Effects of CB1 Cannabinoid Receptor activation in the nucleus Accumbens Shell on feeding behavior

A obesidade e suas patologias relacionadas são riscos de saúde muito conhecidos. Ainda que a obesidade e o sobrepeso possuam causas multifatoriais, a sobre ingestão de alimento é frequente nestas condições. De acordo com modelos animais, os endocanabinóides e seus receptores no cérebro jogam um pape...

Full description

Autores:
Cortés-Salazar, Felipe
Suárez-Ortíz, Josué Omar
Mancilla-Díaz, Juan Manuel
Cendejas-Trejo, Nancy Mónica
López-Alonso, Verónica Elsa
Escartín-Pérez, Rodrigo Erick
Tipo de recurso:
Article of journal
Fecha de publicación:
2014
Institución:
Universidad Católica de Colombia
Repositorio:
RIUCaC - Repositorio U. Católica
Idioma:
eng
OAI Identifier:
oai:repository.ucatolica.edu.co:10983/2281
Acceso en línea:
http://hdl.handle.net/10983/2281
Palabra clave:
CANNABINOIDS
FOOD
NUCLEUS ACCUMBENS SHELL
BEHAVIORAL SATIETY SEQUENCE CANABINOIDES
ALIMENTACIÓN
NÚCLEO ACCUMBENS SHELL
SECUENCIA DE SACIEDAD CONDUCTUAL
CANABINÓIDES
ALIMENTAÇÃO
NÚCLEO ACCUMBENS SHELL
SEQUÊNCIA DE SACIEDADE CONDUCTUAL
OBESIDAD-TRATAMIENTO
OBESIDAD-ASPECTOS PSICOLÓGICOS
CANNABIS
FARMACOLOGÍA
TRASTORNOS DE LA NUTRICIÓN
Rights
openAccess
License
Derechos Reservados - Universidad Católica de Colombia, 2014
id UCATOLICA2_ae0cec84a825f80318c68fec510779ec
oai_identifier_str oai:repository.ucatolica.edu.co:10983/2281
network_acronym_str UCATOLICA2
network_name_str RIUCaC - Repositorio U. Católica
repository_id_str
dc.title.spa.fl_str_mv Effects of CB1 Cannabinoid Receptor activation in the nucleus Accumbens Shell on feeding behavior
dc.title.translated.eng.fl_str_mv Efectos de la activación del receptor cannabinoide CB1 en el núcleo Accumbens Shell sobre la conducta alimentaria
Efeitos da ativação do receptor cannabinóide CB1 no núcleo Accumbens Shell sobre a conduta alimentar
title Effects of CB1 Cannabinoid Receptor activation in the nucleus Accumbens Shell on feeding behavior
spellingShingle Effects of CB1 Cannabinoid Receptor activation in the nucleus Accumbens Shell on feeding behavior
CANNABINOIDS
FOOD
NUCLEUS ACCUMBENS SHELL
BEHAVIORAL SATIETY SEQUENCE CANABINOIDES
ALIMENTACIÓN
NÚCLEO ACCUMBENS SHELL
SECUENCIA DE SACIEDAD CONDUCTUAL
CANABINÓIDES
ALIMENTAÇÃO
NÚCLEO ACCUMBENS SHELL
SEQUÊNCIA DE SACIEDADE CONDUCTUAL
OBESIDAD-TRATAMIENTO
OBESIDAD-ASPECTOS PSICOLÓGICOS
CANNABIS
FARMACOLOGÍA
TRASTORNOS DE LA NUTRICIÓN
title_short Effects of CB1 Cannabinoid Receptor activation in the nucleus Accumbens Shell on feeding behavior
title_full Effects of CB1 Cannabinoid Receptor activation in the nucleus Accumbens Shell on feeding behavior
