Prototipo de software para el análisis de criptomonedas y su confiabilidad en los mercados bursátiles mediante modelos predictivos

Trabajo de Grado

Autores:
Blanco-Salazar, Fabio Andrés
Padilla-Perea, Cristian Yesid
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Universidad Católica de Colombia
Repositorio:
RIUCaC - Repositorio U. Católica
Idioma:
spa
OAI Identifier:
oai:repository.ucatolica.edu.co:10983/27085
Acceso en línea:
https://hdl.handle.net/10983/27085
Palabra clave:
MERCADOS BURSÁTILES
BLOCKCHAIN
CRIPTOMONEDAS
MODELO PREDICTIVO
BITCOIN
REDES NEURONALES
Rights
openAccess
License
Copyright-Universidad Católica de Colombia, 2021
id UCATOLICA2_5f804cec6d0fbf7323f91876a325b900
oai_identifier_str oai:repository.ucatolica.edu.co:10983/27085
network_acronym_str UCATOLICA2
network_name_str RIUCaC - Repositorio U. Católica
repository_id_str
dc.title.spa.fl_str_mv Prototipo de software para el análisis de criptomonedas y su confiabilidad en los mercados bursátiles mediante modelos predictivos
title Prototipo de software para el análisis de criptomonedas y su confiabilidad en los mercados bursátiles mediante modelos predictivos
spellingShingle Prototipo de software para el análisis de criptomonedas y su confiabilidad en los mercados bursátiles mediante modelos predictivos
MERCADOS BURSÁTILES
BLOCKCHAIN
CRIPTOMONEDAS
MODELO PREDICTIVO
BITCOIN
REDES NEURONALES
title_short Prototipo de software para el análisis de criptomonedas y su confiabilidad en los mercados bursátiles mediante modelos predictivos
title_full Prototipo de software para el análisis de criptomonedas y su confiabilidad en los mercados bursátiles mediante modelos predictivos
title_fullStr Prototipo de software para el análisis de criptomonedas y su confiabilidad en los mercados bursátiles mediante modelos predictivos
title_full_unstemmed Prototipo de software para el análisis de criptomonedas y su confiabilidad en los mercados bursátiles mediante modelos predictivos
title_sort Prototipo de software para el análisis de criptomonedas y su confiabilidad en los mercados bursátiles mediante modelos predictivos
dc.creator.fl_str_mv Blanco-Salazar, Fabio Andrés
Padilla-Perea, Cristian Yesid
dc.contributor.advisor.none.fl_str_mv Zárate-Ceballos, Henry
dc.contributor.author.none.fl_str_mv Blanco-Salazar, Fabio Andrés
Padilla-Perea, Cristian Yesid
dc.subject.lemb.none.fl_str_mv MERCADOS BURSÁTILES
topic MERCADOS BURSÁTILES
BLOCKCHAIN
CRIPTOMONEDAS
MODELO PREDICTIVO
BITCOIN
REDES NEURONALES
dc.subject.proposal.spa.fl_str_mv BLOCKCHAIN
CRIPTOMONEDAS
MODELO PREDICTIVO
BITCOIN
REDES NEURONALES
description Trabajo de Grado
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-02-15T19:06:44Z
dc.date.available.none.fl_str_mv 2022
2022-02-15T19:06:44Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_fa2ee174bc00049f
http://purl.org/coar/version/c_71e4c1898caa6e32
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.none.fl_str_mv Blanco-Salazar, F. A. & Padilla-Perea, C. Y. (2021). Prototipo de software para el análisis de criptomonedas y su confiabilidad en los mercados bursátiles mediante modelos predictivos. Trabajo de Grado. Universidad Católica de Colombia. Facultad de Ingeniería. Programa de Ingeniería de Sistemas. Bogotá, Colombia
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10983/27085
identifier_str_mv Blanco-Salazar, F. A. & Padilla-Perea, C. Y. (2021). Prototipo de software para el análisis de criptomonedas y su confiabilidad en los mercados bursátiles mediante modelos predictivos. Trabajo de Grado. Universidad Católica de Colombia. Facultad de Ingeniería. Programa de Ingeniería de Sistemas. Bogotá, Colombia
url https://hdl.handle.net/10983/27085
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” Artif. Life, p. 9, 2008.
S. Cavalli and M. Amoretti, “CNN-based multivariate data analysis for bitcoin trend prediction,” Appl. Soft Comput., vol. 101, p. 107065, 2021, doi: 10.1016/j.asoc.2020.107065.
M. McCoy and S. Rahimi, “Prediction of Highly Volatile Cryptocurrency Prices Using Social Media,” Int. J. Comput. Intell. Appl., vol. 19, no. 4, 2020, doi:10.1142/S146902682050025X.
E. TRUJILLO, “Tesla ofrece la posibilidad de comprar sus autos con bitcoins y esto también podría ser para México,” MOTOR PASIÓN, 2021. https://www.motorpasion.com.mx/industria/tesla-permitira-pagos-bitcoin (accessed Apr. 01, 2021).
F. Lara, “Colombia sería el primer país latinoamericano en acceder a bitcoin a través de Davivienda,” W radio, 2021. https://www.wradio.com.co/noticias/economia/colombiaseria-el-primer-pais-latinoamericano-en-acceder-a-bitcoin-a-traves-dedavivienda/20210319/nota/4118765.aspx (accessed Apr. 01, 2021).
E. y Negocios, “El bitcóin superó, por primera, vez los 60.000 dólares la unidad,” El TIEMPO, Mar. 13, 2021.
Ámbito.com, “La advertencia de un agente de Bolsa: ‘A u$s50.000, Bitcoin es la burbuja más grande de todas,’” ámbito.com, 2021. https://www.ambito.com/negocios/bitcoin/la-advertencia-un-agente-bolsa-a-us50000- es-la-burbuja-mas-grande-todas-n5171276 (accessed Mar. 21, 2021).
B. N. Mundo, “Bitcoin y Elon Musk: el CEO de Tesla anuncia que ya no aceptarán la criptomoneda y esta sufre una fuerte caída,” Mundo, BBC News, 2021. https://www.bbc.com/mundo/noticias-57096818 (accessed May 13, 2021).
