Optimización estructural de edificaciones de 1, 2 y 3 pisos para la adecuación de techos verdes en la ciudad de Bogotá
Trabajo de Investigación
- Autores:
-
Ávila-Hernández, Edwar Jair
Lis-Cepeda, Luis Felipe
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Universidad Católica de Colombia
- Repositorio:
- RIUCaC - Repositorio U. Católica
- Idioma:
- spa
- OAI Identifier:
- oai:repository.ucatolica.edu.co:10983/27136
- Acceso en línea:
- https://hdl.handle.net/10983/27136
- Palabra clave:
- OPTIMIZACIÓN
PLANEACIÓN
IMPLEMENTACIÓN
NORMAS
- Rights
- openAccess
- License
- Copyright-Universidad Católica de Colombia, 2021
id |
UCATOLICA2_50c2e2f4a1a50f334d4d5d0267fceec1 |
---|---|
oai_identifier_str |
oai:repository.ucatolica.edu.co:10983/27136 |
network_acronym_str |
UCATOLICA2 |
network_name_str |
RIUCaC - Repositorio U. Católica |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Optimización estructural de edificaciones de 1, 2 y 3 pisos para la adecuación de techos verdes en la ciudad de Bogotá |
title |
Optimización estructural de edificaciones de 1, 2 y 3 pisos para la adecuación de techos verdes en la ciudad de Bogotá |
spellingShingle |
Optimización estructural de edificaciones de 1, 2 y 3 pisos para la adecuación de techos verdes en la ciudad de Bogotá OPTIMIZACIÓN PLANEACIÓN IMPLEMENTACIÓN NORMAS |
title_short |
Optimización estructural de edificaciones de 1, 2 y 3 pisos para la adecuación de techos verdes en la ciudad de Bogotá |
title_full |
Optimización estructural de edificaciones de 1, 2 y 3 pisos para la adecuación de techos verdes en la ciudad de Bogotá |
title_fullStr |
Optimización estructural de edificaciones de 1, 2 y 3 pisos para la adecuación de techos verdes en la ciudad de Bogotá |
title_full_unstemmed |
Optimización estructural de edificaciones de 1, 2 y 3 pisos para la adecuación de techos verdes en la ciudad de Bogotá |
title_sort |
Optimización estructural de edificaciones de 1, 2 y 3 pisos para la adecuación de techos verdes en la ciudad de Bogotá |
dc.creator.fl_str_mv |
Ávila-Hernández, Edwar Jair Lis-Cepeda, Luis Felipe |
dc.contributor.advisor.none.fl_str_mv |
Contreras-Bejarano, Oscar |
dc.contributor.author.none.fl_str_mv |
Ávila-Hernández, Edwar Jair Lis-Cepeda, Luis Felipe |
dc.subject.lemb.none.fl_str_mv |
OPTIMIZACIÓN |
topic |
OPTIMIZACIÓN PLANEACIÓN IMPLEMENTACIÓN NORMAS |
dc.subject.proposal.spa.fl_str_mv |
PLANEACIÓN IMPLEMENTACIÓN NORMAS |
description |
Trabajo de Investigación |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-02-23T20:01:21Z |
dc.date.available.none.fl_str_mv |
2022 2022-02-23T20:01:21Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_fa2ee174bc00049f http://purl.org/coar/version/c_71e4c1898caa6e32 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.citation.none.fl_str_mv |
Ávila-Hernández, E. J. & Lis-Cepeda, L. F. (2021). Optimización estructural de edificaciones de 1, 2 y 3 pisos para la adecuación de techos verdes en la ciudad de Bogotá. Trabajo de Grado. Universidad Católica de Colombia. Facultad de Ingeniería. Programa de Ingeniería Civil. Bogotá, Colombia |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10983/27136 |
identifier_str_mv |
Ávila-Hernández, E. J. & Lis-Cepeda, L. F. (2021). Optimización estructural de edificaciones de 1, 2 y 3 pisos para la adecuación de techos verdes en la ciudad de Bogotá. Trabajo de Grado. Universidad Católica de Colombia. Facultad de Ingeniería. Programa de Ingeniería Civil. Bogotá, Colombia |
