Combinación de ozono y nanopartículas magnéticas verdes para la degradación de azul de metileno en agua residual sintética textil

Trabajo de investigación

Autores:
Ramírez-Salazar, Yesica Liliana
Valero-Melo, Lizeth Natalia
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Católica de Colombia
Repositorio:
RIUCaC - Repositorio U. Católica
Idioma:
spa
OAI Identifier:
oai:repository.ucatolica.edu.co:10983/26635
Acceso en línea:
https://hdl.handle.net/10983/26635
Palabra clave:
REMOCIÓN
OZONIZACIÓN
MAGNETITA
AZUL DE METILENO
NANOPARTICULAS
CONTAMINACIÓN
Rights
openAccess
License
Derechos Reservados - Universidad Católica de Colombia, 2021
id UCATOLICA2_0767d468850592572d40f938332f8d46
oai_identifier_str oai:repository.ucatolica.edu.co:10983/26635
network_acronym_str UCATOLICA2
network_name_str RIUCaC - Repositorio U. Católica
repository_id_str
dc.title.spa.fl_str_mv Combinación de ozono y nanopartículas magnéticas verdes para la degradación de azul de metileno en agua residual sintética textil
title Combinación de ozono y nanopartículas magnéticas verdes para la degradación de azul de metileno en agua residual sintética textil
spellingShingle Combinación de ozono y nanopartículas magnéticas verdes para la degradación de azul de metileno en agua residual sintética textil
REMOCIÓN
OZONIZACIÓN
MAGNETITA
AZUL DE METILENO
NANOPARTICULAS
CONTAMINACIÓN
title_short Combinación de ozono y nanopartículas magnéticas verdes para la degradación de azul de metileno en agua residual sintética textil
title_full Combinación de ozono y nanopartículas magnéticas verdes para la degradación de azul de metileno en agua residual sintética textil
title_fullStr Combinación de ozono y nanopartículas magnéticas verdes para la degradación de azul de metileno en agua residual sintética textil
title_full_unstemmed Combinación de ozono y nanopartículas magnéticas verdes para la degradación de azul de metileno en agua residual sintética textil
title_sort Combinación de ozono y nanopartículas magnéticas verdes para la degradación de azul de metileno en agua residual sintética textil
dc.creator.fl_str_mv Ramírez-Salazar, Yesica Liliana
Valero-Melo, Lizeth Natalia
dc.contributor.advisor.none.fl_str_mv Marimón-Bolívar, Wilfredo
Marimón-Bolívar, Wilfredo
dc.contributor.author.none.fl_str_mv Ramírez-Salazar, Yesica Liliana
Valero-Melo, Lizeth Natalia
dc.subject.proposal.spa.fl_str_mv REMOCIÓN
OZONIZACIÓN
MAGNETITA
AZUL DE METILENO
NANOPARTICULAS
CONTAMINACIÓN
topic REMOCIÓN
OZONIZACIÓN
MAGNETITA
AZUL DE METILENO
NANOPARTICULAS
CONTAMINACIÓN
description Trabajo de investigación
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-09-17T01:55:14Z
dc.date.available.none.fl_str_mv 2021-09-17T01:55:14Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_fa2ee174bc00049f
http://purl.org/coar/version/c_71e4c1898caa6e32
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.citation.none.fl_str_mv Ramírez-Salazar, Y. L. y Valero-Melo, L. N. (2021). Combinación de ozono y nanopartículas magnéticas verdes para la degradación de azul de metileno en agua residual sintética textil. Trabajo de Grado. Universidad Católica de Colombia. Facultad de Ingeniería. Programa de Ingeniería Civil. Bogotá, Colombia
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10983/26635
identifier_str_mv Ramírez-Salazar, Y. L. y Valero-Melo, L. N. (2021). Combinación de ozono y nanopartículas magnéticas verdes para la degradación de azul de metileno en agua residual sintética textil. Trabajo de Grado. Universidad Católica de Colombia. Facultad de Ingeniería. Programa de Ingeniería Civil. Bogotá, Colombia
url https://hdl.handle.net/10983/26635
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv ACNUR Comité Español. (2019). Escasez de agua en el mundo: causas y consecuencias. La Agencia de La ONU Para Los Refugiados Comité Español. https://eacnur.org/blog/escasez-agua-en-el-mundo-tc_alt45664n_o_pstn_o_pst/#:~:text=Existen diversas causas que producen, La sequía.
ACNUR Comité Español. (2019). Escasez de agua en el mundo: causas y consecuencias. UNHCR ACNUR La Agencia de La ONU Para Los Refugiados Comité Español. https://eacnur.org/blog/escasez-agua-en-el-mundo-tc_alt45664n_o_pstn_o_pst/#:~:text=Existen diversas causas que producen,La sequía
Albis, A., López, A., & Romero, M. (2017). Remoción de azul de metileno de soluciones acuosas utilizando cáscara de yuca (Manihot esculenta) modificada con ácido fosfórico. Prospectiva, 15, 60–73.
Almazan, J. (2016). Síntesis de nanopartículas de magnetita caracterizadas por espectroscopia Mossbauer [Universidad Nacional Autónoma de México]. http://ri.uaemex.mx/bitstream/handle/20.500.11799/65705/TESISMCMJonathan.pdf?sequence=1&isAllowed=y
Angulo, L., & Molina, J. D. (2020). Diseño de un sistema de tratamiento de aguas residuales prevenientes de curtiembre con carbón activado modificado con nanopartículas magnetizadas. Universidad Católica de Colombia.
