Ecoenvolventes : análisis del uso de fachadas ventiladas en clima cálido-húmedo.

Con el objetivo de aportar a la reducción de impactos en la construcción de edificaciones fueron diseñados varios sistemas de fachadas ventiladas y convencionales, involucrando fachadas opacas, elementos vegetales y cámaras de aire. Tales sistemas fueron evaluados con simulaciones ambientales y medi...

Full description

Autores:
Luciani-Mejía, Sara
Velasco-Gómez, Rodrigo
Hudson, Roland
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Católica de Colombia
Repositorio:
RIUCaC - Repositorio U. Católica
Idioma:
spa
OAI Identifier:
oai:repository.ucatolica.edu.co:10983/28838
Acceso en línea:
https://hdl.handle.net/10983/28838
https://doi.org/10.14718/RevArq.2018.20.2.1726
Palabra clave:
Bioclimatic architecture
Climate
Climatic data
Architectural design
Simulation model
Temperature
Arquitectura bioclimática
Clima
Datos climáticos
Diseño arquitectónico
Modelo de simulación
Temperatura
Arquitetura bioclimática
Clima
Dados climáticos
Desenho arquitetônico
Modelo de simulação
Temperatura
Rights
openAccess
License
Rodrigo Velasco, Roland Hudson, Sara Luciani - 2018
id UCATOLICA2_22e6c622eeb787f4a6aea70201dfcdae
oai_identifier_str oai:repository.ucatolica.edu.co:10983/28838
network_acronym_str UCATOLICA2
network_name_str RIUCaC - Repositorio U. Católica
repository_id_str
dc.title.spa.fl_str_mv Ecoenvolventes : análisis del uso de fachadas ventiladas en clima cálido-húmedo.
dc.title.translated.eng.fl_str_mv Eco-friendly coverings : analysis of the use of ventilated facades in hot, humid weather.
title Ecoenvolventes : análisis del uso de fachadas ventiladas en clima cálido-húmedo.
spellingShingle Ecoenvolventes : análisis del uso de fachadas ventiladas en clima cálido-húmedo.
Bioclimatic architecture
Climate
Climatic data
Architectural design
Simulation model
Temperature
Arquitectura bioclimática
Clima
Datos climáticos
Diseño arquitectónico
Modelo de simulación
Temperatura
Arquitetura bioclimática
Clima
Dados climáticos
Desenho arquitetônico
Modelo de simulação
Temperatura
title_short Ecoenvolventes : análisis del uso de fachadas ventiladas en clima cálido-húmedo.
title_full Ecoenvolventes : análisis del uso de fachadas ventiladas en clima cálido-húmedo.
title_fullStr Ecoenvolventes : análisis del uso de fachadas ventiladas en clima cálido-húmedo.
title_full_unstemmed Ecoenvolventes : análisis del uso de fachadas ventiladas en clima cálido-húmedo.
title_sort Ecoenvolventes : análisis del uso de fachadas ventiladas en clima cálido-húmedo.