url |
https://hdl.handle.net/10983/27136 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
B. Raji, M. J. Tenpierik, and A. Van Den Dobbelsteen, “The impact of greening systems on building energy performance: A literature review,” Renew. Sustain. Energy Rev., vol. 45, pp. 610–623, 2015, doi: 10.1016/j.rser.2015.02.011. L. Esteva, O. Díaz-López, J. García-Pérez, G. Sierra, and E. Ismael, “Life-cycle optimization in the establishment of performance-acceptance parameters for seismic design,” Struct. Saf., vol. 24, no. 2–4, pp. 187–204, 2002, doi: 10.1016/S0167-4730(02)00024-3. X. K. Zou and C. M. Chan, “Optimal seismic performance-based design of reinforced concrete buildings using nonlinear pushover analysis,” Eng. Struct., vol. 27, no. 8, pp. 1289–1302, 2005, doi: 10.1016/j.engstruct.2005.04.001. N. D. Lagaros, M. Fragiadakis, M. Papadrakakis, and Y. Tsompanakis, “Structural optimization: A tool for evaluating seismic design procedures,” Eng. Struct., vol. 28, no. 12, pp. 1623–1633, 2006, doi: 10.1016/j.engstruct.2006.02.014. T. L. Attard and A. Fafitis, “Optimal seismic analysis of degrading planar frames using a weighted energy method to associate inelastic mode shapes: Part I optimal parameters,” Eng. Struct., vol. 29, no. 8, pp. 1977–1989, 2007, doi: 10.1016/j.engstruct.2006.10.016. N. D. Lagaros, A. T. Garavelas, and M. Papadrakakis, “Innovative seismic design optimization with reliability constraints,” Comput. Methods Appl. Mech. Eng., vol. 198, no. 1, pp. 28–41, 2008, doi: 10.1016/j.cma.2007.12.025. E. Matta and A. De Stefano, “Seismic performance of pendulum and translational roof-garden TMDs,” Mech. Syst. Signal Process., vol. 23, no. 3, pp. 908–921, 2009, doi: 10.1016/j.ymssp.2008.07.007. M. O. Carmody, M. Jasarevic, P. Omenzetter, G. C. Clifton, and E. A. Fassman, “Seismic response of green roofs,” 2009 NZSEE Conf., no. May 2014, pp. 1–9, 2009, doi: 10.13140/2.1.2525.8564. A. Kaveh, B. Farahmand Azar, A. Hadidi, F. Rezazadeh Sorochi, and S. Talatahari, “Performance-based seismic design of steel frames using ant colony optimization,” J. Constr. Steel Res., vol. 66, no. 4, pp. 566–574, 2010, doi: 10.1016/j.jcsr.2009.11.006. M. Fragiadakis and N. D. Lagaros, “An overview to structural seismic design optimisation frameworks,” Comput. Struct., vol. 89, no. 11–12, pp. 1155–1165, 2011, doi: 10.1016/j.compstruc.2010.10.021. N. D. Lagaros and M. Fragiadakis, “Evaluation of ASCE-41, ATC-40 and N2 static pushover methods based on optimally designed buildings,” Soil Dyn. Earthq. Eng., vol. 31, no. 1, pp. 77–90, 2011, doi: 10.1016/j.soildyn.2010.08.007. Y. Gong, Y. Xue, L. Xu, and D. E. Grierson, “Energy-based design optimization of steel building frameworks using nonlinear response history analysis,” J. Constr. Steel Res., vol. 68, no. 1, pp. 43–50, 2012, doi: 10.1016/j.jcsr.2011.07.002. M. F. Huang, C. M. Chan, and W. J. Lou, “Optimal performance-based design of wind sensitive tall buildings considering uncertainties,” Comput. Struct., vol. 98–99, pp. 7–16, 2012, doi: 10.1016/j.compstruc.2012.01.012 Y. Gong, Y. Xue, and L. Xu, “Optimal capacity design of eccentrically braced steel frameworks using nonlinear response history analysis,” Eng. Struct., vol. 48, pp. 28–36, 