Annuar, A., Mat, N., Muhammad, R., Jafaar, J., & Marbelia, L. (2020). Improved bubbling for membrane fouling control in filtration of palm oil mill effluent anaerobic digester sludge. ScienceDirect, 36. https://doi.org/10.1016/j.jwpe.2020.101350
Aquae fundación. (2020). ¿Qué es el agua?: tipos, composición y funciones. La Fundación Del Agua. https://www.fundacionaquae.org/que-es-el-agua/
Bae, M., Lee, H., Yoo, K., & Kim, S. (2021). Copper(I) selective chemisorption on magnetite (Fe3O4) over gold(I) ions in chloride solution with cyanide. Hydrometallurgy, 201, 105560. https://doi.org/10.1016/j.hydromet.2021.105560
Basu, M., Guha, A. K., & Ray, L. (2017). Adsorption of Lead on Cucumber Peel. Journal of Cleaner Production, 151, 603–615. https://doi.org/10.1016/j.jclepro.2017.03.028
Belver, C., Bedia, J., Garzon, M., Ramos, V., Gomez, A., & Rodriguez, J. (2020). Advanced Oxidation Process. ScienceDirect, 41–98. https://doi.org/10.1016/B978-0-12-818334-2.00003-1
Bes Monge, S., Silva, A., & Bengoa, C. (2018). Manual técnico sobre procesos de oxidación avanzada aplicados al tratamiento de aguas residuales industriales (RED TRITÓN 316RT0508 (ed.)). PROGRAMA CYTED. http://www.cyted.org/sites/default/files/manual_sobre_oxidaciones_avanzadas_0.pdf
Brito, N., Betancourt, P., & Rodríguez, D. (2010). Ozonación de fenol en soluciones acuosas empleando magnetita como catalizador en sistemas ozono y ozono-radiación ultravioleta. Scielo, 25(0798–4065). http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0798-40652010000200012
Carpenter, D. (2011). Health effects of persistent organic pollutants: the challenge for the Pacific Basin and for the world. Degruyter, 26(1). https://www.degruyter.com/view/journals/reveh/26/1/article-p61.xml
Carrillo, Y., & Herrera, J. (2019). Remoción de azul de metileno de cuerpos de agua utilizando nanopartículas magnéticas Fe3O4. Universidad Católica de Colombia.
Castellar, G., Angulo, E., Zambrano, A., & Charris, D. (2013). Equilibrio de adsorción del colorante azul de metileno sobre carbón activado. Revista U.D.C.A Act. & Div. Cient.
Castro, L., & Herrera, E. (2013). Degradación y decoloración de agua contaminada con colorantes textiles mediante procesos de oxidación avanzada. Revistas TEC, 27, 40–50. https://doi.org/https://doi.org/10.18845/tm.v27i2.1807
Ceretta, M., Vieira, Y., Wolski, E., Foletto, E., & Silvestri, S. (2020). Biological degradation coupled to photocatalysis by ZnO/polypyrrole composite for the treatment of real textile wastewater. ScienceDirect, 35(101230). https://doi.org/10.1016/j.jwpe.2020.101230
Chaparro, C., Cabanzo, R., & Mejia, E. (2014). ESTUDIO DE LA ADSORCIÓN DE AZUL DE METILENO SOBRE ÓXIDO DE GRAFENO. Revista Colombiana de Materiales N.5, 131–139. https://doi.org/2256-1013
Chen, H., Deng, X., Ding, G., & Qiao, Y. (2019). The synthesis, adsorption mechanism and application of polyethyleneimine functionalized magnetic nanoparticles for the analysis of synthetic colorants in candies and beverages. Food Chemistry, 293, 340–347. https://doi.org/10.1016/j.foodchem.2019.04.111
Chico, D., Aldaya, M., & Garrido, A. (2014). ¿Cuánta agua requiere la confección de un pantalón vaquero? https://www.upm.es/UPM/SalaPrensa/Noticias?fmt=detail&prefmt=articulo&id=e05b276248673410VgnVCM10000009c7648a____
Clemente, P. (2008). Aplicación de procesos de oxidación avanzada (Fotocatálisis solar) para el tratamiento y reutilización de efluentes textiles. http://hdl.handle.net/10251/2241
Coates, J. (2006). Interpretation of Infrared Spectra, A Practical Approach. Wiley Online Library, Encycloped. https://onlinelibrary.wiley.com/doi/full/10.1002/9780470027318.a5606
Cuando Cerón, C. E. (2013). Medición en línea de contaminantes en aguas residuales de la industria textil durante su tratamiento químico. Universidad Nacional Autónoma de México.