dc.creator.fl_str_mv Luciani-Mejía, Sara
Velasco-Gómez, Rodrigo
Hudson, Roland
dc.contributor.author.spa.fl_str_mv Luciani-Mejía, Sara
Velasco-Gómez, Rodrigo
Hudson, Roland
dc.subject.eng.fl_str_mv Bioclimatic architecture
Climate
Climatic data
Architectural design
Simulation model
Temperature
topic Bioclimatic architecture
Climate
Climatic data
Architectural design
Simulation model
Temperature
Arquitectura bioclimática
Clima
Datos climáticos
Diseño arquitectónico
Modelo de simulación
Temperatura
Arquitetura bioclimática
Clima
Dados climáticos
Desenho arquitetônico
Modelo de simulação
Temperatura
dc.subject.spa.fl_str_mv Arquitectura bioclimática
Clima
Datos climáticos
Diseño arquitectónico
Modelo de simulación
Temperatura
Arquitetura bioclimática
Clima
Dados climáticos
Desenho arquitetônico
Modelo de simulação
Temperatura
description Con el objetivo de aportar a la reducción de impactos en la construcción de edificaciones fueron diseñados varios sistemas de fachadas ventiladas y convencionales, involucrando fachadas opacas, elementos vegetales y cámaras de aire. Tales sistemas fueron evaluados con simulaciones ambientales y mediciones en prototipo en las diversas etapas de la investigación, lo que permitió la comparación de resultados y la identificación de comportamiento en términos de confort térmico. Los resultados de las simulaciones frente a mediciones vislumbraron dos cuestiones: las discrepancias y similitudes entre los datos de entrada y salida en los dos tipos de proceso mencionados; así como la utilidad de las fachadas ventiladas opacas en clima tropical húmedo como Girardot, lo que sugirió una última etapa de evaluación de estrategias de diseño pasivo en la búsqueda del confort térmico y la solemnidad en el proyecto arquitectónico.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-08-15 00:00:00
2023-01-23T16:05:30Z
dc.date.available.none.fl_str_mv 2018-08-15 00:00:00
2023-01-23T16:05:30Z
dc.date.issued.none.fl_str_mv 2018-08-15
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.doi.none.fl_str_mv 10.14718/RevArq.2018.20.2.1726
dc.identifier.eissn.none.fl_str_mv 2357-626X
dc.identifier.issn.none.fl_str_mv 1657-0308
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10983/28838
dc.identifier.url.none.fl_str_mv https://doi.org/10.14718/RevArq.2018.20.2.1726
identifier_str_mv 10.14718/RevArq.2018.20.2.1726
2357-626X
1657-0308
url https://hdl.handle.net/10983/28838
https://doi.org/10.14718/RevArq.2018.20.2.1726
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.bitstream.none.fl_str_mv https://revistadearquitectura.ucatolica.edu.co/article/download/1726/1934
https://revistadearquitectura.ucatolica.edu.co/article/download/1726/2339
https://revistadearquitectura.ucatolica.edu.co/article/download/1726/2456
https://revistadearquitectura.ucatolica.edu.co/article/download/1726/2826
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2018 : Julio - diciembre
dc.relation.citationendpage.none.fl_str_mv 77
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 62
dc.relation.citationvolume.spa.fl_str_mv 20
dc.relation.ispartofjournal.spa.fl_str_mv Revista de Arquitectura (Bogotá)
dc.relation.references.spa.fl_str_mv Afonso, C., & Oliveira, A. (2000). Solar chimneys: simulation and experiment. Energy and Buildings (32), 71-79. DOI: https://doi.org/10.1016/S0378-7788(99)00038-9
Andarini, R. (2014). The Role of Building Thermal Simulation for Energy Efficient Building Design. Energy Procedia (47), 217-226. DOI: https://doi.org/10.1016/j.egypro.2014.01.217
Andelkovic, A. S., Mujan, I., & Dakic, S. (2016). Experimental validation of aEnergyPlus model: Application of a multi-storey naturally ventilated double skin façade. Energy and Buildings(118), 27-36. DOI: https://doi.org/10.1016/j.enbuild.2016.02.045
Aparicio-Fernández, C., Vivancos, J.-L., Ferrer-Gisbert, P., & Royo-Pastor, R. (2014). Energy performance of a ventilated façade by simulation with experimental validation. Applied Thermal Engineering (66), 563-570. DOI: http://dx.doi.org/10.1016/j.applthermaleng.2014.02.041
Balocco, C. (2002). A simple model to study ventilated facades energy performance. Energy and Buildings(34), 469-475. DOI: https://doi.org/10.1016/S0378-7788(01)00130-X
Barbosa, S., & Ip, K. (2014). Perspectives of double skin façades for naturallyventilated buildings: A review . Renewable and Sustainable Energy Reviews(40), 1019-1029. DOI: https://doi.org/10.1016/j.rser.2014.07.192
Blanco, J. M., Buruaga, A., Rojí, E., Cuadrado, J., & Pelaz, B. (2016). Energy assessment and optimization of perforated metal sheet doubleskin façades through Design Builder; A case study in Spain. Energy and Buildings(111), 326-336. DOI: http://dx.doi.org/10.1016/j.enbuild.2015.11.053
Bolaños, T., & Moscoso, A. (2011). Consideraciones y seleccio´n de especies vegetales para su implementacio´n en ecoenvolventes arquitecto´nicos: una herramienta metodolo´gica. Revista Nodo, 5(10), 5-20. Recuperado de: http://csifesvr.uan.edu.co/index.php/nodo/article/view/138
Ciampi, M., Leccese, F., & Tuoni, G. (2003). Ventilated facades energy performance in summer cooling of buildings. Solar Energy(75), 491-502. DOI: https://doi.org/10.1016/j.solener.2003.09.010.
