolando Arturo Cubillos-González - 2019
id UCATOLICA2_ba8e93bb41a25764cdb45dd6d0916279
oai_identifier_str oai:repository.ucatolica.edu.co:10983/28875
network_acronym_str UCATOLICA2
network_name_str RIUCaC - Repositorio U. Católica
repository_id_str
dc.title.spa.fl_str_mv Análisis de redes para la transferencia de tecnologías sostenibles entre firmas de construcción internacional.
dc.title.translated.eng.fl_str_mv Network analysis of green technology transfer between international construction firms.
title Análisis de redes para la transferencia de tecnologías sostenibles entre firmas de construcción internacional.
spellingShingle Análisis de redes para la transferencia de tecnologías sostenibles entre firmas de construcción internacional.
Technology adaptation
Green buildings
Construction industry
Construction field
Technology transfer
Affordable housing
Social housing
Adaptación tecnológica
Edificaciones sostenibles
Industria de la construcción
Sector de la construcción
Transferencia tecnología
Vivienda accesible
Vivienda social
Análisis de redes
Sostenibilidad
title_short Análisis de redes para la transferencia de tecnologías sostenibles entre firmas de construcción internacional.
title_full Análisis de redes para la transferencia de tecnologías sostenibles entre firmas de construcción internacional.
title_fullStr Análisis de redes para la transferencia de tecnologías sostenibles entre firmas de construcción internacional.
title_full_unstemmed Análisis de redes para la transferencia de tecnologías sostenibles entre firmas de construcción internacional.
title_sort Análisis de redes para la transferencia de tecnologías sostenibles entre firmas de construcción internacional.
dc.creator.fl_str_mv Cubillos-González, Rolando Arturo
Cubillos-González, Rolando Arturo
dc.contributor.author.spa.fl_str_mv Cubillos-González, Rolando Arturo
dc.contributor.author.none.fl_str_mv Cubillos-González, Rolando Arturo
dc.subject.eng.fl_str_mv Technology adaptation
Green buildings
Construction industry
Construction field
Technology transfer
Affordable housing
Social housing
topic Technology adaptation
Green buildings
Construction industry
Construction field
Technology transfer
Affordable housing
Social housing
Adaptación tecnológica
Edificaciones sostenibles
Industria de la construcción
Sector de la construcción
Transferencia tecnología
Vivienda accesible
Vivienda social
Análisis de redes
Sostenibilidad
dc.subject.spa.fl_str_mv Adaptación tecnológica
Edificaciones sostenibles
Industria de la construcción
Sector de la construcción
Transferencia tecnología
Vivienda accesible
Vivienda social
Análisis de redes
Sostenibilidad
description La transferencia de tecnología sostenible es compleja para las firmas de construcción. Una posible solución es analizar esa clase de transferencia como una red social ya que, si se identifican las diferentes relaciones entre los actores del sector construcción, es posible evaluar la capacidad de adaptación tecnológica de dichos actores. El objetivo fue evaluar la transferencia de tecnología sostenible entre empresas constructoras internacionales que se dedican a construir vivienda social o accesible. Para esto, se identificaron dos países con capacidad de transferencia de tecnología sostenible (Reino Unido y Estados Unidos) y dos países de menor capacidad tecnológica y con potencial de adaptarse a dichas tecnologías (Brasil y Colombia); posteriormente, se seleccionaron cinco firmas constructoras por cada país, con las cuales se hizo un análisis de redes (grado, intensidad, cercanía y densidad), y luego, procesos de simulación. Como resultado se identificó la capacidad de transferencia tecnológica que tienen las empresas latinoamericanas para aceptar y adaptar tecnologías de empresas de países industrializados, y se espera poder desarrollar indicadores de medición del proceso de transferencia tecnológica que permitan comprender mejor la complejidad de este proceso en el área de la vivienda social.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-01-01 00:00:00