Denchak, M. (2018). Water Pollution: Everything You Need to Know. NRDC. https://www.nrdc.org/stories/water-pollution-everything-you-need-know#whatis
Doǧan, M., Abak, H., & Alkan, M. (2009). Adsorption of methylene blue onto hazelnut shell: Kinetics, mechanism and activation parameters. Journal of Hazardous Materials, 164(1), 172–181. https://doi.org/10.1016/j.jhazmat.2008.07.155
Doǧan, M., Alkan, M., Türkyilmaz, A., & Özdemir, Y. (2004). Kinetics and mechanism of removal of methylene blue by adsorption onto perlite. Journal of Hazardous Materials, 109(1–3), 141–148. https://doi.org/10.1016/j.jhazmat.2004.03.003
Du, J., & Zhang, B. (2020). Decontamination of heavy metal complexes by advanced oxidation processes: A review. Chinese Academy of Medical Sciences. https://www-sciencedirect-com.ezproxy.javeriana.edu.co/science/article/pii/S1001841720304502
Elwakeel, K. Z., & Guibal, E. (2015). Selective removal of Hg(II) from aqueous solution by functionalized magnetic-macromolecular hybrid material. Chemical Engineering Journal, 281, 345–359. https://doi.org/10.1016/j.cej.2015.05.110
Erkan, H., Çağlak, A., Soysaloglu, A., Takatas, B., & Engin, O. (2020). Performance evaluation of conventional membrane bioreactor and moving bed membrane bioreactor for synthetic textile wastewater treatment. ScienceDirect, 38. https://doi.org/10.1016/j.jwpe.2020.101631
Fernandez, C., & Suárez, R. (2020). Agua que no has de beber. EL TIEMPO. https://www.eltiempo.com/salud/como-es-la-calidad-del-agua-en-colombia-340578
Gabelman, A. (2017). Crossflow Membrane Filtration Essentials. ProQuest, 4. https://search-proquest-com.ezproxy.javeriana.edu.co/sciencejournals/docview/1889744197/8A826138D85C4E0DPQ/2?accountid=13250
Gleick, P. (1993). Recursos mundiales de agua dulce. Agua En Crisis: Una Guía Para Los Recursos de Agua Dulce Del Mundo. https://cienciaencanoa.blogspot.com/2012/05/cuanta-agua-hay-dentro-sobre-y-por.html
Gomez, N. (2012). “Recubrimientos mesoporosos y mesoestructurados de TiO2-anatasa por el método sol-gel para aplicaciones en sistemas fotocatalíticos.” https://pdfs.semanticscholar.org/43ce/d3fa88386ac5ccd9422da60f6f28f574e605.pdf
Gonzalez, C. (2006). ¿Qué es la ley de agua limpia? Agricultura.Uprm. http://agricultura.uprm.edu/escorrentia/index.html
Grimlat, J. (2013). Los compuestos orgánicos persistentes en la biosfera: el enemigo global e invisible. Metode. https://metode.es/revistas-metode/monograficos/los-compuestos-organicos-persistentes-en-la-biosfera-el-enemigo-global-e-invisible.html
Guaypatin, J. (2020). Estudio de la cinética de adsorción y desorción de colorantes aniónico y catiónico usando una arcilla con altos contenidos de hierro. https://doi.org/UNACH- FI-AMB
Hamdaoui, O., & Naffrechoux, E. (2007). Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. Journal of Hazardous Materials, 147(1–2), 381–394. https://doi.org/10.1016/j.jhazmat.2007.01.021
Hameed, B. H., Din, A. T. M., & Ahmad, A. L. (2007). Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies. Journal of Hazardous Materials, 141(3), 819–825. https://doi.org/10.1016/j.jhazmat.2006.07.049
Heng, Z., Yongli, H., Leiduo, L., Gang, Y., & Bo, L. (2020). Catalytic ozonation of Bisphenol A in aqueous solution by Fe3O4–MnO2 magnetic composites: Performance, transformation pathways and mechanism. ScienceDirect, 245. https://doi.org/10.1016/j.seppur.2019.116449
Ibañez, J. (2015). Contaminación del Suelo y Salud Pública (Global Soil Forum). Madrimasd, Blogs. https://www.madrimasd.org/blogs/universo/2015/02/20/146182
Jimenez, N. (2016). Bioquímica del estrés oxidativo en Vegetales. Slideplayer. https://slideplayer.es/slide/9092566/
Kosmulski, M. (2004). pH-dependent surface charging and points of zero charge II. Update. Journal of Colloid and Interface Science, 275(1), 214–224. https://doi.org/10.1016/j.jcis.2004.02.029
Lobna, M., Chedly, T., Geissen, S., & Latifa, B. (2019). A comparative study on ozone, hydrogen peroxide and UV based advanced oxidation processes for efficient removal of diethyl phthalate in water. ScienceDirect, 363, 401–411. https://www-sciencedirect-com.ezproxy.javeriana.edu.co/science/article/pii/S0304389418308938
Mamani, J. B., Costa-Filho, A. J., Cornejo, D. R., Vieira, E. D., & Gamarra, L. F. (2013). Synthesis and characterization of magnetite nanoparticles coated with lauric acid. Materials Characterization, 81, 28–36. https://doi.org/10.1016/j.matchar.2013.04.001
Marimon, W. (2018). SÍNTESIS VERDE Y CARACTERIZACIÓN DE NANOPARTÍCULAS MAGNÉTICAS (MNPs). In INGENIERÍA DE NANOPARTÍCULAS MAGNÉTICAS PARA LA REMOCIÓN DE METALES PESADOS EN AGUAS. (pp. 32–36). Pontificia Universidad Javeriana. https://repository.javeriana.edu.co/bitstream/handle/10554/39649/Documento.pdf?sequence=1&isAllowed=y
Mata-Miranda, M. M., Guerrero-Robles, C. I., Rojas-López, M., Delgado-Macuil, R. J., González-Díaz, C. A., Sánchez-Monroy, V., Pérez-Ishiwara, D. G., & Vázquez-Zapién, G. J. (2017). Componentes Principales mediante Espectroscopia FTIR como Técnica de Caracterización Innovadora durante la Diferenciación de Células Madre Pluripotentes a Células Pancreáticas Principal Components by FTIR Spectroscopy as Innovative Characterization Technique during Differentiation of Pluripotent Stem Cells to Pancreatic Cells. 38(1), 225–234. https://doi.org/10.17488/RMIB.38.1.17
Mazille, F. (2020). Advanced Oxidation Processes. SSWM. https://sswm.info/sswm-university-course/module-6-disaster-situations-planning-and-preparedness/further-resources-0/advanced-oxidation-processes
RESOLUCIÓN 1207 DE 2014, 12 (2014). http://parquearvi.org/wp-content/uploads/2016/11/Decreto-1207-de-2014.pdf
Moreno, H. S., & Romero, J. C. (2019). Implementación de nanopartículas de arcilla modificada magnéticamente para la potabilización de agua proveniente del río Cuja. Universidad Católica de Colombia.
