Ecoenvolventes: análisis del uso de fachadas ventiladas en clima cálido-húmedo

Aiming to contribute to impact reduction in the construction of buildings, various systems of ventilated and conventional facades were designed, involving opaque facades, plant elements, and air chambers. Such systems were evaluated through environmental simulations and prototype measurements at var...

Full description

Autores:
Luciani-Mejía, Sara
Velasco-Gómez, Rodrigo
Hudson, Roland
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Católica de Colombia
Repositorio:
RIUCaC - Repositorio U. Católica
Idioma:
spa
OAI Identifier:
oai:repository.ucatolica.edu.co:10983/22925
Acceso en línea:
https://hdl.handle.net/10983/22925
Palabra clave:
ARQUITECTURA BIOCLIMÁTICA
CLIMA
DATOS CLIMÁTICOS
DISEÑO ARQUITECTÓNICO
MODELO DE SIMULACIÓN
TEMPERATURA
BIOCLIMATIC ARCHITECTURE
CLIMATE
CLIMATIC DATA
ARCHITECTURAL DESIGN
SIMULATION MODEL
TEMPERATURE
ARQUITETURA BIOCLIMÁTICA
CLIMA
DADOS CLIMÁTICOS
DESENHO ARQUITETÔNICO
MODELO DE SIMULAÇÃO
TEMPERATURA
Rights
openAccess
License
Derechos Reservados - Universidad Católica de Colombia, 2018
id UCATOLICA2_47ea3863aa3c137103c237688577ba26
oai_identifier_str oai:repository.ucatolica.edu.co:10983/22925
network_acronym_str UCATOLICA2
network_name_str RIUCaC - Repositorio U. Católica
repository_id_str
dc.title.spa.fl_str_mv Ecoenvolventes: análisis del uso de fachadas ventiladas en clima cálido-húmedo
dc.title.translated.eng.fl_str_mv Eco-friendly coverings: Analysis of the use of ventilated facades in hot, humid weather
Ecoenvolventes: análise do uso de fachadas ventiladas em clima quente e úmido
title Ecoenvolventes: análisis del uso de fachadas ventiladas en clima cálido-húmedo
spellingShingle Ecoenvolventes: análisis del uso de fachadas ventiladas en clima cálido-húmedo
ARQUITECTURA BIOCLIMÁTICA
CLIMA
DATOS CLIMÁTICOS
DISEÑO ARQUITECTÓNICO
MODELO DE SIMULACIÓN
TEMPERATURA
BIOCLIMATIC ARCHITECTURE
CLIMATE
CLIMATIC DATA
ARCHITECTURAL DESIGN
SIMULATION MODEL
TEMPERATURE
ARQUITETURA BIOCLIMÁTICA
CLIMA
DADOS CLIMÁTICOS
DESENHO ARQUITETÔNICO
MODELO DE SIMULAÇÃO
TEMPERATURA
title_short Ecoenvolventes: análisis del uso de fachadas ventiladas en clima cálido-húmedo
title_full Ecoenvolventes: análisis del uso de fachadas ventiladas en clima cálido-húmedo
title_fullStr Ecoenvolventes: análisis del uso de fachadas ventiladas en clima cálido-húmedo
title_full_unstemmed Ecoenvolventes: análisis del uso de fachadas ventiladas en clima cálido-húmedo
title_sort Ecoenvolventes: análisis del uso de fachadas ventiladas en clima cálido-húmedo
dc.creator.fl_str_mv Luciani-Mejía, Sara
Velasco-Gómez, Rodrigo
Hudson, Roland
dc.contributor.author.spa.fl_str_mv Luciani-Mejía, Sara
Velasco-Gómez, Rodrigo
Hudson, Roland
dc.subject.proposal.spa.fl_str_mv ARQUITECTURA BIOCLIMÁTICA
CLIMA
DATOS CLIMÁTICOS
DISEÑO ARQUITECTÓNICO
MODELO DE SIMULACIÓN
TEMPERATURA
BIOCLIMATIC ARCHITECTURE
CLIMATE
CLIMATIC DATA
ARCHITECTURAL DESIGN
SIMULATION MODEL
TEMPERATURE
ARQUITETURA BIOCLIMÁTICA
CLIMA
DADOS CLIMÁTICOS
DESENHO ARQUITETÔNICO
MODELO DE SIMULAÇÃO
TEMPERATURA
topic ARQUITECTURA BIOCLIMÁTICA
CLIMA
DATOS CLIMÁTICOS
DISEÑO ARQUITECTÓNICO
MODELO DE SIMULACIÓN
TEMPERATURA
BIOCLIMATIC ARCHITECTURE
CLIMATE
CLIMATIC DATA
ARCHITECTURAL DESIGN
SIMULATION MODEL
TEMPERATURE
ARQUITETURA BIOCLIMÁTICA
CLIMA
DADOS CLIMÁTICOS
DESENHO ARQUITETÔNICO
MODELO DE SIMULAÇÃO
TEMPERATURA