Y. Bin Kim et al., “Predicting fluctuations in cryptocurrency transactions based on user comments and replies,” PLoS One, vol. 11, no. 8, pp. 1–17, 2016, doi: 10.1371/journal.pone.0161197.
J. Á. Cedillo, T. Á. Sánchez, M. A. Fernandez, R. Sandoval Gomez, and A. C. Téllez, “Estimation of the success of bitcoin as cryptocurrency,” J. Theor. Appl. Inf. Technol., vol. 97, no. 23, pp. 3597–3607, 2019.
C. A. L. D. & Thesaurus, Ed., Cryptocurrency. Cambridge University Press
“Do you know how cryptocurrency works?,” Medium, 2018. https://medium.com/@cryptonews1/do-you-know-how-cryptocurrency-works70128ddc4f7f (accessed Apr. 25, 2021)
K. V. James Royal, Ph.D., “What Is Cryptocurrency? Here’s What You Should Know,” Nerd Wallet, 2021. https://www.nerdwallet.com/article/investing/cryptocurrency-7-things-toknow#1.-what-is-cryptocurrency.
J. PASTOR, “Qué es blockchain: la explicación definitiva para la tecnología más de moda,” xataka, 2017. https://www.xataka.com/especiales/que-es-blockchain-la-explicaciondefinitiva-para-la-tecnologia-mas-de-moda (accessed Apr. 21, 2021).
“¿Qué es una wallet o monedero de criptomonedas?,” bit2me. https://academy.bit2me.com/wallet-monederos-criptomonedas/(accessed Apr. 21, 2021).
BenjaminRC, “¿Qué es minar criptomonedas?,” Rankia, 2019. https://www.rankia.cl/blog/como-operar-invertir-criptomonedas/4330148-que-minarcriptomonedas (accessed Apr. 21, 2021).
“Vas a minar criptomonedas? Así se calcula su rentabilidad,” adslZone, 2021. https://www.adslzone.net/como-se-hace/internet/calcular-rentabilidad-minarcriptomonedas/ (accessed Apr. 21, 2021)
“What is ‘Bitcoin mining’ and how does mining work?,” bitpanda Academy. https://www.bitpanda.com/academy/en/lessons/what-is-bitcoin-mining-and-how-does-mining-work/ (accessed Apr. 25, 2021)
Priyadharshini, “What is Machine Learning and How Does It Work?,” simplilearn, 2021. https://www.simplilearn.com/tutorials/machine-learning-tutorial/what-is-machinelearning (accessed Apr. 25, 2021).
R. APD, “¿Qué es Machine Learning y cómo funciona?,” APD, 2019. https://www.apd.es/que-es-machine-learning/(accessed Apr. 21, 2021).
“¿Qué es el Machine Learning, definición, tipos y donde es utilizado?,” Inteligencia Artificial. https://inteligenciaartificial.io/machine-learning/(accessed Apr. 21, 2021).
“Aprendizaje no Supervisado,” aprendeIA. https://aprendeia.com/aprendizaje-nosupervisado-machine-learning/ (accessed Apr. 21, 2021).
E. O. PERALTA, “Qué Es el Deep Learning y Cómo Nos Beneficia,” Genwords. https://www.genwords.com/blog/deep-learning#¿Que_es_deep_learning (accessed Apr. 21, 2021).
K. Bannister, “Entendiendo el análisis de sentimiento: qué es y para qué se usa,” Brandwatch. https://www.brandwatch.com/es/blog/analisis-de-sentimiento/ (accessed Apr. 21, 2021).
QuestionPro, “Análisis de sentimiento. Qué es y cómo realizarlo,” QuestionPro. https://www.questionpro.com/blog/es/herramienta-de-analisis-desentimientos/#Qué_es_el_analisis_de_sentimiento (accessed Apr. 21, 2021).
“Series de Tiempo.” [Online]. Available: http://www.estadistica.mat.uson.mx/Material/seriesdetiempo.pdf.
“¿Qué es una serie de tiempo?,” 2019. https://support.minitab.com/esmx/minitab/18/help-and-how-to/modeling-statistics/time-series/supportingtopics/basics/what-is-a-time-series/.
S. M. Papa and W. D. Casper, “Trusted Computing,” in Encyclopedia of Cryptography and Security, H. C. A. van Tilborg and S. Jajodia, Eds. Boston, MA: Springer US, 2011, pp. 1328–1331.
“What is Trusted Computing?” https://cs.stanford.edu/people/eroberts/cs201/projects/trusted-computing/what.html (accessed May 14, 2021).
P. Sarang, Artificial Neural Networks with TensorFlow 2: ANN Architecture Machine Learning Projects. Apress, Berkeley, CA, 2021.
V. Davidiseminger,alexbuckgit,mihart,maggiesMSFT,DCtheGeek, “What is Power BI Desktop,” 2021. https://docs.microsoft.com/en-us/power-bi/fundamentals/desktopwhat-is-desktop (accessed Nov. 07, 2021).
K. Alcázar, “Power BI Report Server vs Power BI Service,” 2020. .
S. Lahmiri and S. Bekiros, “Deep Learning Forecasting in Cryptocurrency High-Frequency Trading,” Cognit. Comput., no. February, pp. 485–487, 2021, doi: 10.1007/s12559-021- 09841-w.
I. E. Livieris, N. Kiriakidou, S. Stavroyiannis, and P. Pintelas, “An advanced CNN-LSTM model for cryptocurrency forecasting,” Electron., vol. 10, no. 3, pp. 1–16, 2021, doi: 10.3390/electronics10030287
R. Sujatha, V. Mareeswari, J. M. Chatterjee, A. A. A. Mousa, and A. E. Hassanien, “A Bayesian Regularized Neural Network for Analyzing Bitcoin Trends,” IEEE Access, pp. 37989–38000, 2021, doi: 10.1109/ACCESS.2021.3063243.