title_fullStr Effects of CB1 Cannabinoid Receptor activation in the nucleus Accumbens Shell on feeding behavior
title_full_unstemmed Effects of CB1 Cannabinoid Receptor activation in the nucleus Accumbens Shell on feeding behavior
title_sort Effects of CB1 Cannabinoid Receptor activation in the nucleus Accumbens Shell on feeding behavior
dc.creator.fl_str_mv Cortés-Salazar, Felipe
Suárez-Ortíz, Josué Omar
Mancilla-Díaz, Juan Manuel
Cendejas-Trejo, Nancy Mónica
López-Alonso, Verónica Elsa
Escartín-Pérez, Rodrigo Erick
dc.contributor.author.spa.fl_str_mv Cortés-Salazar, Felipe
Suárez-Ortíz, Josué Omar
Mancilla-Díaz, Juan Manuel
Cendejas-Trejo, Nancy Mónica
López-Alonso, Verónica Elsa
Escartín-Pérez, Rodrigo Erick
dc.subject.spa.fl_str_mv CANNABINOIDS
FOOD
NUCLEUS ACCUMBENS SHELL
BEHAVIORAL SATIETY SEQUENCE CANABINOIDES
ALIMENTACIÓN
NÚCLEO ACCUMBENS SHELL
SECUENCIA DE SACIEDAD CONDUCTUAL
CANABINÓIDES
ALIMENTAÇÃO
NÚCLEO ACCUMBENS SHELL
SEQUÊNCIA DE SACIEDADE CONDUCTUAL
topic CANNABINOIDS
FOOD
NUCLEUS ACCUMBENS SHELL
BEHAVIORAL SATIETY SEQUENCE CANABINOIDES
ALIMENTACIÓN
NÚCLEO ACCUMBENS SHELL
SECUENCIA DE SACIEDAD CONDUCTUAL
CANABINÓIDES
ALIMENTAÇÃO
NÚCLEO ACCUMBENS SHELL
SEQUÊNCIA DE SACIEDADE CONDUCTUAL
OBESIDAD-TRATAMIENTO
OBESIDAD-ASPECTOS PSICOLÓGICOS
CANNABIS
FARMACOLOGÍA
TRASTORNOS DE LA NUTRICIÓN
dc.subject.lemb.spa.fl_str_mv OBESIDAD-TRATAMIENTO
OBESIDAD-ASPECTOS PSICOLÓGICOS
CANNABIS
FARMACOLOGÍA
TRASTORNOS DE LA NUTRICIÓN
description A obesidade e suas patologias relacionadas são riscos de saúde muito conhecidos. Ainda que a obesidade e o sobrepeso possuam causas multifatoriais, a sobre ingestão de alimento é frequente nestas condições. De acordo com modelos animais, os endocanabinóides e seus receptores no cérebro jogam um papel chave na gênese e desenvolvimento da obesidade. Foi proposto que os receptores a canabinóides CB1 (RCB1) expressos no núcleo accumbens shell (NAcS) estão envolvidos no aumento das propriedades hedônicas do alimento. Para testar esta hipótese, este estudo teve como objetivo avaliar os efeitos da ativação dos RCB1 nos NAcS sobre a ingestão de alimento padrão durante a fase de luz do ciclo luz-escuridão. Avaliaram-se os efeitos da ativação dos RCB1 com WIN 55-212-2 e CP 55,940 (0.125, 0.25, e 0.5 nmol) no NAcS sobre a conduta alimentar e a sequência de saciedade condutual em ratos. Encontrou-se que ambos agonistas aumentaram a ingestão de alimento e demoraram a expressão da saciedade durante a fase de luz. Isso sugere que os agonistas canabinóides estimulam o consumo de alimento quando a motivação pelo mesmo é baixa e a palatabilidade é normal.