description Aiming to contribute to impact reduction in the construction of buildings, various systems of ventilated and conventional facades were designed, involving opaque facades, plant elements, and air chambers. Such systems were evaluated through environmental simulations and prototype measurements at various stages of the project, which allowed comparing results and identifying their behavior in terms of thermal comfort. The results of these simulations compared against measurements highlighted two issues: discrepancies and similarities between inputs and outputs in the above mentioned two process types; as well as the performance of opaque ventilated facades in humid tropical climate such as in Girardot, which suggested a last stage to evaluate passive design strategies in search for thermal comfort and sustainability in architectural projects
publishDate 2018
dc.date.issued.spa.fl_str_mv 2018-07
dc.date.accessioned.spa.fl_str_mv 2019-03-14T20:54:12Z
dc.date.available.spa.fl_str_mv 2019-03-14T20:54:12Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Luciani-Mejía, S., Velasco-Gómez, R., & Hudson, R. (2018). Ecoenvolventes: análisis del uso de fachadas ventiladas en clima cálido-húmedo. Revista de Arquitectura (Bogotá), 20(2), 62-77. Doi: http://dx.doi.org/10.14718/ RevArq.2018.20.2.1726
dc.identifier.issn.spa.fl_str_mv 1657-0308
2357-626X
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/10983/22925
identifier_str_mv Luciani-Mejía, S., Velasco-Gómez, R., & Hudson, R. (2018). Ecoenvolventes: análisis del uso de fachadas ventiladas en clima cálido-húmedo. Revista de Arquitectura (Bogotá), 20(2), 62-77. Doi: http://dx.doi.org/10.14718/ RevArq.2018.20.2.1726
1657-0308
2357-626X
url https://hdl.handle.net/10983/22925
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Revista de arquitectura, Vol. 20, no. 1 (ene. – jun. 2018); p. 62-77.
dc.relation.references.spa.fl_str_mv Afonso, C. y Oliveira, A. (2000). Solar chimneys: simulation and experiment. Energy and Buildings (32), 71.79. Doi: https://doi.org/10.1016/ S0378-7788(99)00038-9
Andarini, R. (2014). The role of building thermal simulation for energy efficient building design. Energy Procedia (47), 217-226. Doi: https:// doi.org/10.1016/j.egypro.2014.01.217
Andelkovic, A. S., Mujan, I. y Dakic, S. (2016). Experimental validation of aEnergyPlus model: Application of a multi-storey naturally ventilated double skin façade. Energy and Buildings(118), 27-36. Doi: https://doi. org/10.1016/j.enbuild.2016.02.045
Aparicio-Fernández, C., Vivancos, J.-L., Ferrer- Gisbert, P. y Royo-Pastor, R. (2014). Energy performance of a ventilated façade by simulation with experimental validation. Applied Thermal Engineering (66), 563-570. Doi: http://dx.doi.org/10.1016/j.applthermaleng. 2014.02.041
Balocco, C. (2002). A simple model to study ventilated facades energy performance. Energy and Buildings (34), 469-475. Doi: https://doi. org/10.1016/S0378-7788(01)00130-X
Barbosa, S. e Ip, K. (2014). Perspectives of double skin façades for naturallyventilated buildings: A review. Renewable and Sustainable Energy Reviews (40), 1019-1029. Doi: https://doi. org/10.1016/j.rser.2014.07.192
Blanco, J. M., Buruaga, A., Rojí, E., Cuadrado, J. y Pelaz, B. (2016). Energy assessment and optimization of perforated metal sheet doubleskin façades through Design Builder. A case study in Spain. Energy and Buildings (111), 326-336. Doi: http://dx.doi.org/10.1016/j. enbuild.2015.11.053
Bolaños, T. y Moscoso, A. (2011). Consideraciones y selección de especies vegetales para su implementación en ecoenvolventes arquitectónicos: una herramienta metodológica. Revista Nodo, 5(10), 5-20. Recuperado de http://csifesvr.uan.edu.co/index.php/nodo/ article/view/138
Ciampi, M., Leccese, F. y Tuoni, G. (2003). Ventilated facades energy performance in summer cooling of buildings. Solar Energy (75), 491-502. Doi: https://doi.org/10.1016/j.solener. 2003.09.010.