T. I. Adegboruwa, S. A. Adeshina, and M. M. Boukar, “Time series analysis and prediction of bitcoin using long short term memory neural network,” 2019 15th Int. Conf. Electron. Comput. Comput. ICECCO 2019, no. Icecco, pp. 1–5, 2019, doi: 10.1109/ICECCO48375.2019.9043229.
R. Sovia, M. Yanto, A. Budiman, L. Mayola, and D. Saputra, “Backpropagation neural network prediction for cryptocurrency bitcoin prices,” in Journal of Physics: Conference Series, 2019, vol. 1339, no. 1, doi: 10.1088/1742-6596/1339/1/012060.
H. Sebastião and P. Godinho, “Forecasting and trading cryptocurrencies with machine learning under changing market conditions,” Financ. Innov., vol. 7, no. 1, 2021, doi: 10.1186/s40854-020-00217-x.
E. Akyildirim, A. Goncu, and A. Sensoy, “Prediction of cryptocurrency returns using machine learning,” Ann. Oper. Res., vol. 297, no. 1–2, pp. 3–36, 2021, doi: 10.1007/s10479-020-03575-y.
X. Zhang, W. Qi, and Z. Zhan, “A Study on Machine-Learning-Based Prediction for Bitcoin’s Price via Using LSTM and SVR,” J. Phys. Conf. Ser., vol. 1732, no. 1, 2021, doi: 10.1088/1742-6596/1732/1/012027.
A. Regal et al., “Proyección del precio de criptomonedas basado en Tweets empleando LSTM,” Ingeniare. Rev. Chil. Ing., vol. 27, no. 4, pp. 696–706, 2019, doi: 10.4067/s0718- 33052019000400696.
F. Valencia, A. Gómez-Espinosa, and B. Valdés-Aguirre, “Price movement prediction of cryptocurrencies using sentiment analysis and machine learning,” Entropy, vol. 21, no. 6, 2019, doi: 10.3390/e21060589.
N. A. Hitam, A. R. Ismail, and F. Saeed, “An Optimized Support Vector Machine (SVM) based on Particle Swarm Optimization (PSO) for Cryptocurrency Forecasting,” Procedia Comput. Sci., vol. 163, pp. 427–433, 2019, doi: 10.1016/j.procs.2019.12.125.
M. K. Salman and A. A. Ibrahim, “Price prediction of different cryptocurrencies using technical trade indicators and machine learning,” IOP Conf. Ser. Mater. Sci. Eng., vol. 928, no. 3, 2020, doi: 10.1088/1757-899X/928/3/032007.
D. R. Pant, P. Neupane, A. Poudel, A. K. Pokhrel, and B. K. Lama, “Recurrent Neural Network Based Bitcoin Price Prediction by Twitter Sentiment Analysis,” Proc. 2018 IEEE 3rd Int. Conf. Comput. Commun. Secur. ICCCS 2018, pp. 128–132, 2018, doi: 10.1109/CCCS.2018.8586824
M. J. Shin, D. Mohaisen, and J. Kim, “Bitcoin Price Forecasting via Ensemble-based LSTM Deep Learning Networks,” Int. Conf. Inf. Netw., vol. 2021-Janua, pp. 603–608, 2021, doi: 10.1109/ICOIN50884.2021.9333853.
A. Detzel, H. Liu, J. Strauss, G. Zhou, and Y. Zhu, “Learning and predictability via technical analysis: Evidence from bitcoin and stocks with hard-to-value fundamentals,” Financ. Manag., pp. 1–31, 2020, doi: 10.1111/fima.12310.
S. Ji, J. Kim, and H. Im, “A comparative study of bitcoin price prediction using deep learning,” Mathematics, vol. 7, no. 10, 2019, doi: 10.3390/math7100898.
T. Gopalakrishnan, D. Ruby, A. Gayathri, S. Mahesh, and R. Choudhary, “An approach to cryptocurrency price prediction using deep learning,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 4, pp. 5095–5102, 2020, doi: 10.30534/ijatcse/2020/132942020.
L. Vaddi, V. Neelisetty, B. C. Vallabhaneni, and K. B. Prakash, “Predicting crypto currency prices using machine learning and deep learning techniques,” Int. J. Adv. Trends Comput.Sci. Eng., vol. 9, no. 4, pp. 6603–6608, 2020, doi: 10.30534/ijatcse/2020/351942020.
M. Nakano, A. Takahashi, and S. Takahashi, “Bitcoin technical trading with artificial neural network,” Phys. A Stat. Mech. its Appl., vol. 510, pp. 587–609, 2018, doi: 10.1016/j.physa.2018.07.017.
P. Mohanty, D. Patel, P. Patel, and S. Roy, “Predicting Fluctuations in Cryptocurrencies’ Price using users’ Comments and Real-time Prices,” 2018 7th Int. Conf. Reliab. Infocom Technol. Optim. Trends Futur. Dir. ICRITO 2018, pp. 477–482, 2018, doi: 10.1109/ICRITO.2018.8748792
A. M. Balfagih and V. Keselj, “Evaluating Sentiment C1assifiers for Bitcoin Tweets in Price Prediction Task,” in Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019, 2019, pp. 5499–5506, doi: 10.1109/BigData47090.2019.9006140.
M. Wimalagunaratne and G. Poravi, “A predictive model for the global cryptocurrency market: A holistic approach to predicting cryptocurrency prices,” Proc. - Int. Conf. Intell. Syst. Model. Simulation, ISMS, vol. 2018-May, pp. 78–83, 2018, doi: 10.1109/ISMS.2018.00024.
A. Jain, S. Tripathi, H. Dhardwivedi, and P. Saxena, “Forecasting Price of Cryptocurrencies Using Tweets Sentiment Analysis,” 2018 11th Int. Conf. Contemp. Comput. IC3 2018, pp. 2–4, 2018, doi: 10.1109/IC3.2018.8530659.
L. Steinert and C. Herff, “Predicting altcoin returns using social media,” PLoS One, vol. 13, no. 12, pp. 1–12, 2018, doi: 10.1371/journal.pone.0208119.