publishDate 2014
dc.date.issued.spa.fl_str_mv 2014-07
dc.date.accessioned.spa.fl_str_mv 2015-05-27T20:59:25Z
dc.date.available.spa.fl_str_mv 2015-05-27T20:59:25Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Cortés-Salazar, F., Suárez-Ortíz, J., Cendejas-Trejo, N., Mancilla-Díaz, J., López-Alonso, V., & Escartín-Pérez, R. (2014). Effects of CB1 cannabinoid receptor activation in the nucleos accumbens shell on feeding behavior.Acta Colombiana de Psicología, 17(2), 61-68. Recuperado de http://editorial.ucatolica.edu.co/ojsucatolica/revistas_ucatolica/index.php/acta-colombiana-psicologia/article/view/165
dc.identifier.issn.spa.fl_str_mv 0123-9155
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/10983/2281
identifier_str_mv Cortés-Salazar, F., Suárez-Ortíz, J., Cendejas-Trejo, N., Mancilla-Díaz, J., López-Alonso, V., & Escartín-Pérez, R. (2014). Effects of CB1 cannabinoid receptor activation in the nucleos accumbens shell on feeding behavior.Acta Colombiana de Psicología, 17(2), 61-68. Recuperado de http://editorial.ucatolica.edu.co/ojsucatolica/revistas_ucatolica/index.php/acta-colombiana-psicologia/article/view/165
0123-9155
url http://hdl.handle.net/10983/2281
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv Acta Colombiana de Psicología, Vol. 17, no. 2 (jul.-dic. 2014); p. 61-68
dc.relation.references.spa.fl_str_mv Bassareo, V. & Di Chiara, G. (1999). Modulation of feedinginduced activation of mesolimbic dopamine transmission by appetitive stimuli and its relation to motivational state. European Journal of Neuroscience, 11(12), 4389-4397.
Berner, L. A., Avena, N. M. & Hoebel, B. G. (2008). Bingeing, self-restriction, and increased body weight in rats with limited access to a sweet-fat diet. Obesity (Silver Spring) 16,1998-2002.
Cota, D., Marsicano, G., Tschöp, M., Grübler, Y., Flachskamm, C., Schubert, M., Auer, D., Yassouridis, A., Thöne-Reineke, C., Ortmann, S., Tomassoni, F., Cervino, C., Nisoli, E., Linthorst, A. C., Pasquali, R., Lutz, B., Stalla, G. K. & Pagotto, U. (2003). The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. Journal of Clinical Investigation, 112, 423-431.
Di Patrizio, N. V. & Simansky, K. J. (2008). Activating parabrachial cannabinoid CB1 receptors selectively stimulates feeding of palatable foods in rats. Journal of Neuroscience, 28(39),9702-9709.
Dimitriou, S. G., Rice, H. B. & Corwin, R. L. (2000). Effects of limited access to a fat option on food intake and body composition in female rats. International Journal of Eating Disorders, 28,436-445.
Drews, E., Schneider, M. & Koch, M. (2005). Effects of the cannabinoid receptor agonist win 55,212-2 on operant behavior and locomotor activity in rats. Pharmacology Biochemistry and Behavior, 80(1),145-150.
Escartín-Pérez, R. E., Cendejas-Trejo, N. M., Cruz-Martínez, A. M., González-Hernández B., Mancilla-Díaz, J. M. & Florán-Garduño, B. (2009). Role of cannabinoid CB1 receptors on macronutrient selection and satiety in rats. Physiology and Behavior, 96, 646-650.
Gardner, E. L. (2005). Endocannabinoid signaling system and brain reward: Emphasis on dopamine. Pharmacology, Biochemistry and Behavior, 81(2), 263-284.
Gong, J. P., Onaivi, E. S., Ishiguro, H., Liu, Q. R., Tagliaferro, P. A., Brusco, A. & Uhla, G. R. (2006). Cannabinoid CB2 receptors: Immunohistochemical localization in rat brain. Brain Research, 1071,10-23.