Nacho. (2016). MAGNETITA. ROCAS Y MINERALES. https://www.rocasyminerales.net/magnetita/
Nathanson, J. (2020). Wastewater treatment. Encyclopædia Britannica, Inc. https://www.britannica.com/technology/wastewater-treatment/Oxidation-pond
NOAA. (2020). Water cycle. National Oceanic and Atmospheric Administration. https://www.noaa.gov/education/resource-collections/freshwater/water-cycle#:~:text=The water cycle shows the,form of rain and snow.
Noval, V., Ochoa, C., & Carriazo, J. (2016, September). Magnetita (Fe3O4): Una estructura inorgánica con múltiples aplicaciones en catálisis heterogénea. Revista Colombiana de Química. https://revistas.unal.edu.co/index.php/rcolquim/article/view/62831/63826#:~:text=Magnetita como catalizador en síntesis,a sus propiedades óxido-reductivas
Noyola, Adalberto; Morgan, J. G. L. (2013). Selección de tecologías para el tratamiento de aguas residuales municipales.
Organización Mundial de la Salud. (2006). Guías para la calidad del agua potable (OMS (ed.); 3rd ed.). Ediciones de la OMS. https://www.who.int/water_sanitation_health/dwq/gdwq3_es_fulll_lowsres.pdf?ua=1
Pérez, A., Andrade, E., & Zambrano, T. (2018). Ozonización De Residuos Líquidos Textiles Para Remoción De Sólidos Suspendidos Totales, Demandas Química Y Bioquímica De Oxígeno, Grasas Y Aceites. European Scientific Journal, 14, 8. https://doi.org/10.19044/esj.2018.v14n3p40
Plazinski, W., Dziuba, J., & Rudzinski, W. (2013). Modeling of sorption kinetics: the pseudo-second order equation and the sorbate intraparticle diffusivity. https://doi.org/10.1007/s10450-013-9529-0
Radon, A., Łoński, S., & Babilase, R. (2020). Influence of magnetite nanoparticles surface dissolution, stabilization and functionalization by malonic acid on the catalytic activity, magnetic and electrical properties. ScienceDirect, 607(125446). https://doi.org/10.1016/j.colsurfa.2020.125446
Rafiul, I. (2020). Water pollution due to textile industry. Textiletoday. https://www.textiletoday.com.bd/water-pollution-due-textile-industry/#:~:text=Cotton is a major raw,contaminate the surrounding water bodies.
Ramos, F., & Blanco, B. (2017). DECOLORACIÓN Y DEGRADACIÓN DE AZUL DE METILENO PRESENTE EN AGUA [Universidad Libre de Colombia]. https://repository.unilibre.edu.co/bitstream/handle/10901/11182/TRABAJO DE GRADO_Fernando Ramos y Brayan Banco_CorreccionesJunio.pdf?sequence=1&isAllowed=y
Remtavares. (2008). Aplicación de la ozonización en el tratamiento de aguas: descripción y funcionamiento. Madrimasd, Blogs. https://www.madrimasd.org/blogs/remtavares/2008/01/16/82477#:~:text=La ozonización es ampliamente utilizada,aguas%2C tanto potables como residuales.&text=El método más ampliamente utilizado,eléctricas silenciosas” (Figura).
Rodriguez, E. (2018). Eliminación de microcontaminantes orgánicos presentes en aguas residuales urbanas mediante MBR combinado con ozidación avanzada y con filtración por membranas [Universidad de Alicante]. https://rua.ua.es/dspace/bitstream/10045/80430/1/tesis_edgardo_david_vasquez_rodriguez.pdf
TWI. (2020). WHAT ARE NANOPARTICLES? DEFINITION, SIZE, USES AND PROPERTIES. The Welding Institute. https://www.twi-global.com/technical-knowledge/faqs/what-are-nanoparticles
UN environment programme. (2019). Stockholm Convention. The Stockholm Convention on Persistent Organic Pollutants. http://www.pops.int/TheConvention/Overview/tabid/3351/Default.aspx
WHO. (2020). Persistent organic pollutants (POPs). World Healt Organization. https://www.who.int/foodsafety/areas_work/chemical-risks/pops/en/
Wu, K. H., Huang, W. C., Hung, W. C., & Tsai, C. W. (2021). Modified expanded graphite/Fe3O4 composite as an adsorbent of methylene blue: Adsorption kinetics and isotherms. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 266, 115068. https://doi.org/10.1016/j.mseb.2021.115068
Yang, S. T., Chen, S., Chang, Y., Cao, A., Liu, Y., & Wang, H. (2011). Removal of methylene blue from aqueous solution by graphene oxide. Journal of Colloid and Interface Science, 359(1), 24–29. https://doi.org/10.1016/j.jcis.2011.02.064
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Católica de Colombia, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Católica de Colombia, 2021
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 74 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Católica de Colombia
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
institution Universidad Católica de Colombia
bitstream.url.fl_str_mv https://repository.ucatolica.edu.co/bitstreams/b423ef00-ae74-43d6-a8a8-8024bed2b479/download
https://repository.ucatolica.edu.co/bitstreams/9c334399-869b-40b7-8861-c4085485cca1/download
https://repository.ucatolica.edu.co/bitstreams/cb33cec9-fcef-4b4e-ae23-2e5aad4bdf84/download