Design Builder. (19 de octubre de 2017). Design Builder Software Ltd. Recuperado de: https://www.designbuilder.co.uk/
EnergyPlus. (19 de Octubre de 2017). EneryPlus. Recuperado de: https://energyplus.net/
Fantucci, S., Marinosci, C., Serra, V., & Carbonaro, C. (2017). Thermal performance assessment of an opaque ventilated façade in the summer period: calibration of a simulation model through in-field measurements. Energy Procedia(111), 619-628. DOI: https://doi.org/10.1016/j.egypro.2017.03.224
Gagliano, A., Patania, F., Nocera, F., & Signorello, C. (2014). Assessment of the dynamic thermal performance of massive buildings. Energy and Buildings (72), 361-370. DOI: https://doi.org/10.1016/j.enbuild.2013.12.060
Gaillard, L., Giroux-Julien, S., Ménézo, C., & Pabiou, H. (2014). Experimental evaluation of a naturally ventilated PV double-skin building envelope in real operating conditions. Solar Energy(103), 223-241. DOI: http://dx.doi.org/10.1016/j.solener.2014.02.018
Ghaffarianhoseini, A., Ghaffarianhoseini, A., Berardi, U., Tookey, J., Hin Wa Li, D., & Kariminia, S. (2016). Exploring the advantages and challenges of double-skin façades (DSFs). Renewable and Sustainable Energy Reviews(60), 1052-1065. DOI: https://doi.org/10.1016/j.rser.2016.01.130
Giancola, E., Sanjuan, C., Blanco, E., & Heras, M. R. (2012). Experimental assessment and modelling of the performance of an open joint ventilated façade during actual operating conditions in Mediterranean climate. Energy and Buildings(54), 363-375. DOI: http://dx.doi.org/10.1016/j.enbuild.2012.07.035
Gratia, E., & De Herde, A. (2004). Optimal operation of a south double-skin facade. Energy and Buildings(36), 41-60. DOI: https://doi.org/10.1016/j.enbuild.2004.05.004
Gratia, E., & De Herde, A. (2007). Guidelines for improving natural daytime ventilation in an office building with a double-skin facade. Solar Energy(81), 435-448. DOI: https://doi.org/10.1016/j.solener.2006.08.006
Haase, M., Silva, F. M., & Amato, A. (2009). Simulation of ventilated facades in hot and humid climates. Energy and Buildings(41), 361-373. DOI: https://doi.org/10.1016/j.enbuild.2008.11.008
Høseggen, R., Wachenfeldt, B. J., & Hanssen, S. O. (2008). Building simulation as an assisting tool in decision making Case study: With or without a double-skin façade Energy and Buildings(40), 821-827. DOI: https://doi.org/10.1016/j.enbuild.2007.05.015
Jentsch, M. F., Bahaj, A. S., & James, P. A. (2008). Climate change future proofing of buildings Generation and assessment of building simulation weather files. Energy and Buildings, 40(12). 2148-2168. DOI: https://doi.org/10.1016/j.enbuild.2008.06.005
Kim, D.-W., & Park, C.-S. (2011). Difficulties and limitations in performance simulation of a double skin façade with EnergyPlus. Energy and Buildings(43), 3635-3645. DOI: https://doi.org/10.1016/j.enbuild.2011.09.038
Marinosci, C., Semprini, G., & Morini, G. (2014). Experimental analysis of the summer thermal performances of a naturally ventilated rainscreen façade building. Energy and Buildings (72), 280-287. DOI: http://dx.doi.org/10.1016/j.enbuild.2013.12.044