R. Khaldi, A. El Afia, and R. Chiheb, “Forecasting of BTC volatility: comparative study between parametric and nonparametric models,” Prog. Artif. Intell., vol. 8, no. 4, pp. 511–523, 2019, doi: 10.1007/s13748-019-00196-w
T. Xie, “Forecast bitcoin volatility with least squares model averaging,” Econometrics, vol. 7, no. 3, 2019, doi: 10.3390/econometrics7030040
G. Cohen, “Forecasting bitcoin trends using algorithmic learning systems,” Entropy, vol. 22, no. 8, 2020, doi: 10.3390/E22080838.
A. Z. D. Dahham and A. A. Ibrahim, “Effects of Volatility and Trend Indicator for Improving Price Prediction of Cryptocurrency,” IOP Conf. Ser. Mater. Sci. Eng., vol. 928, no. 3, 2020, doi: 10.1088/1757-899X/928/3/032043
V. Derbentsev, V. Babenko, K. Khrustalev, H. Obruch, and S. Khrustalova, “Comparative performance of machine learning ensemble algorithms for forecasting cryptocurrency prices,” Int. J. Eng. Trans. A Basics, vol. 34, no. 1, pp. 140–148, 2021, doi: 10.5829/IJE.2021.34.01A.16.
C. Hotz-Behofsits, F. Huber, and T. O. Zörner, “Predicting crypto-currencies using sparse non-Gaussian state space models,” J. Forecast., vol. 37, no. 6, pp. 627–640, 2018, doi: 10.1002/for.2524.
D. T. Pele and M. Mazurencu-Marinescu-Pele, “Using high-frequency entropy to forecast Bitcoin’s daily value at risk,” Entropy, vol. 21, no. 2, 2019, doi: 10.3390/e21020102
J. Sabater and C. Sierra, “Review on computational trust and reputation models,” Artif. Intell. Rev., vol. 24, no. 1, pp. 33–60, 2005, doi: 10.1007/s10462-004-0041-5.
X. Liu, A. Datta, and K. Rzadca, “Trust beyond reputation: A computational trust model based on stereotypes,” Electron. Commer. Res. Appl., vol. 12, no. 1, pp. 24–39, 2013, doi: 10.1016/j.elerap.2012.07.001.
S. K. Bista, K. P. Dahal, P. I. Cowling, and B. M. Tuladhar, “Metrics for Computing Trust in a Multi-Agent Environment,” Distribution, no. May, pp. 1–4, 2013
A. C. Lucienne Blessing, DRM, a Design Research Methodology. Springer Dordrecht Heidelberg, 2009
M. A. Herrera Batista, “Investigación y diseño: reflexiones y consideraciones con respecto al estado de la investigación actual en diseño,” No solo usabilidad, vol. 9, 2010
M. Becker, B. Schütt, and S. Amini, “Proposal Writing for International Research Projects,” Propos. …, p. 98, 2014, [Online]. Available: http://proposalwriting.globalsouth.unikoeln.de/fileadmin/home/ProGRANT/Proposal_Writing_SCREEN.pdf.
A. Athar, “Sentiment Analysis: VADER or TextBlob?,” 2021. https://www.analyticsvidhya.com/blog/2021/01/sentiment-analysis-vader-or-textblob/ (accessed Oct. 23, 2021).
B. White, “Sentiment Analysis: VADER or TextBlob?,” 2020. https://towardsdatascience.com/sentiment-analysis-vader-or-textblob-ff25514ac540 (accessed Oct. 23, 2021).
Open Source Initiative, “The MIT License.” https://opensource.org/licenses/MIT (accessed Oct. 23, 2021).
I. Twitter, “Developer Agreement,” 2020. .
Twitter Inc., “How to analyze the sentiment of your own Tweets.” https://developer.twitter.com/en/docs/tutorials/how-to-analyze-the-sentiment-of-yourown-tweets (accessed Oct. 23, 2021).
E. Hutto, C.J. and Gilbert, “VADER: A Parsimonious Rule-based Model for,” Eighth Int. AAAI Conf. Weblogs Soc. Media, p. 18, 2014, [Online]. Available: https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/viewPaper/8109.
Codificandobits, “¿Qué son las Redes LSTM?,” 2019. https://www.codificandobits.com/blog/redes-lstm/(accessed Sep. 09, 2021).
P. David, “Redes neuronales convolucionales (CNN) vs. redes neuronales recurrentes (RNN),” 2021. https://kwfoundation.org/blog/2021/07/13/redes-neuronalesconvolucionales-cnn-vs-redes-neuronales-recurrentes-rnn/#htoc-cnn-vs-rnn-fortalezasy-debilidades (accessed Sep. 09, 2021)
A. L. Lima, “Bitcoin Price Prediction Using Recurrent Neural Networks and LSTM,” 2021. https://www.analyticsvidhya.com/blog/2021/05/bitcoin-price-prediction-usingrecurrent-neural-networks-and-lstm/ (accessed Oct. 23, 2021).