Design Builder (19 de octubre de 2017). Design Builder Software Ltd. Recuperado de https:// www.designbuilder.co.uk/
EnergyPlus (19 de octubre de 2017). EneryPlus. Recuperado de https://energyplus.net/
Fantucci, S., Marinosci, C., Serra, V. y Carbonaro, C. (2017). Thermal performance assessment of an opaque ventilated façade in the summer period: calibration of a simulation model through in-field measurements. Energy Procedia (111), 619-628. Doi: https://doi. org/10.1016/j.egypro.2017.03.224
Gagliano, A., Patania, F., Nocera, F. y Signorello, C. (2014). Assessment of the dynamic thermal performance of massive buildings. Energy and Buildings (72), 361-370. Doi: https://doi. org/10.1016/j.enbuild.2013.12.060
Gaillard, L., Giroux-Julien, S., Ménézo, C. y Pabiou, H. (2014). Experimental evaluation of a naturally ventilated PV double-skin building envelope in real operating conditions. Solar Energy (103), 223-241. Doi: http://dx.doi. org/10.1016/j.solener.2014.02.018
Ghaffarianhoseini, A., Ghaffarianhoseini, A., Berardi, U., Tookey, J., Hin Wa Li, D. y Kariminia, S. (2016). Exploring the advantages and challenges of double-skin façades (DSFs). Renewable and Sustainable Energy Reviews (60), 1052-1065. Doi: https://doi. org/10.1016/j.rser.2016.01.130
Giancola, E., Sanjuan, C., Blanco, E. y Heras, M. R. (2012). Experimental assessment and modelling of the performance of an open joint ventilated façade during actual operating conditions in Mediterranean climate. Energy and Buildings (54), 363-375. Doi: http:// dx.doi.org/10.1016/j.enbuild.2012.07.035
Gratia, E. y De Herde, A. (2004). Optimal operation of a south double-skin facade. Energy and Buildings (36), 41-60. Doi: https://doi. org/10.1016/j.enbuild.2004.05.004
Gratia, E. y De Herde, A. (2007). Guidelines for improving natural daytime ventilation in an office building with a double-skin facade. Solar Energy (81), 435-448. Doi: https://doi. org/10.1016/j.solener.2006.08.006
Haase, M., Silva, F. M. y Amato, A. (2009). Simulation of ventilated facades in hot and humid climates. Energy and Buildings (41), 361-373. Doi: https://doi.org/10.1016/j. enbuild.2008.11.008
Høseggen, R., Wachenfeldt, B. J. y Hanssen, S. O. (2008). Building simulation as an assisting tool in decision making Case study: With or without a double-skin façade? Energy and Buildings (40), 821-827. Doi: https://doi. org/10.1016/j.enbuild.2007.05.015
Jentsch, M. F., Bahaj, A. S. y James, P. A. (2008). Climate change future proofing of buildings— Generation and assessment of building simulation weather files. Energy and Buildings, 40(12). 2148-2168. Doi: https://doi. org/10.1016/j.enbuild.2008.06.005
Kim, D.-W. y Park, C.-S. (2011). Difficulties and limitations in performance simulation of a double skin façade with EnergyPlus. Energy and Buildings (43), 3635-3645. Doi: https:// doi.org/10.1016/j.enbuild.2011.09.038
Marinosci, C., Semprini, G. y Morini, G. (2014). Experimental analysis of the summer thermal performances of a naturally ventilated rainscreen façade building. Energy and Buildings (72), 280-287. Doi: http://dx.doi. org/10.1016/j.enbuild.2013.12.044
Marinosci, C., Strachan, P., Semprini, G. y Morini, G. (2011). Empirical validation and modelling of a naturally ventilated rainscreen façade building. Energy and Buildings (43), 853-863. Doi: https://doi.org/10.1016/j. enbuild.2010.12.005