González, B., Paz, F., Florán, L., Aceves, J., Erlij, D. & Floran, B. (2009). Cannabinoid agonists stimulate [3H]-GABA release in the globus pallidus of the rat when Gi proteinreceptor coupling is restricted. Journal of Pharmacology and Experimental Therapeutics, 328, 822-828.
Guegan, T., Cutando, L., Ayuso, E., Santini, E., Fisone, G., Bosch, F., Martinez, A., Valjent, E., Maldonado, R. & Martina, M. (2013). Operant behavior to obtain palatable food modifies neuronal plasticity in the brain reward circuit. European Neuropsychopharmacology, 23(2), 146-159.
Jamshidy, N. & Taylor, D.A. (2001). Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. British Journal of Pharmacology, 134, 1151-1154.
Kirkham, T. C., Williams, C. M., Fezza, F., & Di Marzo, V. (2002). Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. British Journal of Pharmacology, 136(4), 550-557.
Maccarrone, M., Gasperi, V., Catani, M. V., Diep, T. A., Dainese, E., Hansen, H. S. & Avigliano, L. (2010). The endocannabinoid system and its relevance for nutrition. Annual Reviews of Nutrition, 30, 423-440.
Matias, I., Cristino, L. & Di Marzo, V. (2008). Endocannabinoids: Some like it fat (and sweet too). Journal of Neuroendocrinology, 20(1), 100-109.
Melis, T., Succu, S., Sanna, F., Boi, A., Argiolas, A. & Melis, M. R. (2007). The cannabinoid antagonist SR 141716A (Rimonabant) reduces the increase of extra-cellular dopamine release in the rat nucleus accumbens induced by a novel high palatable food. Neuroscience Letters, 419 (3), 231-235.
Nederkoorn, C., Braet, B., Van Eijs, Y., Tanghe, A. & Jansen, A. (2006). Why obese children cannot resist food: The role of impulsivity. Eating Behaviors, 7, 315-322.
Pandolfo, P., Pamplona, F. A., Prediger, R. D. & Takahashi, R. N. (2007). Increased sensitivity of adolescent spontaneously hypertensive rats, an animal model of attention deficit hyperactivity disorder, to the locomotor stimulation induced by the cannabinoid receptor agonist WIN 55,212-2. European Journal of Pharmacology, 563(1-3), 141-148.
Paxinos, G. & Watson, C. (1998). The brain in stereotaxic coordinates. New York: Academic Press.
Perello, M., Chuang, J., Scott, M. M. & Lutter, M. (2010). Translational Neuroscience approaches to hyperphagia. The Journal of Neuroscience, 30(35), 11549-11554.
Quarta C., Bellocchio L., Manzini G., Mazza R., Cervino C., Braulke L., Fekete C., Latorre R., Nanni C., Bucci M., Clemens L., Heldmaier G., Watanabe M., Leste-Lassere T., Maitre M., Tedesco L., FanelliF., Reuss S., KlausS., Srivastava R., Monory K., Valerio A., Grandis A., de Giorgio R., Pasquali R., Nisoli E., Cota D., Lutz B., Marsicano G. & Pagotto U. (2010). CB1 signaling in forebrain and sympathetic neurons is a key Determinant of endocannabinoid actions on energy balance. Cell Metabolism, 11, 273-285.
Ravinet-Trillou, C., Delgorge, C., Menet, C., Arnone, M. & Soubrié, P. (2004). CB1 cannabinoid receptor knockout in mice leads to leanness, resistance to diet-induced obesity and enhanced leptin sensitivity. International Journal of Obesity, 28, 640-648.
Sanudo-Pena, M.C., Patrick, S. L., Patrick, R.L. & Walker, J.M. (1996). Effects of intranigral cannabinoids on rotational behavior in rats: Interactions with the dopaminergic system. Neuroscience Letters, 206, 21-24.