dc.rights.spa.fl_str_mv Copyright-Universidad Católica de Colombia, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Copyright-Universidad Católica de Colombia, 2021
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 88 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Católica de Colombia
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá
dc.publisher.program.spa.fl_str_mv Ingeniería de Sistemas y Computación
institution Universidad Católica de Colombia
bitstream.url.fl_str_mv https://repository.ucatolica.edu.co/bitstreams/bf83c1c6-45ba-430a-9af7-cc2cb144de80/download
https://repository.ucatolica.edu.co/bitstreams/4af98b53-e18c-478b-9764-740a95ce20f0/download
https://repository.ucatolica.edu.co/bitstreams/b79ba80b-e9a9-4644-ba4c-36dddeb76aea/download
https://repository.ucatolica.edu.co/bitstreams/61ecb690-f346-45d6-ae66-2fbc221e1e5f/download
https://repository.ucatolica.edu.co/bitstreams/7a7b99da-80fe-4cf4-a1e8-604231f038b6/download
https://repository.ucatolica.edu.co/bitstreams/1789bd9c-4873-4e44-bfc5-0055cd2a0c86/download
bitstream.checksum.fl_str_mv 017b251330955ef45c2df035518fb1fc
424d0f1e3de4c1853635d6a7c110a94e
efd3fe6411e32f5c1368d6bc460a33ee
46e55d8d1256b4d6dcfa2bcd0c3bff9b
fe6d5b64412b871f5fe251c5f5ec5b12
d53adf7ae1fbe0de684d9f444d16e367
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Católica de Colombia - RIUCaC
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814256200111357952
spelling Zárate-Ceballos, Henry3a698e6a-3dc9-45b0-b87e-42bcdd76c76c-1Blanco-Salazar, Fabio Andrés07829e20-db59-4a8b-9d0c-3f0c9fa73229-1Padilla-Perea, Cristian Yesid9c3e8b49-2656-4610-9ef2-708b262c681f-12022-02-15T19:06:44Z20222022-02-15T19:06:44Z2022Trabajo de GradoEl propósito de esta investigación es construir un prototipo capaz de analizar el comportamiento de las criptomonedas y así aumentar la probabilidad de incrementar la confianza acerca de este instrumento en la comunidad validando la confianza por medio de algoritmos de confianza computacional.PregradoIngeniero de SistemasINTRODUCCIÓN 2. JUSTIFICACIÓN 3. PLANTEAMIENTO DEL PROBLEMA 4. OBJETIVOS 5. MARCOS DE REFERENCIA 6. METODOLOGÍA 7. CRONOGRAMA PRESUPUESTO 9. DESARROLLO DEL PROTOTIPO 10.CONCLUSIONES 11.RECOMENDACIONES Y TRABAJO FUTURO 12.BIBLIOGRAFÍA 13.ANEXOS88 páginasapplication/pdfBlanco-Salazar, F. A. & Padilla-Perea, C. Y. (2021). Prototipo de software para el análisis de criptomonedas y su confiabilidad en los mercados bursátiles mediante modelos predictivos. Trabajo de Grado. Universidad Católica de Colombia. Facultad de Ingeniería. Programa de Ingeniería de Sistemas. Bogotá, Colombiahttps://hdl.handle.net/10983/27085spaUniversidad Católica de ColombiaFacultad de IngenieríaBogotáIngeniería de Sistemas y ComputaciónS. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” Artif. Life, p. 9, 2008.S. Cavalli and M. Amoretti, “CNN-based multivariate data analysis for bitcoin trend prediction,” Appl. Soft Comput., vol. 101, p. 107065, 2021, doi: 10.1016/j.asoc.2020.107065.M. McCoy and S. Rahimi, “Prediction of Highly Volatile Cryptocurrency Prices Using Social Media,” Int. J. Comput. Intell. Appl., vol. 19, no. 4, 2020, doi:10.1142/S146902682050025X.E. TRUJILLO, “Tesla ofrece la posibilidad de comprar sus autos con bitcoins y esto también podría ser para México,” MOTOR PASIÓN, 2021. https://www.motorpasion.com.mx/industria/tesla-permitira-pagos-bitcoin (accessed Apr. 01, 2021).F. Lara, “Colombia sería el primer país latinoamericano en acceder a bitcoin a través de Davivienda,” W radio, 2021. https://www.wradio.com.co/noticias/economia/colombiaseria-el-primer-pais-latinoamericano-en-acceder-a-bitcoin-a-traves-dedavivienda/20210319/nota/4118765.aspx (accessed Apr. 01, 2021).E. y Negocios, “El bitcóin superó, por primera, vez los 60.000 dólares la unidad,” El TIEMPO, Mar. 13, 2021.Ámbito.com, “La advertencia de un agente de Bolsa: ‘A u$s50.000, Bitcoin es la burbuja más grande de todas,’” ámbito.com, 2021. https://www.ambito.com/negocios/bitcoin/la-advertencia-un-agente-bolsa-a-us50000- es-la-burbuja-mas-grande-todas-n5171276 (accessed Mar. 21, 2021).B. N. Mundo, “Bitcoin y Elon Musk: el CEO de Tesla anuncia que ya no aceptarán la criptomoneda y esta sufre una fuerte caída,” Mundo, BBC News, 2021. https://www.bbc.com/mundo/noticias-57096818 (accessed May 13, 2021).Y. Bin Kim et al., “Predicting fluctuations in cryptocurrency transactions based on user comments and replies,” PLoS One, vol. 11, no. 8, pp. 1–17, 2016, doi: 10.1371/journal.pone.0161197.J. Á. Cedillo, T. Á. Sánchez, M. A. Fernandez, R. Sandoval Gomez, and A. C. Téllez, “Estimation of the success of bitcoin as cryptocurrency,” J. Theor. Appl. Inf. Technol., vol. 97, no. 23, pp. 3597–3607, 2019.C. A. L. D. & Thesaurus, Ed., Cryptocurrency. Cambridge University Press“Do you know how cryptocurrency works?,” Medium, 2018. https://medium.com/@cryptonews1/do-you-know-how-cryptocurrency-works70128ddc4f7f (accessed Apr. 25, 2021)K. V. James Royal, Ph.D., “What Is Cryptocurrency? Here’s What You Should Know,” Nerd Wallet, 2021. https://www.nerdwallet.com/article/investing/cryptocurrency-7-things-toknow#1.