Mateus, N. M., Pinto, A. y Carrilho da Graça, G. (2014). Validation of EnergyPlus thermal simulation of a double skin naturallyand mechanically ventilated test cell. Energy and Buildings (75), 511-522. Doi: http://dx.doi. org/10.1016/j.enbuild.2014.02.043
Meteonorm (22 de 02 de 2018). Meteonorm. Recuperado de http://www.meteonorm.com/
Peci López, F., Jensen, R., Heiselberg, P. y Ruiz de Adana, M. (2012). Experimental analysis and model validation of an opaque ventilated facade. Building and Environment (56), 265- 275. Doi: https://doi.org/10.1016/j.buildenv. 2012.03.017
Poirazis, H. (2004). Double Skin Façades for Office Buildings. Lund: Division of Energy and Building Design Department of Construction and Architecture Lund Institute of Technology, Division of Energy and Building Design. Recuperado de http://www.ebd.lth.se/fileadmin/energi_ byggnadsdesign/images/Publikationer/Bok- EBD-R3-G5_alt_2_Harris.pdf
Pyrgou, A., Castaldo, V. L., Pisello, A. L., Cotana, F. y Santamouris, M. (2017). Differentiating responses of weather files and local climate change to explain variations in building thermal- energy performance simulations. Solar Energy (153), 224-237. Doi: http://dx.doi. org/10.1016/j.solener.2017.05.040
Rubiano Martín, M. A. (2015). Ventajas del uso de fachada ventilada, en Giradot (Colombia). Revista Nodo, 10(19), 111-120. Recuperado de http://revistas.uan.edu.co/index.php/ nodo/article/view/538
Stec, W. J., Paassen, A. H. y Maziarz, A. (2005). Modelling the double skin façade with plants. Energy and Buildings (37), 419-427. Doi: https:// doi.org/10.1016/j.enbuild.2004.08.008
Theodosiou, T., Tsikaloudaki, K. y Bikas, D. (2017). Analysis of the thermal bridging effect on ventilated facades. Procedia Environmental Sciences (38), 397-404. Doi: https://doi. org/10.1016/j.proenv.2017.03.121
U.S. Department of Energy (22 de 02 de 2018). energy.gov. Recuperado de https://energy.gov/
Varini, C. (2011). Ecoenvolventes R & D. Passive architectural envelopes high thermal performance and low environmental impact for tropical geo-climatic zones with cultivated native woods and plants. SB Helsinki World Sustainable Building Conference. Helsinki: Finnish Association of Civil Engineers RIL and VTT Technical Research Centre of Finland. Recuperdao de http://www.irbnet.de/daten/ iconda/CIB_DC22949.pdf
Varini, C. (2013). Ecoenvelopes R&D. Passive architectural envelopes high thermal performance and low environmental impact for tropical geoclimatic zones. Informes de la Construcción, 65, 23-30. Doi: https://doi. org/10.3989/ic.11.147
Velasco, R. y Robles, D. (2011). Eco-envolventes: A parametric design approach to generate and evaluate façade configurations for hot and humid climates. En T. Zupančič et al. (eds.), eCAADe 2011 Respecting fragile places: Proceedings of the 29th Conference on Education in Computer Aided Architectural Design in Europe (pp. 539-548). Ljubljana: Brussels: Education in Computer Aided Architectural Design in Europe; Ljubljana: Faculty of Architecture.
Velasco, R., Hudson, R. y Luciani, S. (2017). Tools and strategies to improve climate-driven façade design in the tropics: A pilot project for Colombia. 12th Conference on Advanced Building Skins (pp. 995-1003). Bern: Advanced Building Skins GmbH.