Soria-Gómez, E., Matías, I., Rueda-Orozco, P. E., Cisneros, M., Petrosino, S., Navarro, L. Di Marzo, V. & Próspero-García, O. (2007). Pharmacological enhancement of the endocannabinoid system in the nucleus accumbens shell stimulates food intake and increases c-Fos expression in the hypothalamus. British Journal of Pharmacology, 151, 1109-1116.
Verty, A.N., McGregor, I.S. & Mallet, P.E. (2005). Paraventricular hypothalamic CB(1) cannabinoid receptors are involved in the feeding stimulatory effects of Delta(9)tetrahydrocannabinol. Neuropharmacology, 49 (8), 1101-1109.
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Católica de Colombia, 2014
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
rights_invalid_str_mv Derechos Reservados - Universidad Católica de Colombia, 2014
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
https://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Católica de Colombia. Facultad de Psicología
institution Universidad Católica de Colombia
bitstream.url.fl_str_mv https://repository.ucatolica.edu.co/bitstreams/f28d6767-48b1-4aae-bb55-6a43f4901fd4/download
https://repository.ucatolica.edu.co/bitstreams/42f86e89-4414-4b23-bc17-cd547efef096/download
https://repository.ucatolica.edu.co/bitstreams/8b8fdbec-518f-4ebf-ad62-27b342a96fff/download
bitstream.checksum.fl_str_mv a3270c9913951b3cbe91a3276d9397be
2405572f170a0ac8fbac2064f6a90c4b
87eece848b92c67b248be19888766d92
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Católica de Colombia - RIUCaC
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814256359883931648
spelling Cortés-Salazar, Feliped5025318-aed0-4002-a9c2-fdf0c6aa4f10-1Suárez-Ortíz, Josué Omar41cb9586-1314-49af-9e08-7dadafed34f5-1Mancilla-Díaz, Juan Manuel5407e59b-8ba6-4e0d-92bd-27ee1ec523a1-1Cendejas-Trejo, Nancy Mónica036b2ea6-c4bf-4476-88f0-4bda3bf44e8b-1López-Alonso, Verónica Elsad150f476-58ea-4f76-aceb-17a5f3fec7e0-1Escartín-Pérez, Rodrigo Erickc3643e47-4b7e-446a-9183-71a0c95ef29b-12015-05-27T20:59:25Z2015-05-27T20:59:25Z2014-07A obesidade e suas patologias relacionadas são riscos de saúde muito conhecidos. Ainda que a obesidade e o sobrepeso possuam causas multifatoriais, a sobre ingestão de alimento é frequente nestas condições. De acordo com modelos animais, os endocanabinóides e seus receptores no cérebro jogam um papel chave na gênese e desenvolvimento da obesidade. Foi proposto que os receptores a canabinóides CB1 (RCB1) expressos no núcleo accumbens shell (NAcS) estão envolvidos no aumento das propriedades hedônicas do alimento. Para testar esta hipótese, este estudo teve como objetivo avaliar os efeitos da ativação dos RCB1 nos NAcS sobre a ingestão de alimento padrão durante a fase de luz do ciclo luz-escuridão. Avaliaram-se os efeitos da ativação dos RCB1 com WIN 55-212-2 e CP 55,940 (0.125, 0.25, e 0.5 nmol) no NAcS sobre a conduta alimentar e a sequência de saciedade condutual em ratos. Encontrou-se que ambos agonistas aumentaram a ingestão de alimento e demoraram a expressão da saciedade durante a fase de luz. Isso sugere que os agonistas canabinóides estimulam o consumo de alimento quando a motivação pelo mesmo é baixa e a palatabilidade é normal.La obesidad y sus patologías relacionadas son riesgos de salud muy conocidos. Aunque la obesidad y el sobrepeso tienen causas multifactoriales, la sobreingesta de alimento es frecuente en estas condiciones. De acuerdo con modelos