-what-is-cryptocurrency.J. PASTOR, “Qué es blockchain: la explicación definitiva para la tecnología más de moda,” xataka, 2017. https://www.xataka.com/especiales/que-es-blockchain-la-explicaciondefinitiva-para-la-tecnologia-mas-de-moda (accessed Apr. 21, 2021).“¿Qué es una wallet o monedero de criptomonedas?,” bit2me. https://academy.bit2me.com/wallet-monederos-criptomonedas/(accessed Apr. 21, 2021).BenjaminRC, “¿Qué es minar criptomonedas?,” Rankia, 2019. https://www.rankia.cl/blog/como-operar-invertir-criptomonedas/4330148-que-minarcriptomonedas (accessed Apr. 21, 2021).“Vas a minar criptomonedas? Así se calcula su rentabilidad,” adslZone, 2021. https://www.adslzone.net/como-se-hace/internet/calcular-rentabilidad-minarcriptomonedas/ (accessed Apr. 21, 2021)“What is ‘Bitcoin mining’ and how does mining work?,” bitpanda Academy. https://www.bitpanda.com/academy/en/lessons/what-is-bitcoin-mining-and-how-does-mining-work/ (accessed Apr. 25, 2021)Priyadharshini, “What is Machine Learning and How Does It Work?,” simplilearn, 2021. https://www.simplilearn.com/tutorials/machine-learning-tutorial/what-is-machinelearning (accessed Apr. 25, 2021).R. APD, “¿Qué es Machine Learning y cómo funciona?,” APD, 2019. https://www.apd.es/que-es-machine-learning/(accessed Apr. 21, 2021).“¿Qué es el Machine Learning, definición, tipos y donde es utilizado?,” Inteligencia Artificial. https://inteligenciaartificial.io/machine-learning/(accessed Apr. 21, 2021).“Aprendizaje no Supervisado,” aprendeIA. https://aprendeia.com/aprendizaje-nosupervisado-machine-learning/ (accessed Apr. 21, 2021).E. O. PERALTA, “Qué Es el Deep Learning y Cómo Nos Beneficia,” Genwords. https://www.genwords.com/blog/deep-learning#¿Que_es_deep_learning (accessed Apr. 21, 2021).K. Bannister, “Entendiendo el análisis de sentimiento: qué es y para qué se usa,” Brandwatch. https://www.brandwatch.com/es/blog/analisis-de-sentimiento/ (accessed Apr. 21, 2021).QuestionPro, “Análisis de sentimiento. Qué es y cómo realizarlo,” QuestionPro. https://www.questionpro.com/blog/es/herramienta-de-analisis-desentimientos/#Qué_es_el_analisis_de_sentimiento (accessed Apr. 21, 2021).“Series de Tiempo.” [Online]. Available: http://www.estadistica.mat.uson.mx/Material/seriesdetiempo.pdf.“¿Qué es una serie de tiempo?,” 2019. https://support.minitab.com/esmx/minitab/18/help-and-how-to/modeling-statistics/time-series/supportingtopics/basics/what-is-a-time-series/.S. M. Papa and W. D. Casper, “Trusted Computing,” in Encyclopedia of Cryptography and Security, H. C. A. van Tilborg and S. Jajodia, Eds. Boston, MA: Springer US, 2011, pp. 1328–1331.“What is Trusted Computing?” https://cs.stanford.edu/people/eroberts/cs201/projects/trusted-computing/what.html (accessed May 14, 2021).P. Sarang, Artificial Neural Networks with TensorFlow 2: ANN Architecture Machine Learning Projects. Apress, Berkeley, CA, 2021.V. Davidiseminger,alexbuckgit,mihart,maggiesMSFT,DCtheGeek, “What is Power BI Desktop,” 2021. https://docs.microsoft.com/en-us/power-bi/fundamentals/desktopwhat-is-desktop (accessed Nov. 07, 2021).K. Alcázar, “Power BI Report Server vs Power BI Service,” 2020. .S. Lahmiri and S. Bekiros, “Deep Learning Forecasting in Cryptocurrency High-Frequency Trading,” Cognit. Comput., no. February, pp. 485–487, 2021, doi: 10.1007/s12559-021- 09841-w.I. E. Livieris, N. Kiriakidou, S. Stavroyiannis, and P. Pintelas, “An advanced CNN-LSTM model for cryptocurrency forecasting,” Electron., vol. 10, no. 3, pp. 1–16, 2021, doi: 10.3390/electronics10030287R. Sujatha, V. Mareeswari, J. M. Chatterjee, A. A. A. Mousa, and A. E. Hassanien, “A Bayesian Regularized Neural Network for Analyzing Bitcoin Trends,” IEEE Access, pp. 37989–38000, 2021, doi: 10.1109/ACCESS.2021.3063243.T. I. Adegboruwa, S. A. Adeshina, and M. M. Boukar, “Time series analysis and prediction of bitcoin using long short term memory neural network,” 2019 15th Int. Conf. Electron. Comput. Comput. ICECCO 2019, no. Icecco, pp. 1–5, 2019, doi: 10.1109/ICECCO48375.2019.9043229.R. Sovia, M. Yanto, A. Budiman, L. Mayola, and D. Saputra, “Backpropagation neural network prediction for cryptocurrency bitcoin prices,” in Journal of Physics: Conference Series, 2019, vol. 1339, no. 1, doi: 10.1088/1742-6596/1339/1/012060.H. Sebastião and P. Godinho, “Forecasting and trading cryptocurrencies with machine learning under changing market conditions,” Financ. Innov., vol. 7, no. 1, 2021, doi: 10.1186/s40854-020-00217-x.E. Akyildirim, A. Goncu, and A. Sensoy, “Prediction of cryptocurrency returns using machine learning,” Ann. Oper. Res., vol. 297, no. 1–2, pp. 3–36, 2021, doi: 10.1007/s10479-020-03575-y.X. Zhang, W. Qi, and Z. Zhan, “A Study on Machine-Learning-Based