2013, doi: 10.1016/j.engstruct.2012.10.001. A. E. Zacharenaki, M. Fragiadakis, and M. Papadrakakis, “Reliability-based optimum seismic design of structures using simplified performance estimation methods,” Eng. Struct., vol. 52, pp. 707–717, 2013, doi: 10.1016/j.engstruct.2013.03.007. H. Veladi, “Performance-Based Seismic Design of Steel Frames Utilizing Colliding Bodies Algorithm,” Sci. World J., vol. 2014, pp. 213–221, 2014, doi: 10.1155/2014/240952. L. Olaya, D. Rubio, D. Ruiz, and A. Torres, “Evaluación del comportamiento sísmico de viviendas de estratos marginales con cubiertas verdes: estudio de caso del municipio de Soacha, Colombia,” Rev. Ing. construcción, vol. 29, no. 1, pp. 98–114, 2014, doi: 10.4067/s0718-50732014000100007. Q. Liu and J. Paavola, “Drift reliability-based optimization method of frames subjected to stochastic earthquake ground motion,” Appl. Math. Model., vol. 39, no. 3–4, pp. 982–999, 2015, doi: 10.1016/j.apm.2014.07.021. M. F. Huang, Q. Li, C. M. Chan, W. J. Lou, K. C. S. Kwok, and G. Li, “Performance-based design optimization of tall concrete framed structures subject to wind excitations,” J. Wind Eng. Ind. Aerodyn., vol. 139, pp. 70–81, 2015, doi: 10.1016/j.jweia.2015.01.005 J. C. Acevedo Romero, “Contenido APOYO EN LA ACTUALIZACIÓN DEL INVENTARIO E INDICADORES DE TECHOS VERDES Y JARDINES VERTICALES Y ESTABLECIMIENTO DE PARCELAS DEMOSTRATIVAS PARA EVALUAR LA ADAPTABILIDAD DE ESPECIES COMO COBERTURAS EN ESTE TIPO DE TECNOLOGÍAS EN LA CIUDAD DE BOGOT,” pp. 1–63, 2016. L. E. Garcia Reyes, “Dinamica estructural aplicada la diseño sísmico,” p. 574, 1998. Ministerio Ambiente Vivienda y Desarrollo Territorial, “Titulo A - Requisitos Generales de Diseño y Construcción Sismo Resistente,” Nsr-10, vol. Titulo A, pp. 1–174, 2010. R. Storn and K. Price, “Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces,” J. Glob. Optim., vol. 11, no. 4, pp. 341–359, 1997, doi: 10.1023/A:1008202821328. “5.2.- Rigidez.” https://www.edu.xunta.gal/espazoAbalar/sites/espazoAbalar/files/datos/1464947489/contido/52_rigidez.html (accessed Nov. 09, 2021). “Análisis estático lineal - 2017 - Ayuda de SOLIDWORKS.” http://help.solidworks.com/2017/spanish/SolidWorks/cworks/c_Linear_Static_Analysis.htm (accessed Nov. 09, 2021). E. Blanco, M. Cervera, and B. Suárez, Análisis Matricial d Estructuras. 2015. A. M. de B. D. C., “Microzonificación Sísmica de Bogotá D.C.,” p. 21, 2010, [Online]. Available: https://www.scg.org.co/microzonificacion-sismica-de-bogota-d-c/. “Londoño Gómez - Glosario.” https://www.londonogomez.com/glosario_detalle.aspx?id=25 (accessed Nov. 09, 2021). Fundación Terram, “Guia para el cálculo de la fuerza horizontal equivalente y derivas segpun el titulo A4-A6 NSR-10,” Univ. Mil. Nueva Granada, vol. 151, pp. 10–17, 2015. “En Detalle: Techos Verdes | ArchDaily Colombia.” https://www.archdaily.co/co/02-72263/en-detalle-techos-verdes (accessed Apr. 10, 2021). L. Iván, N. Hernández, E. Carlos, and N. Silva, Optimización en ingeniería. J. Morales, “Algoritmos Definición,” Univ. Del Azuay, p. 6, 2015, [Online]. Available: http://ing.unne.edu.ar/pub/informatica/Alg_diag.pdf. F. Bianchini, A. B. M. Rafiqul Haque, K. Hewage, and M. S. Alam, “Influence of green roofs on the seismic response of frame structures,” Earthq. Struct., vol. 11, no. 2, pp. 265–280, 2016, doi: 10.12989/eas.2016.11.2.265. G. S. Papavasileiou