Marinosci, C., Strachan, P., Semprini, G., & Morini, G. (2011). Empirical validation and modelling of a naturally ventilated rainscreen façade building. Energy and Buildings(43), 853-863. DOI: https://doi.org/10.1016/j.enbuild.2010.12.005
Mateus, N. M., Pinto, A., & Carrilho da Graça, G. (2014). Validation of EnergyPlus thermal simulation of a double skin naturallyand mechanically ventilated test cell. Energy and Buildings(75), 511-522. DOI: http://dx.doi.org/10.1016/j.enbuild.2014.02.043
Meteonorm. (22 de 02 de 2018). Meteonorm. Recuperado de: http://www.meteonorm.com/
Peci López, F., Jensen, R., Heiselberg, P., & Ruiz de Adana, M. (2012).Experimental analysis and model validation of an opaque ventilated facade. Building and Environment(56), 265-275. DOI: https://doi.org/10.1016/j.buildenv.2012.03.017
Poirazis, H. (2004). Double Skin Façades for Office Buildings. Lund: Division of Energy and Building Design Department of Construction and Architecture Lund Institute of Technology, Division of Energy and Building Design, 61-66. Recuperado de: http://www.ebd.lth.se/fileadmin/energi_byggnadsdesign/images/Publikationer/Bok-EBD-R3-G5_alt_2_Harris.pdf
Pyrgou, A., Castaldo, V. L., Pisello, A. L., Cotana, F., & Santamouris, M. (2017). Differentiating responses of weather files and local climate change to explain variations in building thermal-energy performance simulations. Solar Energy(153), 224-237. DOI: http://dx.doi.org/10.1016/j.solener.2017.05.040
Rubiano Martín, M. A. (2015). Ventajas del uso de fachada ventilada, en Giradot (Colombia). Revista Nodo, 10(19), 111-120. Recuperado de: http://revistas.uan.edu.co/index.php/nodo/article/view/538
Stec, W. J., Paassen, A. H., & Maziarz, A. (2005). Modelling the double skin façade with plants. Energy and Buildings(37), 419-427. DOI: https://doi.org/10.1016/j.enbuild.2004.08.008
Theodosiou, T., Tsikaloudaki, K., & Bikas, D. (2017). Analysis of the Thermal Bridging Effect on Ventilated Facades. Procedia Environmental Sciences(38), 397-404 DOI: https://doi.org/10.1016/j.proenv.2017.03.121
U.S. Department of Energy. (22 de 02 de 2018). energy.gov. Recuperado de: https://energy.gov/
Varini, C. (2011). ECOENVOLVENTES R & D. Passive architectural envelopes high thermal performance and low environmental impact for tropical geo-climatic zones with cultivated native woods and plants. SB Helsinki World Sustainable Building Conference. Helsinki: Finnish Association of Civil engineers RIL and VTT Technical Research Centre of Finland. Recuperdao de: http://www.irbnet.de/daten/iconda/CIB_DC22949.pdf
Varini, C. (2013). ECOENVELOPES R&D. Passive architectural envelopes high thermal performance and low environmental impact for tropical geoclimatic zones. Informes de la Construcción, 65, 23-30. doi: https://doi.org/10.3989/ic.11.147
Velasco, R., & Robles, D. (2011). Eco-envolventes: A parametric design approach to generate and evaluate façade configurations for hot and humid climates . eCAADe 2011 Respecting fragile places : proceedings of the 29th Conference on Education in Computer Aided Architectural Design in Europe (págs. 539-548). Ljubljana: edited by Tadeja Zupancic ... [et al.]. - Brussels: Education in Computer Aided Architectural Design in Europe; Ljubljana: Faculty of Architecture.