Vernay, D. G., Raphael, B. y Smith, I. F. (2014). Augmenting simulations of airflow around buildings using field measurements. Advanced Engineering Informatics (28), 412-424. Doi: http://dx.doi.org/10.1016/j.aei.2014.06.003
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Católica de Colombia, 2018
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Derechos Reservados - Universidad Católica de Colombia, 2018
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Católica de Colombia. Facultad de Diseño
institution Universidad Católica de Colombia
bitstream.url.fl_str_mv https://repository.ucatolica.edu.co/bitstreams/ef1831f7-ce5c-41e4-8a08-4d62ac7c5e44/download
https://repository.ucatolica.edu.co/bitstreams/81922437-b696-4b76-a83e-9b62a2c25ea3/download
https://repository.ucatolica.edu.co/bitstreams/f418169c-448e-442a-ae5e-a9e92188e5ce/download
bitstream.checksum.fl_str_mv 8268bae51800a1c0f2f0a32a8e9eb043
651deeffd49a7d482ed49898b38d5e96
b6a74bc0e965e256a0ba9ee1705e2ebf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Católica de Colombia - RIUCaC
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808402518279979008
spelling Luciani-Mejía, Saracc4e865c-b53b-4a3f-b73e-b550b1e5b8e4-1Velasco-Gómez, Rodrigoce56ccb8-20a3-4c77-b295-e6062fe01a7d-1Hudson, Roland8e4f8522-b249-4623-a86e-c5e567197a0e-12019-03-14T20:54:12Z2019-03-14T20:54:12Z2018-07Aiming to contribute to impact reduction in the construction of buildings, various systems of ventilated and conventional facades were designed, involving opaque facades, plant elements, and air chambers. Such systems were evaluated through environmental simulations and prototype measurements at various stages of the project, which allowed comparing results and identifying their behavior in terms of thermal comfort. The results of these simulations compared against measurements highlighted two issues: discrepancies and similarities between inputs and outputs in the above mentioned two process types; as well as the performance of opaque ventilated facades in humid tropical climate such as in Girardot, which suggested a last stage to evaluate passive design strategies in search for thermal comfort and sustainability in architectural projectsCom o objetivo de contribuir com a redução de impactos na construção de prédios foram desenhados vários sistemas de fachadas ventiladas e convencionais, que envolvem fachadas opacas, elementos vegetais e duto de ar. Esses sistemas foram avaliados com simulações ambientais e medições em protótipo nas diversas etapas da investigação, o que permitiu a comparação de resultados e a identificação de comportamento em termos de conforto térmico. Os resultados das simulações ante medições vislumbraram duas questões: as discrepâncias e as semelhanças entre os dados de entrada e saída nos dois tipos de processo mencionados, assim como a utilidade das fachadas ventiladas opacas em clima tropical úmido, como Girardot (Colômbia), o que sugeriu uma última etapa de avaliação de estratégias de desenho passivo na busca de conforto térmico e de sustentabilidade no projeto arquitetônico.Con el objetivo de aportar a la reducción de impactos en la construcción de edificaciones fueron diseñados varios sistemas de fachadas ventiladas y convencionales, involucrando fachadas opacas, elementos vegetales y cámaras de aire. Tales sistemas fueron evaluados con simulaciones ambientales y mediciones en prototipo en las diversas etapas de la investigación, lo que permitió la comparación de resultados y la identificación de comportamiento en términos de confort térmico. Los resultados de las simulaciones frente a mediciones vislumbraron dos cuestiones: las discrepancias y similitudes entre los datos de entrada y salida en los dos tipos de proceso mencionados; así como la utilidad de las fachadas ventiladas opacas