2023-01-23T16:06:01Z
dc.date.available.none.fl_str_mv 2020-01-01 00:00:00
2023-01-23T16:06:01Z
dc.date.issued.none.fl_str_mv 2020-01-01
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.doi.none.fl_str_mv 10.14718/RevArq.2020.2562
dc.identifier.eissn.none.fl_str_mv 2357-626X
dc.identifier.issn.none.fl_str_mv 1657-0308
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10983/28875
dc.identifier.url.none.fl_str_mv https://doi.org/10.14718/RevArq.2020.2562
identifier_str_mv 10.14718/RevArq.2020.2562
2357-626X
1657-0308
url https://hdl.handle.net/10983/28875
https://doi.org/10.14718/RevArq.2020.2562
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.bitstream.none.fl_str_mv https://revistadearquitectura.ucatolica.edu.co/article/download/2562/2992
https://revistadearquitectura.ucatolica.edu.co/article/download/2562/3159
https://revistadearquitectura.ucatolica.edu.co/article/download/2562/3297
https://revistadearquitectura.ucatolica.edu.co/article/download/2562/3316
https://revistadearquitectura.ucatolica.edu.co/article/download/2562/3701
dc.relation.citationedition.spa.fl_str_mv Núm. 1 , Año 2020 : Enero - junio
dc.relation.citationendpage.none.fl_str_mv 188
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.none.fl_str_mv 175
dc.relation.citationvolume.spa.fl_str_mv 22
dc.relation.ispartofjournal.spa.fl_str_mv Revista de Arquitectura (Bogotá)
dc.relation.references.spa.fl_str_mv Abbasian-Hosseini, S. A., Liu, M., & Hsiang, S. M. (2015). Social network analysis for construction specialty trade interference and work plan reliability. Proceedings of IGLC 23 - 23rd Annual Conference of the International Group for Lean Construction: Global Knowledge - Global Solutions, 2015-January (919), 143–152. Recuperado de http://iglc.net/Papers/Details/1223
Alarcón, D. M., Alarcón, I. M., & Alarcón, L. F. (2013). Social network analysis: A diagnostic tool for information flow in the AEC industry. 21st Annual Conference of the International Group for Lean Construction 2013, IGLC 2013, 196–205. Recuperado de http://iglc.net/Papers/Details/864
Alsema, E. A., Anink, D., Meijer, A., Straub, A., & Donze, G. (2016). Integration of Energy and Material Performance of Buildings: I=E+M. Energy Procedia, 96(October), 517–528. Doi: https://doi.org/10.1016/j.egypro.2016.09.094
Asadi, E., Silva, M. G. Da, Antunes, C. H., Dias, L., & Glicksman, L. (2014). Multi-objective optimization for building retrofit: A model using genetic algorithm and artificial neural network and an application. Energy and Buildings, 81, 444–456. Doi: https://doi.org/10.1016/j.enbuild.2014.06.009
Borgatti, S.P., Everett, M.G., & Johnson, J.C. (2013). Analyzing Social Networks. Sage Publications.
Carlucci, S., Lobaccaro, G., Li, Y., Catto Lucchino, E., & Ramaci, R. (2016). The effect of spatial and temporal randomness of stochastically generated occupancy schedules on the energy performance of a multiresidential building. Energy and Buildings, 127, 279–300. Doi: https://doi.org/10.1016/j.enbuild.2016.05.023
Castillo, T., Alarcón, L. F., & Pellicer, E. (2018). Influence of Organizational Characteristics on Construction Project Performance Using Corporate Social Networks. Journal of Management in Engineering, 34(4). Doi: https://doi.org/10.1061/(ASCE)ME.1943-5479.0000612
Gelesz, A., & Reith, A. (2015). Climate-based performance evaluation of double skin facades by building energy modelling in Central Europe. Energy Procedia, 78, 555–560. Doi: https://doi.org/10.1016/j.egypro.2015.11.735
Huang, I. B., Keisler, J., & Linkov, I. (2011). Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Science of the Total Environment, 409(19), 3578–3594. Doi: https://doi.org/10.1016/j.scitotenv.2011.06.022
Kim, M. J., Oh, M. W., & Kim, J. T. (2013). A method for evaluating the performance of green buildings with a focus on user experience. Energy and Buildings, 66, 203–210. Doi: https://doi.org/10.1016/j.enbuild.2013.07.049