and D. C. Charmpis, “Seismic design optimization of multi-storey steel-concrete composite buildings,” Comput. Struct., vol. 170, pp. 49–61, 2016, doi: 10.1016/j.compstruc.2016.03.01 M. S. Rahman, A. Sarraz, and M. S. Islam, “Modified Roof-Top garden as a Tuned Mass Damper for vibration control of Modified Roof-Top garden as a Tuned Mass Damper for vibration control of Building Structure under Earthquake Excitation,” no. March, 2017. S. J. Welsh-Huggins and A. B. Liel, “A life-cycle framework for integrating green building and hazard-resistant design: examining the seismic impacts of buildings with green roofs,” Struct. Infrastruct. Eng., vol. 13, no. 1, pp. 19–33, 2017, doi: 10.1080/15732479.2016.1198396. L. H. Xu, X. T. Yan, and Z. X. Li, “Development of BP-based seismic behavior optimization of RC and steel frame structures,” Eng. Struct., vol. 164, no. March, pp. 214–229, 2018, doi: 10.1016/j.engstruct.2018.03.012. S. Tam and J. Wong, “Seismic Response of a 3-Story Green Roof Steel Structure,” Adv. Struct. Eng. Mech., pp. 17–21, 2019. F. Karimi and S. R. Hoseini Vaez, “Two-stage optimal seismic design of steel moment frames using the LRFD-PBD method,” J. Constr. Steel Res., vol. 155, pp. 77–89, 2019, doi: 10.1016/j.jcsr.2018.12.023. A. Hassanzadeh and S. Gholizadeh, “Collapse-performance-aided design optimization of steel concentrically braced frames,” Eng. Struct., vol. 197, no. February, 2019, doi: 10.1016/j.engstruct.2019.109411. A. Razmara Shooli, A. R. Vosoughi, and M. R. Banan, “A mixed GA-PSO-based approach for performance-based design optimization of 2D reinforced concrete special moment-resisting frames,” Appl. Soft Comput. J., vol. 85, 2019, doi: 10.1016/j.asoc.2019.105843. F. Rezazadeh and S. Talatahari, “Seismic energy-based design of BRB frames using multi-objective vibrating particles system optimization,” Structures, vol. 24, no. July 2019, pp. 227–239, 2020, doi: 10.1016/j.istruc.2020.01.006. P. Ni, J. Li, H. Hao, W. Yan, X. Du, and H. Zhou, “Reliability analysis and design optimization of nonlinear structures,” Reliab. Eng. Syst. Saf., vol. 198, no. August 2019, 2020, doi: 10.1016/j.ress.2020.106860. O. Idels and O. Lavan, “Performance based formal optimized seismic design of steel moment resisting frames,” Comput. Struct., vol. 235, 2020, doi: 10.1016/j.compstruc.2020.106269. G. S. Papavasileiou and D. C. Charmpis, “Earthquake-resistant buildings with steel or composite columns: Comparative assessment using structural optimization,” J. Build. Eng., vol. 27, no. July 2019, 2020, doi: 10.1016/j.jobe.2019.100988. O. Contreras and F. Nunez, “Analysis of the state of the structure of a bus stop subjected to loads exerted by a green roof, case study: Bogotá, Colombia,” Rev. Ing. Constr., vol. 35, no. 1, pp. 34–44, 2020, doi: 10.4067/S0718-50732020000100034. |
dc.rights.spa.fl_str_mv |
Copyright-Universidad Católica de Colombia, 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
rights_invalid_str_mv |
Copyright-Universidad Católica de Colombia, 2021 Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
110 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Católica de Colombia |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Civil |
institution |