Velasco, R., Hudson, R., & Luciani, S. (2017). Tools and strategies to improve climate-driven façade design in the tropics: a pilot project for Colombia. 12th Conference on Advanced Building Skins (págs. 995-1003). Bern: Advanced Building Skins GmbH.
Vernay, D. G., Raphael, B., & Smith, I. F. (2014). Augmenting simulations of airflow around buildings using field measurements. Advanced Engineering Informatics(28), 412-424. DOI: http://dx.doi.org/10.1016/j.aei.2014.06.003
dc.rights.spa.fl_str_mv Rodrigo Velasco, Roland Hudson, Sara Luciani - 2018
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
rights_invalid_str_mv Rodrigo Velasco, Roland Hudson, Sara Luciani - 2018
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv text/html
application/pdf
application/xml
application/x-rar
dc.publisher.spa.fl_str_mv Universidad Católica de Colombia
dc.source.spa.fl_str_mv https://revistadearquitectura.ucatolica.edu.co/article/view/1726
institution Universidad Católica de Colombia
bitstream.url.fl_str_mv https://repository.ucatolica.edu.co/bitstreams/484d70a6-3f17-4e0a-98e4-31ad747f0e4d/download
bitstream.checksum.fl_str_mv e859f58820242b442268e6b18990a204
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Católica de Colombia - RIUCaC
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814256319009390592
spelling Luciani-Mejía, Saracc4e865c-b53b-4a3f-b73e-b550b1e5b8e4300Velasco-Gómez, Rodrigoce56ccb8-20a3-4c77-b295-e6062fe01a7d300Hudson, Roland8e4f8522-b249-4623-a86e-c5e567197a0e3002018-08-15 00:00:002023-01-23T16:05:30Z2018-08-15 00:00:002023-01-23T16:05:30Z2018-08-15Con el objetivo de aportar a la reducción de impactos en la construcción de edificaciones fueron diseñados varios sistemas de fachadas ventiladas y convencionales, involucrando fachadas opacas, elementos vegetales y cámaras de aire. Tales sistemas fueron evaluados con simulaciones ambientales y mediciones en prototipo en las diversas etapas de la investigación, lo que permitió la comparación de resultados y la identificación de comportamiento en términos de confort térmico. Los resultados de las simulaciones frente a mediciones vislumbraron dos cuestiones: las discrepancias y similitudes entre los datos de entrada y salida en los dos tipos de proceso mencionados; así como la utilidad de las fachadas ventiladas opacas en clima tropical húmedo como Girardot, lo que sugirió una última etapa de evaluación de estrategias de diseño pasivo en la búsqueda del confort térmico y la solemnidad en el proyecto arquitectónico.Aiming to contribute to impact reduction in the construction of buildings, various systems of ventilated and conventional facades were designed, involving opaque facades, plant elements, and air chambers. Such systems were evaluated through environmental simulations and prototype measurements at various stages of the project, which allowed comparing results and identifying their behavior in terms of thermal comfort. The results of these simulations compared against measurements highlighted two issues: discrepancies and similarities between inputs and outputs in the above mentioned two process types; as well as the performance of opaque ventilated facades in humid tropical climate such as in Girardot, which suggested a last stage to evaluate passive design strategies in search for thermal comfort and sustainability in architectural projects.text/htmlapplication/pdfapplication/xmlapplication/x-rar10.14718/RevArq.2018.20.2.17262357-626X1657-0308https://hdl.handle.net/10983/28838https://doi.org/10.14718/RevArq.2018.20.2.1726spaUniversidad