https://repository.ucatolica.edu.co/bitstreams/28f36eef-0583-49c2-a3cb-3c6df8e27a44/download
https://repository.ucatolica.edu.co/bitstreams/05356327-03fe-4811-bc97-4e6a7681283e/download
https://repository.ucatolica.edu.co/bitstreams/85250df0-ecf8-4a3c-9cf3-ca277d35156a/download
bitstream.checksum.fl_str_mv 1bd725772d9e455b7014a4a011aa1e4a
c289c221d8217bc11e684a48a3fd9d5f
4cdf6efcc3260ea99f20f3678fc0bae4
99f42eab840cf9e845f2b37f99ab6e68
f4bc7149766a9c245ea7f6be47968a9e
ab01fc19fa2d4ca20e68cf2176622b6a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Católica de Colombia - RIUCaC
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808402539302879232
spelling Marimón-Bolívar, Wilfredo2207c9fa-0327-4c08-926d-9f0de420d275-1Marimón-Bolívar, Wilfredovirtual::430-1Ramírez-Salazar, Yesica Liliana728090b6-0601-4688-ac5f-c0ec4c606a9d-1Valero-Melo, Lizeth Natalia906aa6d8-b19f-458b-b802-7fa0e5c1b3e9-12021-09-17T01:55:14Z2021-09-17T01:55:14Z2021Trabajo de investigaciónSe usaron nanopartículas de magnetita verdes en un proceso de ozonización para remoción del colorante azul de metileno proveniente agua residual sintética textil. La concentración inicial del contaminante fue de 2mg/L. Se obtuvo una capacidad máxima de adsorción sobre el material de 0.0086mg/g debida a la modelación cinética e isotermas. Finalmente se encontró un porcentaje de remoción de 87.02 usando ozonización catalítica.PregradoIngeniero CivilRESUMEN 1. INTRODUCCIÓN 2. PLANTEAMIENTO Y FORMULACIÓN DEL PROBLEMA 3. JUSTIFICACIÓN 4. OBJETIVOS 5. ESTADO DEL ARTE 6. ANTECEDENTES 7. MARCO DE REFERENCIA 8. ALCANCE Y LIMITACIONES 9. METODOLOGÍA 10. RESULTADOS CONCLUSIONES RECOMENDACIONES REFERENCIAS ANEXOS74 páginasapplication/pdfRamírez-Salazar, Y. L. y Valero-Melo, L. N. (2021). Combinación de ozono y nanopartículas magnéticas verdes para la degradación de azul de metileno en agua residual sintética textil. Trabajo de Grado. Universidad Católica de Colombia. Facultad de Ingeniería. Programa de Ingeniería Civil. Bogotá, Colombiahttps://hdl.handle.net/10983/26635spaUniversidad Católica de ColombiaFacultad de IngenieríaBogotáIngeniería CivilACNUR Comité Español. (2019). Escasez de agua en el mundo: causas y consecuencias. La Agencia de La ONU Para Los Refugiados Comité Español. https://eacnur.org/blog/escasez-agua-en-el-mundo-tc_alt45664n_o_pstn_o_pst/#:~:text=Existen diversas causas que producen, La sequía.ACNUR Comité Español. (2019). Escasez de agua en el mundo: causas y consecuencias. UNHCR ACNUR La Agencia de La ONU Para Los Refugiados Comité Español. https://eacnur.org/blog/escasez-agua-en-el-mundo-tc_alt45664n_o_pstn_o_pst/#:~:text=Existen diversas causas que producen,La sequíaAlbis, A., López, A., & Romero, M. (2017). Remoción de azul de metileno de soluciones acuosas utilizando cáscara de yuca (Manihot esculenta) modificada con ácido fosfórico. Prospectiva, 15, 60–73.Almazan, J. (2016). Síntesis de nanopartículas de magnetita caracterizadas por espectroscopia Mossbauer [Universidad Nacional Autónoma de México]. http://ri.uaemex.mx/bitstream/handle/20.500.11799/65705/TESISMCMJonathan.pdf?sequence=1&isAllowed=yAngulo, L., & Molina, J. D. (2020). Diseño de un sistema de tratamiento de aguas residuales prevenientes de curtiembre con carbón activado modificado con nanopartículas magnetizadas. Universidad Católica de Colombia.Annuar, A., Mat, N., Muhammad, R., Jafaar, J., & Marbelia, L. (2020). Improved bubbling for membrane fouling control in filtration of palm oil mill effluent anaerobic digester sludge. ScienceDirect, 36. https://doi.org/10.1016/j.jwpe.2020.101350Aquae fundación. (2020). ¿Qué es el agua?: tipos, composición y funciones. La Fundación Del Agua. https://www.fundacionaquae.org/que-es-el-agua/Bae, M., Lee, H., Yoo, K., & Kim, S. (2021). Copper(I) selective chemisorption on magnetite (Fe3O4) over gold(I) ions in chloride solution with cyanide. Hydrometallurgy, 201, 105560. https://doi.org/10.1016/j.hydromet.2021.105560Basu, M., Guha, A. K., & Ray, L. (2017). Adsorption of Lead on Cucumber Peel. Journal of Cleaner Production, 151, 603–615. https://doi.org/10.1016/j.jclepro.2017.03.028Belver, C., Bedia, J., Garzon, M., Ramos, V., Gomez, A., & Rodriguez, J. (2020). Advanced Oxidation Process. ScienceDirect, 41–98. https://doi.org/10.1016/B978-0-12-818334-2.00003-1Bes Monge, S., Silva, A., & Bengoa, C. (2018). Manual técnico sobre procesos de oxidación avanzada aplicados al tratamiento de aguas residuales industriales (RED TRITÓN 316RT0508 (ed.)). PROGRAMA CYTED. http://www.cyted.org/sites/default/files/manual_sobre_oxidaciones_avanzadas_0.pdfBrito, N., Betancourt, P., & Rodríguez, D. (2010). Ozonación de fenol en soluciones acuosas empleando