Kontu, K., Rinne, S., Olkkonen, V., Lahdelma, R., & Salminen, P. (2015). Multicriteria evaluation of heating choices for a new sustainable residential area. Energy and Buildings, 93(x), 169–179. Doi: https://doi.org/10.1016/j.enbuild.2015.02.003
Liu, Y., Guo, X., & Hu, F. (2014). Cost-benefit analysis on green building energy efficiency technology application: A case in China. Energy and Buildings, 82, 37–46. Doi: https://doi.org/10.1016/j.enbuild.2014.07.008
Lopes, R. A., Chambel, A., Neves, J., Aelenei, D., & Martins, J. (2016). A Literature Review of Methodologies Used to Assess the Energy Flexibility of Buildings. Energy Procedia, 91, 1053–1058. Doi: https://doi.org/10.1016/j.egypro.2016.06.274
Ma, H., Zhou, W., Lu, X., Ding, Z., & Cao, Y. (2016). Application of Low Cost Active and Passive Energy Saving Technologies in an Ultra-low Energy Consumption Building. Energy Procedia, 88, 807–813. Doi: https://doi.org/10.1016/j.egypro.2016.06.132
Marques, S. B., Bissoli-Dalvi, M., & Alvarez, C. E. de. (2018). Políticas públicas em prol da sustentabilidade na construção civil em municípios brasileiros. urbe. Revista Brasileira de Gestão Urbana, 10(Suppl. 1), 186-196. Epub July 30, 2018. Doi: https://dx.doi.org/10.1590/2175-3369.010.supl1.ao10
McKinsey Global Institute. (2017). Reinventing Construction: A Route to Higher Productivity. McKinsey & Company, (February), 20. Doi: https://doi.org/10.1080/19320248.2010.527275
Moschetti, R., & Brattebø, H. (2016). Sustainable business models for deep energy retrofitting of buildings: state-of-the-art and methodological approach. Energy Procedia, 96(1876), 435–445. Doi: https://doi.org/10.1016/j.egypro.2016.09.174
Niknam, M., & Karshenas, S. (2015). Sustainable Design of Buildings using Semantic BIM and Semantic Web Services. Procedia Engineering, 118, 909–917. Doi: https://doi.org/10.1016/j.proeng.2015.08.530
Panchal, S., Dincer, I., & Agelin-Chaab, M. (2016). Analysis and evaluation of a new renewable energy based integrated system for residential applications. Energy and Buildings, 128, 900–910. https://doi.org/10.1016/j.enbuild.2016.07.038
Park, H., & Han, S. H. (2012). Impact of inter-firm collaboration networks in international construction projects: A longitudinal study. In Construction Research Congress 2012: Construction Challenges in a Flat World (pp. 1460–1470). Construction Management and Information Laboratory, Dept. of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea. Doi: https://doi.org/10.1061/9780784412329.147
Pisello, A. L., Castaldo, V. L., Taylor, J. E., & Cotana, F. (2016). The impact of natural ventilation on building energy requirement at inter-building scale. Energy and Buildings, 127, 870–883. Doi: https://doi.org/10.1016/j.enbuild.2016.06.023
Salcido, J. C., Abdul, A., & Issa, R. R. A. (2016). From simulation to monitoring: Evaluating the potential of mixed-mode ventilation (MMV) systems for integrating natural ventilation in office buildings through a comprehensive literature review. Energy & Buildings, 127, 1008–1018. Doi: https://doi.org/10.1016/j.enbuild.2016.06.054
Sartori, I., Napolitano, A., & Voss, K. (2012). Net zero energy buildings: A consistent definition framework. Energy and Buildings, 48, 220–232. Doi: https://doi.org/10.1016/j.enbuild.2012.01.032
Zabalza Bribián, I., Valero Capilla, A., & Aranda Usón, A. (2011). Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment, 46(5), 1133–1140. Doi: https://doi.org/10.1016/j.buildenv.2010.12.002
Zucker, G., Judex, F., Blöchle, M., Köstl, M., Widl, E., Hauer, S., … Zeilinger, J. (2016). A new method for optimizing operation of large neighborhoods of buildings using thermal simulation. Energy and Buildings, 125, 153–160. Doi: https://doi.org/10.1016/j.enbuild.2016.04.081
dc.rights.spa.fl_str_mv Rolando Arturo Cubillos-González - 2019
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