Prediction for Bitcoin’s Price via Using LSTM and SVR,” J. Phys. Conf. Ser., vol. 1732, no. 1, 2021, doi: 10.1088/1742-6596/1732/1/012027.A. Regal et al., “Proyección del precio de criptomonedas basado en Tweets empleando LSTM,” Ingeniare. Rev. Chil. Ing., vol. 27, no. 4, pp. 696–706, 2019, doi: 10.4067/s0718- 33052019000400696.F. Valencia, A. Gómez-Espinosa, and B. Valdés-Aguirre, “Price movement prediction of cryptocurrencies using sentiment analysis and machine learning,” Entropy, vol. 21, no. 6, 2019, doi: 10.3390/e21060589.N. A. Hitam, A. R. Ismail, and F. Saeed, “An Optimized Support Vector Machine (SVM) based on Particle Swarm Optimization (PSO) for Cryptocurrency Forecasting,” Procedia Comput. Sci., vol. 163, pp. 427–433, 2019, doi: 10.1016/j.procs.2019.12.125.M. K. Salman and A. A. Ibrahim, “Price prediction of different cryptocurrencies using technical trade indicators and machine learning,” IOP Conf. Ser. Mater. Sci. Eng., vol. 928, no. 3, 2020, doi: 10.1088/1757-899X/928/3/032007.D. R. Pant, P. Neupane, A. Poudel, A. K. Pokhrel, and B. K. Lama, “Recurrent Neural Network Based Bitcoin Price Prediction by Twitter Sentiment Analysis,” Proc. 2018 IEEE 3rd Int. Conf. Comput. Commun. Secur. ICCCS 2018, pp. 128–132, 2018, doi: 10.1109/CCCS.2018.8586824M. J. Shin, D. Mohaisen, and J. Kim, “Bitcoin Price Forecasting via Ensemble-based LSTM Deep Learning Networks,” Int. Conf. Inf. Netw., vol. 2021-Janua, pp. 603–608, 2021, doi: 10.1109/ICOIN50884.2021.9333853.A. Detzel, H. Liu, J. Strauss, G. Zhou, and Y. Zhu, “Learning and predictability via technical analysis: Evidence from bitcoin and stocks with hard-to-value fundamentals,” Financ. Manag., pp. 1–31, 2020, doi: 10.1111/fima.12310.S. Ji, J. Kim, and H. Im, “A comparative study of bitcoin price prediction using deep learning,” Mathematics, vol. 7, no. 10, 2019, doi: 10.3390/math7100898.T. Gopalakrishnan, D. Ruby, A. Gayathri, S. Mahesh, and R. Choudhary, “An approach to cryptocurrency price prediction using deep learning,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 4, pp. 5095–5102, 2020, doi: 10.30534/ijatcse/2020/132942020.L. Vaddi, V. Neelisetty, B. C. Vallabhaneni, and K. B. Prakash, “Predicting crypto currency prices using machine learning and deep learning techniques,” Int. J. Adv. Trends Comput.Sci. Eng., vol. 9, no. 4, pp. 6603–6608, 2020, doi: 10.30534/ijatcse/2020/351942020.M. Nakano, A. Takahashi, and S. Takahashi, “Bitcoin technical trading with artificial neural network,” Phys. A Stat. Mech. its Appl., vol. 510, pp. 587–609, 2018, doi: 10.1016/j.physa.2018.07.017.P. Mohanty, D. Patel, P. Patel, and S. Roy, “Predicting Fluctuations in Cryptocurrencies’ Price using users’ Comments and Real-time Prices,” 2018 7th Int. Conf. Reliab. Infocom Technol. Optim. Trends Futur. Dir. ICRITO 2018, pp. 477–482, 2018, doi: 10.1109/ICRITO.2018.8748792A. M. Balfagih and V. Keselj, “Evaluating Sentiment C1assifiers for Bitcoin Tweets in Price Prediction Task,” in Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019, 2019, pp. 5499–5506, doi: 10.1109/BigData47090.2019.9006140.M. Wimalagunaratne and G. Poravi, “A predictive model for the global cryptocurrency market: A holistic approach to predicting cryptocurrency prices,” Proc. - Int. Conf. Intell. Syst. Model. Simulation, ISMS, vol. 2018-May, pp. 78–83, 2018, doi: 10.1109/ISMS.2018.00024.A. Jain, S. Tripathi, H. Dhardwivedi, and P. Saxena, “Forecasting Price of Cryptocurrencies Using Tweets Sentiment Analysis,” 2018 11th Int. Conf. Contemp. Comput. IC3 2018, pp. 2–4, 2018, doi: 10.1109/IC3.2018.8530659.L. Steinert and C. Herff, “Predicting altcoin returns using social media,” PLoS One, vol. 13, no. 12, pp. 1–12, 2018, doi: 10.1371/journal.pone.0208119.R. Khaldi, A. El Afia, and R. Chiheb, “Forecasting of BTC volatility: comparative study between parametric and nonparametric models,” Prog. Artif. Intell., vol. 8, no. 4, pp. 511–523, 2019, doi: 10.1007/s13748-019-00196-wT. Xie, “Forecast bitcoin volatility with least squares model averaging,” Econometrics, vol. 7, no. 3, 2019, doi: 10.3390/econometrics7030040G. Cohen, “Forecasting bitcoin trends using algorithmic learning systems,” Entropy, vol. 22, no. 8, 2020, doi: 10.3390/E22080838.A. Z. D. Dahham and A. A. Ibrahim, “Effects of Volatility and Trend Indicator for Improving Price Prediction of Cryptocurrency,” IOP Conf. Ser. Mater. Sci. Eng., vol. 928, no. 3, 2020, doi: 10.1088/1757-899X/928/3/032043V. Derbentsev, V. Babenko, K. Khrustalev, H. Obruch, and S. Khrustalova, “Comparative performance of machine learning ensemble algorithms for forecasting cryptocurrency prices,” Int. J. Eng. Trans. A Basics, vol. 34, no. 1, pp. 140–148, 2021, doi: 10.5829/IJE.2021.34.01A.16.C. Hotz-Behofsits, F. Huber, and T. O. Zörner, “Predicting crypto-currencies using sparse non-Gaussian state space models,” J. Forecast., vol. 37, no. 6, pp. 627–640, 2018, doi: 