Universidad Católica de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucatolica.edu.co/bitstreams/55080d82-2847-4334-af0c-561188fdf10c/download https://repository.ucatolica.edu.co/bitstreams/1f45bb17-185c-4380-b6b2-0e80c0fded3e/download https://repository.ucatolica.edu.co/bitstreams/dd4eba57-901d-428a-83ee-0d579c94f040/download https://repository.ucatolica.edu.co/bitstreams/a80729a2-2e26-416c-b90d-0db923cb79d6/download https://repository.ucatolica.edu.co/bitstreams/b29aa1df-1a00-42ad-a492-9bfaeb471f7f/download https://repository.ucatolica.edu.co/bitstreams/47947e26-ed57-4456-bf4e-b5de7ca0838f/download |
bitstream.checksum.fl_str_mv |
438df66cb6aa1f3238cb8d9474d13a04 6d29cded4c9c8b82f8c450edbef83314 00caaa951bcf583747c6ba925f674b23 6b79e1b0d65961a4f1165f388391eb3b 55b8a276c33916f1d5eb32979502e65e 065f628206c63cb87a07e1afeecc25e9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Católica de Colombia - RIUCaC |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814256224865091584 |
spelling |
Contreras-Bejarano, Oscarae6f756d-1705-46ea-9f03-e1e4d9e265df-1Ávila-Hernández, Edwar Jaird6043966-dcb2-4175-ba20-574f584fb821-1Lis-Cepeda, Luis Felipea989459d-c0db-4fc2-83e6-284c6de5a2fc-12022-02-23T20:01:21Z20222022-02-23T20:01:21Z2022Trabajo de InvestigaciónEste trabajo de investigación se basa en encontrar modelos de techos verdes para estructuras porticadas en donde no se afecte los criterios de la norma de sismo resistente y aparte se realiza una optimización ideal para estos criterios dando a un proceso integrativo y progresivo.PregradoIngeniero CivilINTRODUCCIÓN 1. ANTECEDENTES Y JUSTIFICACIÓN 2. PLANTEAMIENTO Y FORMULACIÓN DEL PROBLEMA 3. MARCO DE REFERENCIA 4. ESTADO DEL ARTE 5. OBJETIVOS 6. ALCANCES Y LIMITACIONES 7. METODOLOGÍA 8. PESO DEL TECHO VERDE 9. RESULTADOS 10. CONCLUSIONES. 11. BIBLIOGRAFÍA110 páginasapplication/pdfÁvila-Hernández, E. J. & Lis-Cepeda, L. F. (2021). Optimización estructural de edificaciones de 1, 2 y 3 pisos para la adecuación de techos verdes en la ciudad de Bogotá. Trabajo de Grado. Universidad Católica de Colombia. Facultad de Ingeniería. Programa de Ingeniería Civil. Bogotá, Colombiahttps://hdl.handle.net/10983/27136spaUniversidad Católica de ColombiaFacultad de IngenieríaBogotáIngeniería CivilB. Raji, M. J. Tenpierik, and A. Van Den Dobbelsteen, “The impact of greening systems on building energy performance: A literature review,” Renew. Sustain. Energy Rev., vol. 45, pp. 610–623, 2015, doi: 10.1016/j.rser.2015.02.011.L. Esteva, O. Díaz-López, J. García-Pérez, G. Sierra, and E. Ismael, “Life-cycle optimization in the establishment of performance-acceptance parameters for seismic design,” Struct. Saf., vol. 24, no. 2–4, pp. 187–204, 2002, doi: 10.1016/S0167-4730(02)00024-3.X. K. Zou and C. M. Chan, “Optimal seismic performance-based design of reinforced concrete buildings using nonlinear pushover analysis,” Eng. Struct., vol. 27, no. 8, pp. 1289–1302, 2005, doi: 10.1016/j.engstruct.2005.04.001.N. D. Lagaros, M. Fragiadakis, M. Papadrakakis, and Y. Tsompanakis, “Structural optimization: A tool for evaluating seismic design procedures,” Eng. Struct., vol. 28, no. 12, pp. 1623–1633, 2006, doi: 10.1016/j.engstruct.2006.02.014.T. L. Attard and A. Fafitis, “Optimal seismic analysis of degrading planar frames using a weighted energy method to associate inelastic mode shapes: Part I optimal parameters,” Eng. Struct., vol. 29, no. 8, pp. 1977–1989, 2007, doi: 