rights_invalid_str_mv Rolando Arturo Cubillos-González - 2019
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv text/html
text/html
application/pdf
application/pdf
text/xml
dc.publisher.spa.fl_str_mv Universidad Católica de Colombia
dc.source.spa.fl_str_mv https://revistadearquitectura.ucatolica.edu.co/article/view/2562
institution Universidad Católica de Colombia
bitstream.url.fl_str_mv https://repository.ucatolica.edu.co/bitstreams/bfab3677-e762-4f26-b3f2-df74ebea7da5/download
bitstream.checksum.fl_str_mv 3ea3507ef6b7e80b34b16f5cf083da9e
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Católica de Colombia - RIUCaC
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814256244841512960
spelling Cubillos-González, Rolando Arturo2ccaa9a7-26bd-43cf-a5bc-f0c3fc8a89ee300Cubillos-González, Rolando Arturovirtual::461-12020-01-01 00:00:002023-01-23T16:06:01Z2020-01-01 00:00:002023-01-23T16:06:01Z2020-01-01La transferencia de tecnología sostenible es compleja para las firmas de construcción. Una posible solución es analizar esa clase de transferencia como una red social ya que, si se identifican las diferentes relaciones entre los actores del sector construcción, es posible evaluar la capacidad de adaptación tecnológica de dichos actores. El objetivo fue evaluar la transferencia de tecnología sostenible entre empresas constructoras internacionales que se dedican a construir vivienda social o accesible. Para esto, se identificaron dos países con capacidad de transferencia de tecnología sostenible (Reino Unido y Estados Unidos) y dos países de menor capacidad tecnológica y con potencial de adaptarse a dichas tecnologías (Brasil y Colombia); posteriormente, se seleccionaron cinco firmas constructoras por cada país, con las cuales se hizo un análisis de redes (grado, intensidad, cercanía y densidad), y luego, procesos de simulación. Como resultado se identificó la capacidad de transferencia tecnológica que tienen las empresas latinoamericanas para aceptar y adaptar tecnologías de empresas de países industrializados, y se espera poder desarrollar indicadores de medición del proceso de transferencia tecnológica que permitan comprender mejor la complejidad de este proceso en el área de la vivienda social.The green technology transfer is complex for construction firms. A solution is to analyze it as a social network since, if I identify the different relationships between the actors in the construction sector, it is possible to test the technology adaptation capacity of these actors. The aim was to test the transfer of green technology between international construction companies that dedicated to building social or accessible housing. For this, two countries with the capacity to transfer green technology (United Kingdom and the United States) and two countries with less technology capacity and with the potential to adapt to these technologies (Brazil and Colombia) identified, then 5 construction firms selected for each country with which an analysis of networks (degree, intensity, proximity, and density) and then simulation carried out. As a result, the technology transfer capacity of Latin America companies to accept and adapt technologies from companies in industrialized countries identified, and it hoped to develop indicators of measurement of the technology transfer that allows a better understanding of the complexity of Social Housing.text/htmltext/htmlapplication/pdfapplication/pdftext/xml10.14718/RevArq.2020.25622357-626X1657-0308https://hdl.handle.net/10983/28875https://doi.org/10.14718/RevArq.2020.2562spaUniversidad Católica de Colombiahttps://revistadearquitectura.ucatolica.edu.co/article/download/2562/2992https://revistadearquitectura.ucatolica.edu.co/article/download/2562/3159https://revistadearquitectura.ucatolica.edu.co/article/download/2562/3297https://revistadearquitectura.ucatolica.edu.co/article/download/2562/3316https://revistadearquitectura.ucatolica.edu.co/article/download/2562/3701Núm. 1 , Año 2020 : Enero - junio188117522Revista de Arquitectura (Bogotá)Abbasian-Hosseini, S. A., Liu, M., & Hsiang, S. M. (2015). Social network analysis for construction specialty trade interference and work plan reliability. Proceedings of IGLC 23 - 23rd Annual Conference of the International Group for Lean Construction: Global Knowledge - Global Solutions, 2015-January (919), 143–152. Recuperado de http://iglc.net/Papers/Details/1223Alarcón, D. M., Alarcón, I. M., & Alarcón, L. F. (2013). Social network analysis: A diagnostic tool for information flow in the AEC industry. 