Católica de Colombiahttps://revistadearquitectura.ucatolica.edu.co/article/download/1726/1934https://revistadearquitectura.ucatolica.edu.co/article/download/1726/2339https://revistadearquitectura.ucatolica.edu.co/article/download/1726/2456https://revistadearquitectura.ucatolica.edu.co/article/download/1726/2826Núm. 2 , Año 2018 : Julio - diciembre7726220Revista de Arquitectura (Bogotá)Afonso, C., & Oliveira, A. (2000). Solar chimneys: simulation and experiment. Energy and Buildings (32), 71-79. DOI: https://doi.org/10.1016/S0378-7788(99)00038-9Andarini, R. (2014). The Role of Building Thermal Simulation for Energy Efficient Building Design. Energy Procedia (47), 217-226. DOI: https://doi.org/10.1016/j.egypro.2014.01.217Andelkovic, A. S., Mujan, I., & Dakic, S. (2016). Experimental validation of aEnergyPlus model: Application of a multi-storey naturally ventilated double skin façade. Energy and Buildings(118), 27-36. DOI: https://doi.org/10.1016/j.enbuild.2016.02.045Aparicio-Fernández, C., Vivancos, J.-L., Ferrer-Gisbert, P., & Royo-Pastor, R. (2014). Energy performance of a ventilated façade by simulation with experimental validation. Applied Thermal Engineering (66), 563-570. DOI: http://dx.doi.org/10.1016/j.applthermaleng.2014.02.041Balocco, C. (2002). A simple model to study ventilated facades energy performance. Energy and Buildings(34), 469-475. DOI: https://doi.org/10.1016/S0378-7788(01)00130-XBarbosa, S., & Ip, K. (2014). Perspectives of double skin façades for naturallyventilated buildings: A review . Renewable and Sustainable Energy Reviews(40), 1019-1029. DOI: https://doi.org/10.1016/j.rser.2014.07.192Blanco, J. M., Buruaga, A., Rojí, E., Cuadrado, J., & Pelaz, B. (2016). Energy assessment and optimization of perforated metal sheet doubleskin façades through Design Builder; A case study in Spain. Energy and Buildings(111), 326-336. DOI: http://dx.doi.org/10.1016/j.enbuild.2015.11.053Bolaños, T., & Moscoso, A. (2011). Consideraciones y seleccio´n de especies vegetales para su implementacio´n en ecoenvolventes arquitecto´nicos: una herramienta metodolo´gica. Revista Nodo, 5(10), 5-20. Recuperado de: http://csifesvr.uan.edu.co/index.php/nodo/article/view/138Ciampi, M., Leccese, F., & Tuoni, G. (2003). Ventilated facades energy performance in summer cooling of buildings. Solar Energy(75), 491-502. DOI: https://doi.org/10.1016/j.solener.2003.09.010.Design Builder. (19 de octubre de 2017). Design Builder Software Ltd. Recuperado de: https://www.designbuilder.co.uk/EnergyPlus. (19 de Octubre de 2017). EneryPlus. Recuperado de: https://energyplus.net/Fantucci, S., Marinosci, C., Serra, V., & Carbonaro, C. (2017). Thermal performance assessment of an opaque ventilated façade in the summer period: calibration of a simulation model through in-field measurements. Energy Procedia(111), 619-628. DOI: https://doi.org/10.1016/j.egypro.2017.03.224Gagliano, A., Patania, F., Nocera, F., & Signorello, C. (2014). Assessment of the dynamic thermal performance of massive buildings. Energy and Buildings (72), 361-370. DOI: https://doi.org/10.1016/j.enbuild.2013.12.060Gaillard, L., Giroux-Julien, S., Ménézo, C., & Pabiou, H. (2014). Experimental evaluation of a naturally ventilated PV double-skin building envelope in real operating conditions. Solar Energy(103), 223-241. DOI: http://dx.doi.org/10.1016/j.solener.2014.02.018Ghaffarianhoseini, A., Ghaffarianhoseini, A., Berardi, U., Tookey, J., Hin