animales, los endocanabinoides y sus receptores en el cerebro juegan un papel clave en la génesis y desarrollo de la obesidad. Se ha propuesto que los receptores a canabinoides CB1 (RCB1) expresados en el núcleo accumbens shell (NAcS) están involucrados en el incremento de las propiedades hedónicas del alimento. Para probar esta hipótesis, este estudio tuvo como objetivo evaluar los efectos de la activación de los RCB1 en el NAcS sobre la ingesta de alimento estándar durante la fase de luz del ciclo luz-oscuridad. Se evaluaron los efectos de la activación de los RCB1 con WIN 55-212-2 y CP 55,940 (0.125, 0.25, y 0.5 nmol) en el NAcS sobre la conducta alimentaria y la secuencia de saciedad conductual en ratas. Se encontró que ambos agonistas aumentaron la ingesta de alimento y demoraron la expresión de la saciedad durante la fase de luz. Lo anterior sugiere que los agonistas canabinoides estimulan el consumo de alimento cuando la motivación por el mismo es baja y la palatabilidad es normal.Obesity and its related pathologies are well- known health hazards. Although obesity and overweight have multifactorial causes, overeating is common in both of these conditions. According to animal models, endocannabinoids and their receptors in the brain play a key role in the genesis and development of obesity. It has been proposed that the cannabinoid receptors CB1 (RCB1) expressed in the nucleus accumbens shell (NAC) are involved in the increase of the hedonic properties of food. To test this hypothesis, this study aimed to assess the effects of activating the NACs RCB1 on standard food intake during the light phase of the light-dark cycle. The effects of activating the RCB1 with CP 55,940 and WIN 55-212-2 (0.125, 0.25 and 0.5 nmol) in the NACS on feeding behavior and the behavioral satiety sequence of rats were assessed. It was found that both agonists increased food intake and delayed expression of satiety during the light phase. These results suggest that cannabinoid agonists encourage food intake when motivation is low and palatability is normal.application/pdfCortés-Salazar, F., Suárez-Ortíz, J., Cendejas-Trejo, N., Mancilla-Díaz, J., López-Alonso, V., & Escartín-Pérez, R. (2014). Effects of CB1 cannabinoid receptor activation in the nucleos accumbens shell on feeding behavior.Acta Colombiana de Psicología, 17(2), 61-68. Recuperado de http://editorial.ucatolica.edu.co/ojsucatolica/revistas_ucatolica/index.php/acta-colombiana-psicologia/article/view/1650123-9155http://hdl.handle.net/10983/2281engUniversidad Católica de Colombia. Facultad de PsicologíaActa Colombiana de Psicología, Vol. 17, no. 2 (jul.-dic. 2014); p. 61-68Bassareo, V. & Di Chiara, G. (1999). Modulation of feedinginduced activation of mesolimbic dopamine transmission by appetitive stimuli and its relation to motivational state. European Journal of Neuroscience, 11(12), 4389-4397.Berner, L. A., Avena, N. M. & Hoebel, B. G. (2008). Bingeing, self-restriction, and increased body weight in rats with limited access to a sweet-fat diet. Obesity (Silver Spring) 16,1998-2002.Cota, D., Marsicano, G., Tschöp, M., Grübler, Y., Flachskamm, C., Schubert, M., Auer, D., Yassouridis, A., Thöne-Reineke, C., Ortmann, S., Tomassoni, F., Cervino, C., Nisoli, E., Linthorst, A. C., Pasquali, R., Lutz, B., Stalla, G. K. & Pagotto, U. (2003). The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. Journal of Clinical