10.1016/j.engstruct.2006.10.016.N. D. Lagaros, A. T. Garavelas, and M. Papadrakakis, “Innovative seismic design optimization with reliability constraints,” Comput. Methods Appl. Mech. Eng., vol. 198, no. 1, pp. 28–41, 2008, doi: 10.1016/j.cma.2007.12.025.E. Matta and A. De Stefano, “Seismic performance of pendulum and translational roof-garden TMDs,” Mech. Syst. Signal Process., vol. 23, no. 3, pp. 908–921, 2009, doi: 10.1016/j.ymssp.2008.07.007.M. O. Carmody, M. Jasarevic, P. Omenzetter, G. C. Clifton, and E. A. Fassman, “Seismic response of green roofs,” 2009 NZSEE Conf., no. May 2014, pp. 1–9, 2009, doi: 10.13140/2.1.2525.8564.A. Kaveh, B. Farahmand Azar, A. Hadidi, F. Rezazadeh Sorochi, and S. Talatahari, “Performance-based seismic design of steel frames using ant colony optimization,” J. Constr. Steel Res., vol. 66, no. 4, pp. 566–574, 2010, doi: 10.1016/j.jcsr.2009.11.006.M. Fragiadakis and N. D. Lagaros, “An overview to structural seismic design optimisation frameworks,” Comput. Struct., vol. 89, no. 11–12, pp. 1155–1165, 2011, doi: 10.1016/j.compstruc.2010.10.021.N. D. Lagaros and M. Fragiadakis, “Evaluation of ASCE-41, ATC-40 and N2 static pushover methods based on optimally designed buildings,” Soil Dyn. Earthq. Eng., vol. 31, no. 1, pp. 77–90, 2011, doi: 10.1016/j.soildyn.2010.08.007.Y. Gong, Y. Xue, L. Xu, and D. E. Grierson, “Energy-based design optimization of steel building frameworks using nonlinear response history analysis,” J. Constr. Steel Res., vol. 68, no. 1, pp. 43–50, 2012, doi: 10.1016/j.jcsr.2011.07.002.M. F. Huang, C. M. Chan, and W. J. Lou, “Optimal performance-based design of wind sensitive tall buildings considering uncertainties,” Comput. Struct., vol. 98–99, pp. 7–16, 2012, doi: 10.1016/j.compstruc.2012.01.012Y. Gong, Y. Xue, and L. Xu, “Optimal capacity design of eccentrically braced steel frameworks using nonlinear response history analysis,” Eng. Struct., vol. 48, pp. 28–36, 2013, doi: 10.1016/j.engstruct.2012.10.001.A. E. Zacharenaki, M. Fragiadakis, and M. Papadrakakis, “Reliability-based optimum seismic design of structures using simplified performance estimation methods,” Eng. Struct., vol. 52, pp. 707–717, 2013, doi: 10.1016/j.engstruct.2013.03.007.H. Veladi, “Performance-Based Seismic Design of Steel Frames Utilizing Colliding Bodies Algorithm,” Sci. World J., vol. 2014, pp. 213–221, 2014, doi: 10.1155/2014/240952.L. Olaya, D. Rubio, D. Ruiz, and A. Torres, “Evaluación del comportamiento sísmico de viviendas de estratos marginales con cubiertas verdes: estudio de caso del municipio de Soacha, Colombia,” Rev. Ing. construcción, vol. 29, no. 1, pp. 98–114, 2014, doi: 10.4067/s0718-50732014000100007.Q. Liu and J. Paavola, “Drift reliability-based optimization method of frames subjected to stochastic earthquake ground motion,” Appl. Math. Model., vol. 39, no. 3–4, pp. 982–999, 2015, doi: 10.1016/j.apm.2014.07.021.M. F. Huang, Q. Li, C. M. Chan, W. J. Lou, K. C. S. Kwok, and G. Li, “Performance-based design optimization of tall concrete framed structures subject to wind excitations,” J. Wind Eng. Ind. Aerodyn., vol. 139, pp. 70–81, 2015, doi: 10.1016/j.jweia.2015.01.005J. C. Acevedo Romero, “Contenido APOYO EN LA ACTUALIZACIÓN DEL INVENTARIO E INDICADORES DE TECHOS VERDES Y JARDINES VERTICALES Y ESTABLECIMIENTO DE PARCELAS DEMOSTRATIVAS PARA EVALUAR LA ADAPTABILIDAD DE