21st Annual Conference of the International Group for Lean Construction 2013, IGLC 2013, 196–205. Recuperado de http://iglc.net/Papers/Details/864Alsema, E. A., Anink, D., Meijer, A., Straub, A., & Donze, G. (2016). Integration of Energy and Material Performance of Buildings: I=E+M. Energy Procedia, 96(October), 517–528. Doi: https://doi.org/10.1016/j.egypro.2016.09.094Asadi, E., Silva, M. G. Da, Antunes, C. H., Dias, L., & Glicksman, L. (2014). Multi-objective optimization for building retrofit: A model using genetic algorithm and artificial neural network and an application. Energy and Buildings, 81, 444–456. Doi: https://doi.org/10.1016/j.enbuild.2014.06.009Borgatti, S.P., Everett, M.G., & Johnson, J.C. (2013). Analyzing Social Networks. Sage Publications.Carlucci, S., Lobaccaro, G., Li, Y., Catto Lucchino, E., & Ramaci, R. (2016). The effect of spatial and temporal randomness of stochastically generated occupancy schedules on the energy performance of a multiresidential building. Energy and Buildings, 127, 279–300. Doi: https://doi.org/10.1016/j.enbuild.2016.05.023Castillo, T., Alarcón, L. F., & Pellicer, E. (2018). Influence of Organizational Characteristics on Construction Project Performance Using Corporate Social Networks. Journal of Management in Engineering, 34(4). Doi: https://doi.org/10.1061/(ASCE)ME.1943-5479.0000612Gelesz, A., & Reith, A. (2015). Climate-based performance evaluation of double skin facades by building energy modelling in Central Europe. Energy Procedia, 78, 555–560. Doi: https://doi.org/10.1016/j.egypro.2015.11.735Huang, I. B., Keisler, J., & Linkov, I. (2011). Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Science of the Total Environment, 409(19), 3578–3594. Doi: https://doi.org/10.1016/j.scitotenv.2011.06.022Kim, M. J., Oh, M. W., & Kim, J. T. (2013). A method for evaluating the performance of green buildings with a focus on user experience. Energy and Buildings, 66, 203–210. Doi: https://doi.org/10.1016/j.enbuild.2013.07.049Kontu, K., Rinne, S., Olkkonen, V., Lahdelma, R., & Salminen, P. (2015). Multicriteria evaluation of heating choices for a new sustainable residential area. Energy and Buildings, 93(x), 169–179. Doi: https://doi.org/10.1016/j.enbuild.2015.02.003Liu, Y., Guo, X., & Hu, F. (2014). Cost-benefit analysis on green building energy efficiency technology application: A case in China. Energy and Buildings, 82, 37–46. Doi: https://doi.org/10.1016/j.enbuild.2014.07.008Lopes, R. A., Chambel, A., Neves, J., Aelenei, D., & Martins, J. (2016). A Literature Review of Methodologies Used to Assess the Energy Flexibility of Buildings. Energy Procedia, 91, 1053–1058. Doi: https://doi.org/10.1016/j.egypro.2016.06.274Ma, H., Zhou, W., Lu, X., Ding, Z., & Cao, Y. (2016). Application of Low Cost Active and Passive Energy Saving Technologies in an Ultra-low Energy Consumption Building. Energy Procedia, 88, 807–813. Doi: https://doi.org/10.1016/j.egypro.2016.06.132Marques, S. B., Bissoli-Dalvi, M., & Alvarez, C. E. de. (2018). Políticas públicas em prol da sustentabilidade na construção civil em municípios brasileiros. urbe. Revista Brasileira de Gestão Urbana, 10(Suppl. 