Investigation, 112, 423-431.Di Patrizio, N. V. & Simansky, K. J. (2008). Activating parabrachial cannabinoid CB1 receptors selectively stimulates feeding of palatable foods in rats. Journal of Neuroscience, 28(39),9702-9709.Dimitriou, S. G., Rice, H. B. & Corwin, R. L. (2000). Effects of limited access to a fat option on food intake and body composition in female rats. International Journal of Eating Disorders, 28,436-445.Drews, E., Schneider, M. & Koch, M. (2005). Effects of the cannabinoid receptor agonist win 55,212-2 on operant behavior and locomotor activity in rats. Pharmacology Biochemistry and Behavior, 80(1),145-150.Escartín-Pérez, R. E., Cendejas-Trejo, N. M., Cruz-Martínez, A. M., González-Hernández B., Mancilla-Díaz, J. M. & Florán-Garduño, B. (2009). Role of cannabinoid CB1 receptors on macronutrient selection and satiety in rats. Physiology and Behavior, 96, 646-650.Gardner, E. L. (2005). Endocannabinoid signaling system and brain reward: Emphasis on dopamine. Pharmacology, Biochemistry and Behavior, 81(2), 263-284.Gong, J. P., Onaivi, E. S., Ishiguro, H., Liu, Q. R., Tagliaferro, P. A., Brusco, A. & Uhla, G. R. (2006). Cannabinoid CB2 receptors: Immunohistochemical localization in rat brain. Brain Research, 1071,10-23.González, B., Paz, F., Florán, L., Aceves, J., Erlij, D. & Floran, B. (2009). Cannabinoid agonists stimulate [3H]-GABA release in the globus pallidus of the rat when Gi proteinreceptor coupling is restricted. Journal of Pharmacology and Experimental Therapeutics, 328, 822-828.Guegan, T., Cutando, L., Ayuso, E., Santini, E., Fisone, G., Bosch, F., Martinez, A., Valjent, E., Maldonado, R. & Martina, M. (2013). Operant behavior to obtain palatable food modifies neuronal plasticity in the brain reward circuit. European Neuropsychopharmacology, 23(2), 146-159.Jamshidy, N. & Taylor, D.A. (2001). Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. British Journal of Pharmacology, 134, 1151-1154.Kirkham, T. C., Williams, C. M., Fezza, F., & Di Marzo, V. (2002). Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. British Journal of Pharmacology, 136(4), 550-557.Maccarrone, M., Gasperi, V., Catani, M. V., Diep, T. A., Dainese, E., Hansen, H. S. & Avigliano, L. (2010). The endocannabinoid system and its relevance for nutrition. Annual Reviews of Nutrition, 30, 423-440.Matias, I., Cristino, L. & Di Marzo, V. (2008). Endocannabinoids: Some like it fat (and sweet too). Journal of Neuroendocrinology, 20(1), 100-109.Melis, T., Succu, S., Sanna, F., Boi, A., Argiolas, A. & Melis, M. R. (2007). The cannabinoid antagonist SR 141716A (Rimonabant) reduces the increase of extra-cellular dopamine release in the rat nucleus accumbens induced by a novel high palatable food. Neuroscience Letters, 419 (3), 231-235.Nederkoorn, C., Braet, B., Van Eijs, Y., Tanghe, A. & Jansen, A. (2006). Why obese children cannot resist food: The role of impulsivity. Eating Behaviors, 7, 315-322.Pandolfo, P., Pamplona, F. A., Prediger, R. D. & Takahashi, R. N. (2007). Increased sensitivity of adolescent spontaneously hypertensive rats, an animal model of attention deficit hyperactivity disorder, to the locomotor stimulation induced by the cannabinoid receptor agonist WIN 55,212-2. European Journal of Pharmacology, 563(1-3), 141-148.Paxinos, G. & Watson, C. (1998). The brain in stereotaxic coordinates. New York: Academic Press.Perello, M., Chuang, J., Scott, M. M. & Lutter, M. (2010). Translational