Wa Li, D., & Kariminia, S. (2016). Exploring the advantages and challenges of double-skin façades (DSFs). Renewable and Sustainable Energy Reviews(60), 1052-1065. DOI: https://doi.org/10.1016/j.rser.2016.01.130Giancola, E., Sanjuan, C., Blanco, E., & Heras, M. R. (2012). Experimental assessment and modelling of the performance of an open joint ventilated façade during actual operating conditions in Mediterranean climate. Energy and Buildings(54), 363-375. DOI: http://dx.doi.org/10.1016/j.enbuild.2012.07.035Gratia, E., & De Herde, A. (2004). Optimal operation of a south double-skin facade. Energy and Buildings(36), 41-60. DOI: https://doi.org/10.1016/j.enbuild.2004.05.004Gratia, E., & De Herde, A. (2007). Guidelines for improving natural daytime ventilation in an office building with a double-skin facade. Solar Energy(81), 435-448. DOI: https://doi.org/10.1016/j.solener.2006.08.006Haase, M., Silva, F. M., & Amato, A. (2009). Simulation of ventilated facades in hot and humid climates. Energy and Buildings(41), 361-373. DOI: https://doi.org/10.1016/j.enbuild.2008.11.008Høseggen, R., Wachenfeldt, B. J., & Hanssen, S. O. (2008). Building simulation as an assisting tool in decision making Case study: With or without a double-skin façade Energy and Buildings(40), 821-827. DOI: https://doi.org/10.1016/j.enbuild.2007.05.015Jentsch, M. F., Bahaj, A. S., & James, P. A. (2008). Climate change future proofing of buildings Generation and assessment of building simulation weather files. Energy and Buildings, 40(12). 2148-2168. DOI: https://doi.org/10.1016/j.enbuild.2008.06.005Kim, D.-W., & Park, C.-S. (2011). Difficulties and limitations in performance simulation of a double skin façade with EnergyPlus. Energy and Buildings(43), 3635-3645. DOI: https://doi.org/10.1016/j.enbuild.2011.09.038Marinosci, C., Semprini, G., & Morini, G. (2014). Experimental analysis of the summer thermal performances of a naturally ventilated rainscreen façade building. Energy and Buildings (72), 280-287. DOI: http://dx.doi.org/10.1016/j.enbuild.2013.12.044Marinosci, C., Strachan, P., Semprini, G., & Morini, G. (2011). Empirical validation and modelling of a naturally ventilated rainscreen façade building. Energy and Buildings(43), 853-863. DOI: https://doi.org/10.1016/j.enbuild.2010.12.005Mateus, N. M., Pinto, A., & Carrilho da Graça, G. (2014). Validation of EnergyPlus thermal simulation of a double skin naturallyand mechanically ventilated test cell. Energy and Buildings(75), 511-522. DOI: http://dx.doi.org/10.1016/j.enbuild.2014.02.043Meteonorm. (22 de 02 de 2018). Meteonorm. Recuperado de: http://www.meteonorm.com/Peci López, F., Jensen, R., Heiselberg, P., & Ruiz de Adana, M. (2012).Experimental analysis and model validation of an opaque ventilated facade. Building and Environment(56), 265-275. DOI: https://doi.org/10.1016/j.buildenv.2012.03.017Poirazis, H. (2004). Double Skin Façades for Office Buildings. Lund: Division of Energy and Building Design Department of Construction and Architecture Lund Institute of Technology, Division of Energy and Building Design, 61-66. Recuperado de: http://www.ebd.lth.se/fileadmin/energi_byggnadsdesign/images/Publikationer/Bok-EBD-R3-G5_alt_2_Harris.pdfPyrgou, A., Castaldo, V. L., Pisello, A. L., Cotana, F., & Santamouris, M. (2017). Differentiating responses of weather files and local climate change to explain variations in building thermal-energy performance