10.1002/for.2524.D. T. Pele and M. Mazurencu-Marinescu-Pele, “Using high-frequency entropy to forecast Bitcoin’s daily value at risk,” Entropy, vol. 21, no. 2, 2019, doi: 10.3390/e21020102J. Sabater and C. Sierra, “Review on computational trust and reputation models,” Artif. Intell. Rev., vol. 24, no. 1, pp. 33–60, 2005, doi: 10.1007/s10462-004-0041-5.X. Liu, A. Datta, and K. Rzadca, “Trust beyond reputation: A computational trust model based on stereotypes,” Electron. Commer. Res. Appl., vol. 12, no. 1, pp. 24–39, 2013, doi: 10.1016/j.elerap.2012.07.001.S. K. Bista, K. P. Dahal, P. I. Cowling, and B. M. Tuladhar, “Metrics for Computing Trust in a Multi-Agent Environment,” Distribution, no. May, pp. 1–4, 2013A. C. Lucienne Blessing, DRM, a Design Research Methodology. Springer Dordrecht Heidelberg, 2009M. A. Herrera Batista, “Investigación y diseño: reflexiones y consideraciones con respecto al estado de la investigación actual en diseño,” No solo usabilidad, vol. 9, 2010M. Becker, B. Schütt, and S. Amini, “Proposal Writing for International Research Projects,” Propos. …, p. 98, 2014, [Online]. Available: http://proposalwriting.globalsouth.unikoeln.de/fileadmin/home/ProGRANT/Proposal_Writing_SCREEN.pdf.A. Athar, “Sentiment Analysis: VADER or TextBlob?,” 2021. https://www.analyticsvidhya.com/blog/2021/01/sentiment-analysis-vader-or-textblob/ (accessed Oct. 23, 2021).B. White, “Sentiment Analysis: VADER or TextBlob?,” 2020. https://towardsdatascience.com/sentiment-analysis-vader-or-textblob-ff25514ac540 (accessed Oct. 23, 2021).Open Source Initiative, “The MIT License.” https://opensource.org/licenses/MIT (accessed Oct. 23, 2021).I. Twitter, “Developer Agreement,” 2020. .Twitter Inc., “How to analyze the sentiment of your own Tweets.” https://developer.twitter.com/en/docs/tutorials/how-to-analyze-the-sentiment-of-yourown-tweets (accessed Oct. 23, 2021).E. Hutto, C.J. and Gilbert, “VADER: A Parsimonious Rule-based Model for,” Eighth Int. AAAI Conf. Weblogs Soc. Media, p. 18, 2014, [Online]. Available: https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/viewPaper/8109.Codificandobits, “¿Qué son las Redes LSTM?,” 2019. https://www.codificandobits.com/blog/redes-lstm/(accessed Sep. 09, 2021).P. David, “Redes neuronales convolucionales (CNN) vs. redes neuronales recurrentes (RNN),” 2021. https://kwfoundation.org/blog/2021/07/13/redes-neuronalesconvolucionales-cnn-vs-redes-neuronales-recurrentes-rnn/#htoc-cnn-vs-rnn-fortalezasy-debilidades (accessed Sep. 09, 2021)A. L. Lima, “Bitcoin Price Prediction Using Recurrent Neural Networks and LSTM,” 2021. https://www.analyticsvidhya.com/blog/2021/05/bitcoin-price-prediction-usingrecurrent-neural-networks-and-lstm/ (accessed Oct. 23, 2021).Copyright-Universidad Católica de Colombia, 2021info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2MERCADOS BURSÁTILESBLOCKCHAINCRIPTOMONEDASMODELO PREDICTIVOBITCOINREDES NEURONALESPrototipo de software para el análisis de criptomonedas y su confiabilidad en los mercados bursátiles mediante modelos predictivosTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/version/c_fa2ee174bc00049fhttp://purl.org/coar/version/c_71e4c1898caa6e32PublicationORIGINALTrabajo de Grado.pdfTrabajo de Grado.pdfapplication/pdf3215612https://repository.ucatolica.edu.co/bitstreams/bf83c1c6-45ba-430a-9af7-cc2cb144de80/download017b251330955ef45c2df035518fb1fcMD51F-010-GB-008_RESUMEN_ANALITICO_EN_EDUCACION_RAE_VS_01.pdfF-010-GB-008_RESUMEN_ANALITICO_EN_EDUCACION_RAE_VS_01.pdfapplication/pdf334738https://repository.ucatolica.edu.co/bitstreams/4af98b53-e18c-478b-9764-740a95ce20f0/download424d0f1e3de4c1853635d6a7c110a94eMD52TEXTTrabajo de Grado.pdf.txtTrabajo de Grado.pdf.txtExtracted texttext/plain133041https://repository.ucatolica.edu.co/bitstreams/b79ba80b-e9a9-4644-ba4c-36dddeb76aea/downloadefd3fe6411e32f5c1368d6bc460a33eeMD53F-010-GB-008_RESUMEN_ANALITICO_EN_EDUCACION_RAE_VS_01.pdf.txtF-010-GB-008_RESUMEN_ANALITICO_EN_EDUCACION_RAE_VS_01.pdf.txtExtracted texttext/plain30691https://repository.ucatolica.edu.co/bitstreams/61ecb690-f346-45d6-ae66-2fbc221e1e5f/download46e55d8d1256b4d6dcfa2bcd0c3bff9bMD55THUMBNAILTrabajo de Grado.pdf.jpgTrabajo de Grado.pdf.jpgRIUCACimage/jpeg11269https://repository.ucatolica.edu.co/bitstreams/7a7b99da-80fe-4cf4-a1e8-604231f038b6/downloadfe6d5b64412b871f5fe251c5f5ec5b12MD54F-010-GB-008_RESUMEN_ANALITICO_EN_EDUCACION_RAE_VS_01.pdf.jpgF-010-GB-008_RESUMEN_ANALITICO_EN_EDUCACION_RAE_VS_01.pdf.jpgRIUCACimage/jpeg18560https://repository.ucatolica.edu.co/bitstreams/1789bd9c-4873-4e44-bfc5-0055cd2a0c86/downloadd53adf7ae1fbe0de684d9f444d16e367MD5610983/27085oai:repository.ucatolica.edu.co:10983/270852023-03-24 14:42:40.895https://creativecommons.org/licenses/by-nc-nd/4.0/Copyright-Universidad Católica de Colombia, 2021https://repository.ucatolica.edu.coRepositorio Institucional Universidad Católica de Colombia - RIUCaCbdigital@metabiblioteca.com