A simple extension of Rolle's theorem and its relation with multiple internal rates of return (IRR)

This paper presents a simple extension of Rolle’s Theorem. This extension allows determining the amount of numbers ξi in which f'(ξi) = 0 in a given interval, using the characteristics of the function f in that interval. The extension has been proved, and the geometric interpretation has been p...

Full description

Autores:
Gómez-Villarraga, Fernando
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad Católica de Colombia
Repositorio:
RIUCaC - Repositorio U. Católica
Idioma:
eng
OAI Identifier:
oai:repository.ucatolica.edu.co:10983/25600
Acceso en línea:
https://hdl.handle.net/10983/25600
Palabra clave:
ECONOMÍA MATEMÁTICA
TEOREMA DE ROLLE
MÚLTIPLES TASAS INTERNAS DE RETORNO
Rights
openAccess
License
Copyright, Universidad Católica de Colombia, 2019
Description
Summary:This paper presents a simple extension of Rolle’s Theorem. This extension allows determining the amount of numbers ξi in which f'(ξi) = 0 in a given interval, using the characteristics of the function f in that interval. The extension has been proved, and the geometric interpretation has been presented. Illustrative examples have also been developed for each case that can be obtained by applying the extension. Finally, the study examines the relation of this theorem with the problem of multiple internal rates of return (IRR).