simulations. Solar Energy(153), 224-237. DOI: http://dx.doi.org/10.1016/j.solener.2017.05.040Rubiano Martín, M. A. (2015). Ventajas del uso de fachada ventilada, en Giradot (Colombia). Revista Nodo, 10(19), 111-120. Recuperado de: http://revistas.uan.edu.co/index.php/nodo/article/view/538Stec, W. J., Paassen, A. H., & Maziarz, A. (2005). Modelling the double skin façade with plants. Energy and Buildings(37), 419-427. DOI: https://doi.org/10.1016/j.enbuild.2004.08.008Theodosiou, T., Tsikaloudaki, K., & Bikas, D. (2017). Analysis of the Thermal Bridging Effect on Ventilated Facades. Procedia Environmental Sciences(38), 397-404 DOI: https://doi.org/10.1016/j.proenv.2017.03.121U.S. Department of Energy. (22 de 02 de 2018). energy.gov. Recuperado de: https://energy.gov/Varini, C. (2011). ECOENVOLVENTES R & D. Passive architectural envelopes high thermal performance and low environmental impact for tropical geo-climatic zones with cultivated native woods and plants. SB Helsinki World Sustainable Building Conference. Helsinki: Finnish Association of Civil engineers RIL and VTT Technical Research Centre of Finland. Recuperdao de: http://www.irbnet.de/daten/iconda/CIB_DC22949.pdfVarini, C. (2013). ECOENVELOPES R&D. Passive architectural envelopes high thermal performance and low environmental impact for tropical geoclimatic zones. Informes de la Construcción, 65, 23-30. doi: https://doi.org/10.3989/ic.11.147Velasco, R., & Robles, D. (2011). Eco-envolventes: A parametric design approach to generate and evaluate façade configurations for hot and humid climates . eCAADe 2011 Respecting fragile places : proceedings of the 29th Conference on Education in Computer Aided Architectural Design in Europe (págs. 539-548). Ljubljana: edited by Tadeja Zupancic ... [et al.]. - Brussels: Education in Computer Aided Architectural Design in Europe; Ljubljana: Faculty of Architecture.Velasco, R., Hudson, R., & Luciani, S. (2017). Tools and strategies to improve climate-driven façade design in the tropics: a pilot project for Colombia. 12th Conference on Advanced Building Skins (págs. 995-1003). Bern: Advanced Building Skins GmbH.Vernay, D. G., Raphael, B., & Smith, I. F. (2014). Augmenting simulations of airflow around buildings using field measurements. Advanced Engineering Informatics(28), 412-424. DOI: http://dx.doi.org/10.1016/j.aei.2014.06.003Rodrigo Velasco, Roland Hudson, Sara Luciani - 2018info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/https://revistadearquitectura.ucatolica.edu.co/article/view/1726Bioclimatic architectureClimateClimatic dataArchitectural designSimulation modelTemperatureArquitectura bioclimáticaClimaDatos climáticosDiseño arquitectónicoModelo de simulaciónTemperaturaArquitetura bioclimáticaClimaDados climáticosDesenho arquitetônicoModelo de simulaçãoTemperaturaEcoenvolventes : análisis del uso de fachadas ventiladas en clima cálido-húmedo.Eco-friendly coverings : analysis of the use of ventilated facades in hot, humid weather.Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2664https://repository.ucatolica.edu.co/bitstreams/484d70a6-3f17-4e0a-98e4-31ad747f0e4d/downloade859f58820242b442268e6b18990a204MD5110983/28838oai:repository.ucatolica.edu.co:10983/288382023-03-24 16:36:07.441https://creativecommons.org/licenses/by-nc-sa/4.0/Rodrigo Velasco, Roland Hudson, Sara Luciani - 2018https://repository.ucatolica.edu.coRepositorio Institucional Universidad Católica de Colombia - RIUCaCbdigital@metabiblioteca.com