ESPECIES COMO COBERTURAS EN ESTE TIPO DE TECNOLOGÍAS EN LA CIUDAD DE BOGOT,” pp. 1–63, 2016.L. E. Garcia Reyes, “Dinamica estructural aplicada la diseño sísmico,” p. 574, 1998.Ministerio Ambiente Vivienda y Desarrollo Territorial, “Titulo A - Requisitos Generales de Diseño y Construcción Sismo Resistente,” Nsr-10, vol. Titulo A, pp. 1–174, 2010.R. Storn and K. Price, “Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces,” J. Glob. Optim., vol. 11, no. 4, pp. 341–359, 1997, doi: 10.1023/A:1008202821328.“5.2.- Rigidez.” https://www.edu.xunta.gal/espazoAbalar/sites/espazoAbalar/files/datos/1464947489/contido/52_rigidez.html (accessed Nov. 09, 2021).“Análisis estático lineal - 2017 - Ayuda de SOLIDWORKS.” http://help.solidworks.com/2017/spanish/SolidWorks/cworks/c_Linear_Static_Analysis.htm (accessed Nov. 09, 2021).E. Blanco, M. Cervera, and B. Suárez, Análisis Matricial d Estructuras. 2015.A. M. de B. D. C., “Microzonificación Sísmica de Bogotá D.C.,” p. 21, 2010, [Online]. Available: https://www.scg.org.co/microzonificacion-sismica-de-bogota-d-c/.“Londoño Gómez - Glosario.” https://www.londonogomez.com/glosario_detalle.aspx?id=25 (accessed Nov. 09, 2021).Fundación Terram, “Guia para el cálculo de la fuerza horizontal equivalente y derivas segpun el titulo A4-A6 NSR-10,” Univ. Mil. Nueva Granada, vol. 151, pp. 10–17, 2015.“En Detalle: Techos Verdes | ArchDaily Colombia.” https://www.archdaily.co/co/02-72263/en-detalle-techos-verdes (accessed Apr. 10, 2021).L. Iván, N. Hernández, E. Carlos, and N. Silva, Optimización en ingeniería.J. Morales, “Algoritmos Definición,” Univ. Del Azuay, p. 6, 2015, [Online]. Available: http://ing.unne.edu.ar/pub/informatica/Alg_diag.pdf.F. Bianchini, A. B. M. Rafiqul Haque, K. Hewage, and M. S. Alam, “Influence of green roofs on the seismic response of frame structures,” Earthq. Struct., vol. 11, no. 2, pp. 265–280, 2016, doi: 10.12989/eas.2016.11.2.265.G. S. Papavasileiou and D. C. Charmpis, “Seismic design optimization of multi-storey steel-concrete composite buildings,” Comput. Struct., vol. 170, pp. 49–61, 2016, doi: 10.1016/j.compstruc.2016.03.01M. S. Rahman, A. Sarraz, and M. S. Islam, “Modified Roof-Top garden as a Tuned Mass Damper for vibration control of Modified Roof-Top garden as a Tuned Mass Damper for vibration control of Building Structure under Earthquake Excitation,” no. March, 2017.S. J. Welsh-Huggins and A. B. Liel, “A life-cycle framework for integrating green building and hazard-resistant design: examining the seismic impacts of buildings with green roofs,” Struct. Infrastruct. Eng., vol. 13, no. 1, pp. 19–33, 2017, doi: 10.1080/15732479.2016.1198396.L. H. Xu, X. T. Yan, and Z. X. Li, “Development of BP-based seismic behavior optimization of RC and steel frame structures,” Eng. Struct., vol. 164, no. March, pp. 214–229, 2018, doi: 10.1016/j.engstruct.2018.03.012.S. Tam and J. Wong, “Seismic Response of a 3-Story Green Roof Steel Structure,” Adv. Struct. Eng. Mech., pp. 17–21, 2019.F. Karimi and S. R. Hoseini Vaez, “Two-stage optimal seismic design of steel moment frames using the LRFD-PBD method,” J. Constr. Steel Res., vol. 155, pp. 77–89, 2019, doi: 10.1016/j.jcsr.2018.12.023.A. Hassanzadeh and S. Gholizadeh, “Collapse-performance-aided design optimization of steel concentrically braced frames,” Eng. Struct., vol. 197, no. February, 2019, doi: 