en clima tropical húmedo como Girardot, lo que sugirió una última etapa de evaluación de estrategias de diseño pasivo en la búsqueda del confort térmico y la sostenibilidad en el proyecto arquitectónico.application/pdfLuciani-Mejía, S., Velasco-Gómez, R., & Hudson, R. (2018). Ecoenvolventes: análisis del uso de fachadas ventiladas en clima cálido-húmedo. Revista de Arquitectura (Bogotá), 20(2), 62-77. Doi: http://dx.doi.org/10.14718/ RevArq.2018.20.2.17261657-03082357-626Xhttps://hdl.handle.net/10983/22925spaUniversidad Católica de Colombia. Facultad de DiseñoRevista de arquitectura, Vol. 20, no. 1 (ene. – jun. 2018); p. 62-77.Afonso, C. y Oliveira, A. (2000). Solar chimneys: simulation and experiment. Energy and Buildings (32), 71.79. Doi: https://doi.org/10.1016/ S0378-7788(99)00038-9Andarini, R. (2014). The role of building thermal simulation for energy efficient building design. Energy Procedia (47), 217-226. Doi: https:// doi.org/10.1016/j.egypro.2014.01.217Andelkovic, A. S., Mujan, I. y Dakic, S. (2016). Experimental validation of aEnergyPlus model: Application of a multi-storey naturally ventilated double skin façade. Energy and Buildings(118), 27-36. Doi: https://doi. org/10.1016/j.enbuild.2016.02.045Aparicio-Fernández, C., Vivancos, J.-L., Ferrer- Gisbert, P. y Royo-Pastor, R. (2014). Energy performance of a ventilated façade by simulation with experimental validation. Applied Thermal Engineering (66), 563-570. Doi: http://dx.doi.org/10.1016/j.applthermaleng. 2014.02.041Balocco, C. (2002). A simple model to study ventilated facades energy performance. Energy and Buildings (34), 469-475. Doi: https://doi. org/10.1016/S0378-7788(01)00130-XBarbosa, S. e Ip, K. (2014). Perspectives of double skin façades for naturallyventilated buildings: A review. Renewable and Sustainable Energy Reviews (40), 1019-1029. Doi: https://doi. org/10.1016/j.rser.2014.07.192Blanco, J. M., Buruaga, A., Rojí, E., Cuadrado, J. y Pelaz, B. (2016). Energy assessment and optimization of perforated metal sheet doubleskin façades through Design Builder. A case study in Spain. Energy and Buildings (111), 326-336. Doi: http://dx.doi.org/10.1016/j. enbuild.2015.11.053Bolaños, T. y Moscoso, A. (2011). Consideraciones y selección de especies vegetales para su implementación en ecoenvolventes arquitectónicos: una herramienta metodológica. Revista Nodo, 5(10), 5-20. Recuperado de http://csifesvr.uan.edu.co/index.php/nodo/ article/view/138Ciampi, M., Leccese, F. y Tuoni, G. (2003). Ventilated facades energy performance in summer cooling of buildings. Solar Energy (75), 491-502. Doi: https://doi.org/10.1016/j.solener. 2003.09.010.Design Builder (19 de octubre de 2017). Design Builder Software Ltd. Recuperado de https:// www.designbuilder.co.uk/EnergyPlus (19 de octubre de 2017). EneryPlus. Recuperado de https://energyplus.net/Fantucci, S., Marinosci, C., Serra, V. y Carbonaro, C. (2017). Thermal performance assessment of an opaque ventilated façade in the summer period: calibration of a simulation model through in-field measurements. Energy Procedia (111), 619-628. Doi: https://doi. org/10.1016/j.egypro.2017.03.224Gagliano, A., Patania, F., Nocera, F. y Signorello, C. (2014). Assessment of the dynamic thermal performance of massive buildings. Energy and Buildings (72), 361-370. Doi: https://doi. org/10.1016/j.enbuild.2013.12.060Gaillard, L., Giroux-Julien, S., Ménézo, C. y Pabiou, H. (2014). Experimental evaluation of a naturally ventilated PV double-skin building envelope in real operating conditions. Solar Energy (103), 223-241. Doi: http://dx.doi. org/10.1016/j.solener.2014.02.018Ghaffarianhoseini, A., Ghaffarianhoseini, A., Berardi, U., Tookey, J., Hin Wa Li, D. y Kariminia, S. (2016). Exploring the advantages and challenges of double-skin façades (DSFs). Renewable and Sustainable