magnetita como catalizador en sistemas ozono y ozono-radiación ultravioleta. Scielo, 25(0798–4065). http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0798-40652010000200012Carpenter, D. (2011). Health effects of persistent organic pollutants: the challenge for the Pacific Basin and for the world. Degruyter, 26(1). https://www.degruyter.com/view/journals/reveh/26/1/article-p61.xmlCarrillo, Y., & Herrera, J. (2019). Remoción de azul de metileno de cuerpos de agua utilizando nanopartículas magnéticas Fe3O4. Universidad Católica de Colombia.Castellar, G., Angulo, E., Zambrano, A., & Charris, D. (2013). Equilibrio de adsorción del colorante azul de metileno sobre carbón activado. Revista U.D.C.A Act. & Div. Cient.Castro, L., & Herrera, E. (2013). Degradación y decoloración de agua contaminada con colorantes textiles mediante procesos de oxidación avanzada. Revistas TEC, 27, 40–50. https://doi.org/https://doi.org/10.18845/tm.v27i2.1807Ceretta, M., Vieira, Y., Wolski, E., Foletto, E., & Silvestri, S. (2020). Biological degradation coupled to photocatalysis by ZnO/polypyrrole composite for the treatment of real textile wastewater. ScienceDirect, 35(101230). https://doi.org/10.1016/j.jwpe.2020.101230Chaparro, C., Cabanzo, R., & Mejia, E. (2014). ESTUDIO DE LA ADSORCIÓN DE AZUL DE METILENO SOBRE ÓXIDO DE GRAFENO. Revista Colombiana de Materiales N.5, 131–139. https://doi.org/2256-1013Chen, H., Deng, X., Ding, G., & Qiao, Y. (2019). The synthesis, adsorption mechanism and application of polyethyleneimine functionalized magnetic nanoparticles for the analysis of synthetic colorants in candies and beverages. Food Chemistry, 293, 340–347. https://doi.org/10.1016/j.foodchem.2019.04.111Chico, D., Aldaya, M., & Garrido, A. (2014). ¿Cuánta agua requiere la confección de un pantalón vaquero? https://www.upm.es/UPM/SalaPrensa/Noticias?fmt=detail&prefmt=articulo&id=e05b276248673410VgnVCM10000009c7648a____Clemente, P. (2008). Aplicación de procesos de oxidación avanzada (Fotocatálisis solar) para el tratamiento y reutilización de efluentes textiles. http://hdl.handle.net/10251/2241Coates, J. (2006). Interpretation of Infrared Spectra, A Practical Approach. Wiley Online Library, Encycloped. https://onlinelibrary.wiley.com/doi/full/10.1002/9780470027318.a5606Cuando Cerón, C. E. (2013). Medición en línea de contaminantes en aguas residuales de la industria textil durante su tratamiento químico. Universidad Nacional Autónoma de México.Denchak, M. (2018). Water Pollution: Everything You Need to Know. NRDC. https://www.nrdc.org/stories/water-pollution-everything-you-need-know#whatisDoǧan, M., Abak, H., & Alkan, M. (2009). Adsorption of methylene blue onto hazelnut shell: Kinetics, mechanism and activation parameters. Journal of Hazardous Materials, 164(1), 172–181. https://doi.org/10.1016/j.jhazmat.2008.07.155Doǧan, M., Alkan, M., Türkyilmaz, A., & Özdemir, Y. (2004). Kinetics and mechanism of removal of methylene blue by adsorption onto perlite. Journal of Hazardous Materials, 109(1–3), 141–148. https://doi.org/10.1016/j.jhazmat.2004.03.003Du, J., & Zhang, B. (2020). Decontamination of heavy metal complexes by advanced oxidation processes: A review. Chinese Academy of Medical Sciences. https://www-sciencedirect-com.ezproxy.javeriana.edu.co/science/article/pii/S1001841720304502Elwakeel, K. Z., & Guibal, E. (2015). Selective removal of Hg(II) from aqueous solution by functionalized magnetic-macromolecular hybrid material. Chemical Engineering Journal, 281, 345–359. https://doi.org/10.1016/j.cej.2015.05.110Erkan, H., Çağlak, A., Soysaloglu, A., Takatas, B., & Engin, O. (2020). Performance evaluation of conventional membrane bioreactor and moving bed membrane bioreactor for synthetic textile wastewater treatment. ScienceDirect, 38. https://doi.org/10.1016/j.jwpe.2020.101631Fernandez, C., & Suárez, R. (2020). Agua que no has de beber. EL TIEMPO. https://www.eltiempo.com/salud/como-es-la-calidad-del-agua-en-colombia-340578Gabelman, A. (2017). Crossflow Membrane Filtration Essentials. ProQuest, 4. https://search-proquest-com.ezproxy.javeriana.edu.co/sciencejournals/docview/1889744197/8A826138D85C4E0DPQ/2?accountid=13250Gleick, P. (1993). Recursos mundiales de agua dulce. Agua En Crisis: Una Guía Para Los Recursos de Agua Dulce Del Mundo. https://cienciaencanoa.blogspot.com/2012/05/cuanta-agua-hay-dentro-sobre-y-por.htmlGomez, N. (2012). “Recubrimientos mesoporosos y mesoestructurados de TiO2-anatasa por el método sol-gel para aplicaciones en sistemas fotocatalíticos.” https://pdfs.semanticscholar.org/43ce/d3fa88386ac5ccd9422da60f6f28f574e605.pdfGonzalez, C. (2006). ¿Qué es la ley de agua limpia? Agricultura.Uprm. http://agricultura.uprm.edu/escorrentia/index.htmlGrimlat, J. (2013). Los compuestos orgánicos persistentes en la biosfera: el enemigo global e invisible. Metode. https://metode.es/revistas-metode/monograficos/los-compuestos-organicos-persistentes-en-la-biosfera-el-enemigo-global-e-invisible.htmlGuaypatin, J. (2020). Estudio de la cinética de adsorción y desorción de colorantes aniónico y catiónico usando una arcilla con altos contenidos de hierro. https://doi.org/UNACH- FI-AMBHamdaoui, O., & Naffrechoux, E. (2007). Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. Journal of Hazardous Materials, 147(1–2), 381–394. https://doi.org/10.1016/j.jhazmat.2007.01.021Hameed, B. H., Din, A. T. M., & Ahmad, A. L. (2007). Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies. Journal of Hazardous Materials, 141(3), 819–825. https://doi.org/10.1016/j.jhazmat.2006.07.049Heng, Z., Yongli, H., Leiduo, L., Gang, Y., & Bo, L. (2020). Catalytic ozonation of Bisphenol A in aqueous solution by Fe3O4–MnO2 magnetic composites: Performance, transformation pathways and mechanism. ScienceDirect, 245. https://doi.org/10.1016/j.seppur.2019.116449Ibañez, J. (2015). Contaminación del Suelo y Salud Pública (Global Soil Forum). Madrimasd, Blogs. https://www.madrimasd.org/blogs/universo/2015/02/20/146182Jimenez, N. (2016). Bioquímica del estrés oxidativo en Vegetales. Slideplayer. https://slideplayer.es/slide/9092566/Kosmulski, M. (2004). pH-dependent surface charging and points of zero charge II. Update. Journal of Colloid and Interface Science, 275(1), 214–224. https://doi.org/10.1016/j.jcis.2004.02.029Lobna, M., Chedly, T., Geissen, S., & Latifa, B. (2019). A comparative study on ozone, hydrogen peroxide and UV based advanced oxidation processes for efficient removal of diethyl phthalate in water. ScienceDirect, 363, 401–411. https://www-sciencedirect-com.ezproxy.javeriana.edu.co/science/article/pii/S0304389418308938Mamani, J. B., Costa-Filho, A. J., Cornejo, D. R., Vieira, E. D., & Gamarra, L. F. (2013). Synthesis and characterization of magnetite nanoparticles coated with lauric acid. Materials Characterization, 81, 28–36. https://doi.org/10.1016/j.matchar.2013.04.001Marimon, W. (2018). SÍNTESIS VERDE Y CARACTERIZACIÓN DE NANOPARTÍCULAS MAGNÉTICAS (MNPs). In INGENIERÍA DE NANOPARTÍCULAS MAGNÉTICAS PARA LA REMOCIÓN DE METALES PESADOS EN AGUAS. (pp. 32–36). Pontificia Universidad Javeriana. https://repository.javeriana.edu.co/bitstream/handle/10554/39649/Documento.pdf?sequence=1&isAllowed=yMata-Miranda, M. M., Guerrero-Robles, C. I., Rojas-López, M., Delgado-Macuil, R. J., González-Díaz, C. A., Sánchez-Monroy, V., Pérez-Ishiwara, D. G., & Vázquez-Zapién, G. J. (2017). Componentes Principales mediante Espectroscopia FTIR como Técnica de Caracterización Innovadora durante la Diferenciación de Células Madre Pluripotentes a Células Pancreáticas Principal Components by FTIR Spectroscopy as Innovative Characterization Technique during Differentiation of Pluripotent Stem Cells to Pancreatic Cells. 38(1), 225–234. https://doi.org/10.17488/RMIB.38.1.17Mazille, F. (2020). Advanced Oxidation Processes. SSWM. https://sswm.info/sswm-university-course/module-6-disaster-situations-planning-and-preparedness/further-resources-0/advanced-oxidation-processesRESOLUCIÓN 1207 DE 2014, 12 (2014). http://parquearvi.org/wp-content/uploads/2016/11/Decreto-1207-de-2014.pdfMoreno, H. S., & Romero, J. C. (2019). Implementación de nanopartículas de arcilla modificada magnéticamente para la potabilización de agua proveniente del río Cuja. Universidad Católica de Colombia.Nacho. (2016). MAGNETITA. ROCAS Y MINERALES. https://www.rocasyminerales.net/magnetita/Nathanson, J. (2020). Wastewater treatment. Encyclopædia Britannica, Inc. https://www.britannica.com/technology/wastewater-treatment/Oxidation-pondNOAA. (2020). Water cycle. National Oceanic and Atmospheric Administration. https://www.noaa.gov/education/resource-collections/freshwater/water-cycle#:~:text=The water cycle shows the,form of rain and snow.Noval, V., Ochoa, C., & Carriazo, J. (2016, September). Magnetita (Fe3O4): Una estructura inorgánica con múltiples aplicaciones en catálisis heterogénea. Revista Colombiana de Química. https://revistas.unal.edu.co/index.php/rcolquim/article/view/62831/63826#:~:text=Magnetita como catalizador en síntesis,a sus propiedades óxido-reductivasNoyola, Adalberto; Morgan, J. G. L. (2013). Selección de tecologías para el tratamiento de aguas residuales municipales.Organización Mundial de la Salud. (2006). Guías para la calidad del agua potable (OMS (ed.); 3rd ed.). Ediciones de la OMS. https://www.who.int/water_sanitation_health/dwq/gdwq3_es_fulll_lowsres.pdf?ua=1Pérez, A., Andrade, E., & Zambrano, T. (2018). Ozonización