Neuroscience approaches to hyperphagia. The Journal of Neuroscience, 30(35), 11549-11554.Quarta C., Bellocchio L., Manzini G., Mazza R., Cervino C., Braulke L., Fekete C., Latorre R., Nanni C., Bucci M., Clemens L., Heldmaier G., Watanabe M., Leste-Lassere T., Maitre M., Tedesco L., FanelliF., Reuss S., KlausS., Srivastava R., Monory K., Valerio A., Grandis A., de Giorgio R., Pasquali R., Nisoli E., Cota D., Lutz B., Marsicano G. & Pagotto U. (2010). CB1 signaling in forebrain and sympathetic neurons is a key Determinant of endocannabinoid actions on energy balance. Cell Metabolism, 11, 273-285.Ravinet-Trillou, C., Delgorge, C., Menet, C., Arnone, M. & Soubrié, P. (2004). CB1 cannabinoid receptor knockout in mice leads to leanness, resistance to diet-induced obesity and enhanced leptin sensitivity. International Journal of Obesity, 28, 640-648.Sanudo-Pena, M.C., Patrick, S. L., Patrick, R.L. & Walker, J.M. (1996). Effects of intranigral cannabinoids on rotational behavior in rats: Interactions with the dopaminergic system. Neuroscience Letters, 206, 21-24.Soria-Gómez, E., Matías, I., Rueda-Orozco, P. E., Cisneros, M., Petrosino, S., Navarro, L. Di Marzo, V. & Próspero-García, O. (2007). Pharmacological enhancement of the endocannabinoid system in the nucleus accumbens shell stimulates food intake and increases c-Fos expression in the hypothalamus. British Journal of Pharmacology, 151, 1109-1116.Verty, A.N., McGregor, I.S. & Mallet, P.E. (2005). Paraventricular hypothalamic CB(1) cannabinoid receptors are involved in the feeding stimulatory effects of Delta(9)tetrahydrocannabinol. Neuropharmacology, 49 (8), 1101-1109.Derechos Reservados - Universidad Católica de Colombia, 2014info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/http://purl.org/coar/access_right/c_abf2CANNABINOIDSFOODNUCLEUS ACCUMBENS SHELLBEHAVIORAL SATIETY SEQUENCE CANABINOIDESALIMENTACIÓNNÚCLEO ACCUMBENS SHELLSECUENCIA DE SACIEDAD CONDUCTUALCANABINÓIDESALIMENTAÇÃONÚCLEO ACCUMBENS SHELLSEQUÊNCIA DE SACIEDADE CONDUCTUALOBESIDAD-TRATAMIENTOOBESIDAD-ASPECTOS PSICOLÓGICOSCANNABISFARMACOLOGÍATRASTORNOS DE LA NUTRICIÓNEffects of CB1 Cannabinoid Receptor activation in the nucleus Accumbens Shell on feeding behaviorEfectos de la activación del receptor cannabinoide CB1 en el núcleo Accumbens Shell sobre la conducta alimentariaEfeitos da ativação do receptor cannabinóide CB1 no núcleo Accumbens Shell sobre a conduta alimentarArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85PublicationORIGINALv17n2a07.pdfv17n2a07.pdfapplication/pdf969335https://repository.ucatolica.edu.co/bitstreams/f28d6767-48b1-4aae-bb55-6a43f4901fd4/downloada3270c9913951b3cbe91a3276d9397beMD51TEXTv17n2a07.pdf.txtv17n2a07.pdf.txtExtracted texttext/plain29472https://repository.ucatolica.edu.co/bitstreams/42f86e89-4414-4b23-bc17-cd547efef096/download2405572f170a0ac8fbac2064f6a90c4bMD52THUMBNAILv17n2a07.pdf.jpgv17n2a07.pdf.jpgRIUCACimage/jpeg4548https://repository.ucatolica.edu.co/bitstreams/8b8fdbec-518f-4ebf-ad62-27b342a96fff/download87eece848b92c67b248be19888766d92MD5310983/2281oai:repository.ucatolica.edu.co:10983/22812023-03-24 17:12:55.36https://creativecommons.org/licenses/by-nc/4.0/Derechos Reservados - Universidad Católica de Colombia, 2014https://repository.ucatolica.edu.coRepositorio Institucional Universidad Católica de Colombia - RIUCaCbdigital@metabiblioteca.com