1), 186-196. Epub July 30, 2018. Doi: https://dx.doi.org/10.1590/2175-3369.010.supl1.ao10McKinsey Global Institute. (2017). Reinventing Construction: A Route to Higher Productivity. McKinsey & Company, (February), 20. Doi: https://doi.org/10.1080/19320248.2010.527275Moschetti, R., & Brattebø, H. (2016). Sustainable business models for deep energy retrofitting of buildings: state-of-the-art and methodological approach. Energy Procedia, 96(1876), 435–445. Doi: https://doi.org/10.1016/j.egypro.2016.09.174Niknam, M., & Karshenas, S. (2015). Sustainable Design of Buildings using Semantic BIM and Semantic Web Services. Procedia Engineering, 118, 909–917. Doi: https://doi.org/10.1016/j.proeng.2015.08.530Panchal, S., Dincer, I., & Agelin-Chaab, M. (2016). Analysis and evaluation of a new renewable energy based integrated system for residential applications. Energy and Buildings, 128, 900–910. https://doi.org/10.1016/j.enbuild.2016.07.038Park, H., & Han, S. H. (2012). Impact of inter-firm collaboration networks in international construction projects: A longitudinal study. In Construction Research Congress 2012: Construction Challenges in a Flat World (pp. 1460–1470). Construction Management and Information Laboratory, Dept. of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea. Doi: https://doi.org/10.1061/9780784412329.147Pisello, A. L., Castaldo, V. L., Taylor, J. E., & Cotana, F. (2016). The impact of natural ventilation on building energy requirement at inter-building scale. Energy and Buildings, 127, 870–883. Doi: https://doi.org/10.1016/j.enbuild.2016.06.023Salcido, J. C., Abdul, A., & Issa, R. R. A. (2016). From simulation to monitoring: Evaluating the potential of mixed-mode ventilation (MMV) systems for integrating natural ventilation in office buildings through a comprehensive literature review. Energy & Buildings, 127, 1008–1018. Doi: https://doi.org/10.1016/j.enbuild.2016.06.054Sartori, I., Napolitano, A., & Voss, K. (2012). Net zero energy buildings: A consistent definition framework. Energy and Buildings, 48, 220–232. Doi: https://doi.org/10.1016/j.enbuild.2012.01.032Zabalza Bribián, I., Valero Capilla, A., & Aranda Usón, A. (2011). Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment, 46(5), 1133–1140. Doi: https://doi.org/10.1016/j.buildenv.2010.12.002Zucker, G., Judex, F., Blöchle, M., Köstl, M., Widl, E., Hauer, S., … Zeilinger, J. (2016). A new method for optimizing operation of large neighborhoods of buildings using thermal simulation. Energy and Buildings, 125, 153–160. Doi: https://doi.org/10.1016/j.enbuild.2016.04.081Rolando Arturo Cubillos-González - 2019info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/https://revistadearquitectura.ucatolica.edu.co/article/view/2562Technology adaptationGreen buildingsConstruction industryConstruction fieldTechnology transferAffordable housingSocial housingAdaptación tecnológicaEdificaciones sosteniblesIndustria de la construcciónSector de la construcciónTransferencia tecnologíaVivienda accesibleVivienda socialAnálisis de redesSostenibilidadAnálisis de redes para la transferencia de tecnologías sostenibles entre firmas de construcción internacional.Network analysis of green technology transfer between international construction firms.Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionPublicationhttps://ucatolica.academia.edu/RolandoCubillosvirtual::461-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001361734virtual::461-1https://scholar.google.es/citations?user=77ye_gwAAAAJ&hl=esvirtual::461-10000-0002-9019-961Xvirtual::461-1https://www.researchgate.net/profile/Rolando-Cubillos-Gonzalezvirtual::461-160d719e7-d44e-4092-9d06-8fa14d49a739virtual::461-160d719e7-d44e-4092-9d06-8fa14d49a739virtual::461-1OREORE.xmltext/xml3199https://repository.ucatolica.edu.co/bitstreams/bfab3677-e762-4f26-b3f2-df74ebea7da5/download3ea3507ef6b7e80b34b16f5cf083da9eMD5110983/28875oai:repository.ucatolica.edu.co:10983/288752023-06-26 19:33:28.815https://creativecommons.org/licenses/by-nc-sa/4.0/Rolando Arturo Cubillos-González - 2019https://repository.ucatolica.edu.coRepositorio Institucional Universidad Católica de Colombia - RIUCaCbdigital@metabiblioteca.com