Energy Reviews (60), 1052-1065. Doi: https://doi. org/10.1016/j.rser.2016.01.130Giancola, E., Sanjuan, C., Blanco, E. y Heras, M. R. (2012). Experimental assessment and modelling of the performance of an open joint ventilated façade during actual operating conditions in Mediterranean climate. Energy and Buildings (54), 363-375. Doi: http:// dx.doi.org/10.1016/j.enbuild.2012.07.035Gratia, E. y De Herde, A. (2004). Optimal operation of a south double-skin facade. Energy and Buildings (36), 41-60. Doi: https://doi. org/10.1016/j.enbuild.2004.05.004Gratia, E. y De Herde, A. (2007). Guidelines for improving natural daytime ventilation in an office building with a double-skin facade. Solar Energy (81), 435-448. Doi: https://doi. org/10.1016/j.solener.2006.08.006Haase, M., Silva, F. M. y Amato, A. (2009). Simulation of ventilated facades in hot and humid climates. Energy and Buildings (41), 361-373. Doi: https://doi.org/10.1016/j. enbuild.2008.11.008Høseggen, R., Wachenfeldt, B. J. y Hanssen, S. O. (2008). Building simulation as an assisting tool in decision making Case study: With or without a double-skin façade? Energy and Buildings (40), 821-827. Doi: https://doi. org/10.1016/j.enbuild.2007.05.015Jentsch, M. F., Bahaj, A. S. y James, P. A. (2008). Climate change future proofing of buildings— Generation and assessment of building simulation weather files. Energy and Buildings, 40(12). 2148-2168. Doi: https://doi. org/10.1016/j.enbuild.2008.06.005Kim, D.-W. y Park, C.-S. (2011). Difficulties and limitations in performance simulation of a double skin façade with EnergyPlus. Energy and Buildings (43), 3635-3645. Doi: https:// doi.org/10.1016/j.enbuild.2011.09.038Marinosci, C., Semprini, G. y Morini, G. (2014). Experimental analysis of the summer thermal performances of a naturally ventilated rainscreen façade building. Energy and Buildings (72), 280-287. Doi: http://dx.doi. org/10.1016/j.enbuild.2013.12.044Marinosci, C., Strachan, P., Semprini, G. y Morini, G. (2011). Empirical validation and modelling of a naturally ventilated rainscreen façade building. Energy and Buildings (43), 853-863. Doi: https://doi.org/10.1016/j. enbuild.2010.12.005Mateus, N. M., Pinto, A. y Carrilho da Graça, G. (2014). Validation of EnergyPlus thermal simulation of a double skin naturallyand mechanically ventilated test cell. Energy and Buildings (75), 511-522. Doi: http://dx.doi. org/10.1016/j.enbuild.2014.02.043Meteonorm (22 de 02 de 2018). Meteonorm. Recuperado de http://www.meteonorm.com/Peci López, F., Jensen, R., Heiselberg, P. y Ruiz de Adana, M. (2012). Experimental analysis and model validation of an opaque ventilated facade. Building and Environment (56), 265- 275. Doi: https://doi.org/10.1016/j.buildenv. 2012.03.017Poirazis, H. (2004). Double Skin Façades for Office Buildings. Lund: Division of Energy and Building Design Department of Construction and Architecture Lund Institute of Technology, Division of Energy and Building Design. Recuperado de http://www.ebd.lth.se/fileadmin/energi_ byggnadsdesign/images/Publikationer/Bok- EBD-R3-G5_alt_2_Harris.pdfPyrgou, A., Castaldo, V. L., Pisello, A. L., Cotana, F. y Santamouris, M. (2017). Differentiating responses of weather files and local climate change to explain variations in building thermal- energy performance simulations. Solar Energy (153), 224-237. Doi: http://dx.doi. org/10.1016/j.solener.2017.05.040Rubiano Martín, M. A. (2015). Ventajas del uso de fachada ventilada, en Giradot (Colombia). Revista Nodo, 10(19), 111-120. Recuperado de http://revistas.uan.edu.co/index.php/ nodo/article/view/538Stec, W. J., Paassen, A. H. y Maziarz, A. (2005). Modelling the double skin façade with plants. Energy and Buildings (37), 419-427. Doi: https:// doi.org/10.1016/j.enbuild.2004.08.008Theodosiou, T., Tsikaloudaki, K. y Bikas, D. (2017). Analysis