10.1016/j.engstruct.2019.109411.A. Razmara Shooli, A. R. Vosoughi, and M. R. Banan, “A mixed GA-PSO-based approach for performance-based design optimization of 2D reinforced concrete special moment-resisting frames,” Appl. Soft Comput. J., vol. 85, 2019, doi: 10.1016/j.asoc.2019.105843.F. Rezazadeh and S. Talatahari, “Seismic energy-based design of BRB frames using multi-objective vibrating particles system optimization,” Structures, vol. 24, no. July 2019, pp. 227–239, 2020, doi: 10.1016/j.istruc.2020.01.006.P. Ni, J. Li, H. Hao, W. Yan, X. Du, and H. Zhou, “Reliability analysis and design optimization of nonlinear structures,” Reliab. Eng. Syst. Saf., vol. 198, no. August 2019, 2020, doi: 10.1016/j.ress.2020.106860.O. Idels and O. Lavan, “Performance based formal optimized seismic design of steel moment resisting frames,” Comput. Struct., vol. 235, 2020, doi: 10.1016/j.compstruc.2020.106269.G. S. Papavasileiou and D. C. Charmpis, “Earthquake-resistant buildings with steel or composite columns: Comparative assessment using structural optimization,” J. Build. Eng., vol. 27, no. July 2019, 2020, doi: 10.1016/j.jobe.2019.100988.O. Contreras and F. Nunez, “Analysis of the state of the structure of a bus stop subjected to loads exerted by a green roof, case study: Bogotá, Colombia,” Rev. Ing. Constr., vol. 35, no. 1, pp. 34–44, 2020, doi: 10.4067/S0718-50732020000100034.Copyright-Universidad Católica de Colombia, 2021info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2OPTIMIZACIÓNPLANEACIÓNIMPLEMENTACIÓNNORMASOptimización estructural de edificaciones de 1, 2 y 3 pisos para la adecuación de techos verdes en la ciudad de BogotáTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/version/c_fa2ee174bc00049fhttp://purl.org/coar/version/c_71e4c1898caa6e32PublicationORIGINALProyecto Finál Edwart Avila - Luis Lis.pdfProyecto Finál Edwart Avila - Luis Lis.pdfapplication/pdf3665109https://repository.ucatolica.edu.co/bitstreams/55080d82-2847-4334-af0c-561188fdf10c/download438df66cb6aa1f3238cb8d9474d13a04MD51RAE.pdfRAE.pdfapplication/pdf647924https://repository.ucatolica.edu.co/bitstreams/1f45bb17-185c-4380-b6b2-0e80c0fded3e/download6d29cded4c9c8b82f8c450edbef83314MD52TEXTProyecto Finál Edwart Avila - Luis Lis.pdf.txtProyecto Finál Edwart Avila - Luis Lis.pdf.txtExtracted texttext/plain116367https://repository.ucatolica.edu.co/bitstreams/dd4eba57-901d-428a-83ee-0d579c94f040/download00caaa951bcf583747c6ba925f674b23MD53RAE.pdf.txtRAE.pdf.txtExtracted texttext/plain15329https://repository.ucatolica.edu.co/bitstreams/a80729a2-2e26-416c-b90d-0db923cb79d6/download6b79e1b0d65961a4f1165f388391eb3bMD55THUMBNAILProyecto Finál Edwart Avila - Luis Lis.pdf.jpgProyecto Finál Edwart Avila - Luis Lis.pdf.jpgRIUCACimage/jpeg10078https://repository.ucatolica.edu.co/bitstreams/b29aa1df-1a00-42ad-a492-9bfaeb471f7f/download55b8a276c33916f1d5eb32979502e65eMD54RAE.pdf.jpgRAE.pdf.jpgRIUCACimage/jpeg18788https://repository.ucatolica.edu.co/bitstreams/47947e26-ed57-4456-bf4e-b5de7ca0838f/download065f628206c63cb87a07e1afeecc25e9MD5610983/27136oai:repository.ucatolica.edu.co:10983/271362023-03-24 15:05:09.62https://creativecommons.org/licenses/by-nc-sa/4.0/Copyright-Universidad Católica de Colombia, 2021https://repository.ucatolica.edu.coRepositorio Institucional Universidad Católica de Colombia - RIUCaCbdigital@metabiblioteca.com |