of the thermal bridging effect on ventilated facades. Procedia Environmental Sciences (38), 397-404. Doi: https://doi. org/10.1016/j.proenv.2017.03.121U.S. Department of Energy (22 de 02 de 2018). energy.gov. Recuperado de https://energy.gov/Varini, C. (2011). Ecoenvolventes R & D. Passive architectural envelopes high thermal performance and low environmental impact for tropical geo-climatic zones with cultivated native woods and plants. SB Helsinki World Sustainable Building Conference. Helsinki: Finnish Association of Civil Engineers RIL and VTT Technical Research Centre of Finland. Recuperdao de http://www.irbnet.de/daten/ iconda/CIB_DC22949.pdfVarini, C. (2013). Ecoenvelopes R&D. Passive architectural envelopes high thermal performance and low environmental impact for tropical geoclimatic zones. Informes de la Construcción, 65, 23-30. Doi: https://doi. org/10.3989/ic.11.147Velasco, R. y Robles, D. (2011). Eco-envolventes: A parametric design approach to generate and evaluate façade configurations for hot and humid climates. En T. Zupančič et al. (eds.), eCAADe 2011 Respecting fragile places: Proceedings of the 29th Conference on Education in Computer Aided Architectural Design in Europe (pp. 539-548). Ljubljana: Brussels: Education in Computer Aided Architectural Design in Europe; Ljubljana: Faculty of Architecture.Velasco, R., Hudson, R. y Luciani, S. (2017). Tools and strategies to improve climate-driven façade design in the tropics: A pilot project for Colombia. 12th Conference on Advanced Building Skins (pp. 995-1003). Bern: Advanced Building Skins GmbH.Vernay, D. G., Raphael, B. y Smith, I. F. (2014). Augmenting simulations of airflow around buildings using field measurements. Advanced Engineering Informatics (28), 412-424. Doi: http://dx.doi.org/10.1016/j.aei.2014.06.003Derechos Reservados - Universidad Católica de Colombia, 2018info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2ARQUITECTURA BIOCLIMÁTICACLIMADATOS CLIMÁTICOSDISEÑO ARQUITECTÓNICOMODELO DE SIMULACIÓNTEMPERATURABIOCLIMATIC ARCHITECTURECLIMATECLIMATIC DATAARCHITECTURAL DESIGNSIMULATION MODELTEMPERATUREARQUITETURA BIOCLIMÁTICACLIMADADOS CLIMÁTICOSDESENHO ARQUITETÔNICOMODELO DE SIMULAÇÃOTEMPERATURAEcoenvolventes: análisis del uso de fachadas ventiladas en clima cálido-húmedoEco-friendly coverings: Analysis of the use of ventilated facades in hot, humid weatherEcoenvolventes: análise do uso de fachadas ventiladas em clima quente e úmidoArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85PublicationORIGINAL5. Eco-envolventes Análisis del uso de fachadas ventiladas en clima cálido-húmedo.pdf5. Eco-envolventes Análisis del uso de fachadas ventiladas en clima cálido-húmedo.pdfapplication/pdf2634465https://repository.ucatolica.edu.co/bitstreams/ef1831f7-ce5c-41e4-8a08-4d62ac7c5e44/download8268bae51800a1c0f2f0a32a8e9eb043MD51TEXT5. Eco-envolventes Análisis del uso de fachadas ventiladas en clima cálido-húmedo.pdf.txt5. Eco-envolventes Análisis del uso de fachadas ventiladas en clima cálido-húmedo.pdf.txtExtracted texttext/plain121270https://repository.ucatolica.edu.co/bitstreams/81922437-b696-4b76-a83e-9b62a2c25ea3/download651deeffd49a7d482ed49898b38d5e96MD52THUMBNAIL5. Eco-envolventes Análisis del uso de fachadas ventiladas en clima cálido-húmedo.pdf.jpg5. Eco-envolventes Análisis del uso de fachadas ventiladas en clima cálido-húmedo.pdf.jpgRIUCACimage/jpeg28064https://repository.ucatolica.edu.co/bitstreams/f418169c-448e-442a-ae5e-a9e92188e5ce/downloadb6a74bc0e965e256a0ba9ee1705e2ebfMD5310983/22925oai:repository.ucatolica.edu.co:10983/229252023-03-24 15:33:14.456https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Católica de Colombia, 2018https://repository.ucatolica.edu.coRepositorio Institucional Universidad Católica de Colombia - RIUCaCbdigital@metabiblioteca.com