De Residuos Líquidos Textiles Para Remoción De Sólidos Suspendidos Totales, Demandas Química Y Bioquímica De Oxígeno, Grasas Y Aceites. European Scientific Journal, 14, 8. https://doi.org/10.19044/esj.2018.v14n3p40Plazinski, W., Dziuba, J., & Rudzinski, W. (2013). Modeling of sorption kinetics: the pseudo-second order equation and the sorbate intraparticle diffusivity. https://doi.org/10.1007/s10450-013-9529-0Radon, A., Łoński, S., & Babilase, R. (2020). Influence of magnetite nanoparticles surface dissolution, stabilization and functionalization by malonic acid on the catalytic activity, magnetic and electrical properties. ScienceDirect, 607(125446). https://doi.org/10.1016/j.colsurfa.2020.125446Rafiul, I. (2020). Water pollution due to textile industry. Textiletoday. https://www.textiletoday.com.bd/water-pollution-due-textile-industry/#:~:text=Cotton is a major raw,contaminate the surrounding water bodies.Ramos, F., & Blanco, B. (2017). DECOLORACIÓN Y DEGRADACIÓN DE AZUL DE METILENO PRESENTE EN AGUA [Universidad Libre de Colombia]. https://repository.unilibre.edu.co/bitstream/handle/10901/11182/TRABAJO DE GRADO_Fernando Ramos y Brayan Banco_CorreccionesJunio.pdf?sequence=1&isAllowed=yRemtavares. (2008). Aplicación de la ozonización en el tratamiento de aguas: descripción y funcionamiento. Madrimasd, Blogs. https://www.madrimasd.org/blogs/remtavares/2008/01/16/82477#:~:text=La ozonización es ampliamente utilizada,aguas%2C tanto potables como residuales.&text=El método más ampliamente utilizado,eléctricas silenciosas” (Figura).Rodriguez, E. (2018). Eliminación de microcontaminantes orgánicos presentes en aguas residuales urbanas mediante MBR combinado con ozidación avanzada y con filtración por membranas [Universidad de Alicante]. https://rua.ua.es/dspace/bitstream/10045/80430/1/tesis_edgardo_david_vasquez_rodriguez.pdfTWI. (2020). WHAT ARE NANOPARTICLES? DEFINITION, SIZE, USES AND PROPERTIES. The Welding Institute. https://www.twi-global.com/technical-knowledge/faqs/what-are-nanoparticlesUN environment programme. (2019). Stockholm Convention. The Stockholm Convention on Persistent Organic Pollutants. http://www.pops.int/TheConvention/Overview/tabid/3351/Default.aspxWHO. (2020). Persistent organic pollutants (POPs). World Healt Organization. https://www.who.int/foodsafety/areas_work/chemical-risks/pops/en/Wu, K. H., Huang, W. C., Hung, W. C., & Tsai, C. W. (2021). Modified expanded graphite/Fe3O4 composite as an adsorbent of methylene blue: Adsorption kinetics and isotherms. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 266, 115068. https://doi.org/10.1016/j.mseb.2021.115068Yang, S. T., Chen, S., Chang, Y., Cao, A., Liu, Y., & Wang, H. (2011). Removal of methylene blue from aqueous solution by graphene oxide. Journal of Colloid and Interface Science, 359(1), 24–29. https://doi.org/10.1016/j.jcis.2011.02.064Derechos Reservados - Universidad Católica de Colombia, 2021info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2REMOCIÓNOZONIZACIÓNMAGNETITAAZUL DE METILENONANOPARTICULASCONTAMINACIÓNCombinación de ozono y nanopartículas magnéticas verdes para la degradación de azul de metileno en agua residual sintética textilTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/version/c_fa2ee174bc00049fhttp://purl.org/coar/version/c_71e4c1898caa6e32PublicationXXXvirtual::430-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001020099virtual::430-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001020099virtual::430-10000-0002-6947-2220virtual::430-1xxxvirtual::430-102ae5670-e37f-44a9-a9b7-77f4e49c618evirtual::430-102ae5670-e37f-44a9-a9b7-77f4e49c618evirtual::430-1ORIGINALPROYECTO DE GRADO_2_ENTREGA FINAL.pdfPROYECTO DE GRADO_2_ENTREGA FINAL.pdfTesisapplication/pdf3818433https://repository.ucatolica.edu.co/bitstreams/b423ef00-ae74-43d6-a8a8-8024bed2b479/download1bd725772d9e455b7014a4a011aa1e4aMD51F-010-GB-008_RESUMEN_ANALÍTICO_EN_EDUCACIÓN_RAE_VS_01.pdfF-010-GB-008_RESUMEN_ANALÍTICO_EN_EDUCACIÓN_RAE_VS_01.pdfTesisapplication/pdf343457https://repository.ucatolica.edu.co/bitstreams/9c334399-869b-40b7-8861-c4085485cca1/downloadc289c221d8217bc11e684a48a3fd9d5fMD52TEXTPROYECTO DE GRADO_2_ENTREGA FINAL.pdf.txtPROYECTO DE GRADO_2_ENTREGA FINAL.pdf.txtExtracted texttext/plain107131https://repository.ucatolica.edu.co/bitstreams/cb33cec9-fcef-4b4e-ae23-2e5aad4bdf84/download4cdf6efcc3260ea99f20f3678fc0bae4MD53F-010-GB-008_RESUMEN_ANALÍTICO_EN_EDUCACIÓN_RAE_VS_01.pdf.txtF-010-GB-008_RESUMEN_ANALÍTICO_EN_EDUCACIÓN_RAE_VS_01.pdf.txtExtracted texttext/plain19999https://repository.ucatolica.edu.co/bitstreams/28f36eef-0583-49c2-a3cb-3c6df8e27a44/download99f42eab840cf9e845f2b37f99ab6e68MD55THUMBNAILPROYECTO DE GRADO_2_ENTREGA FINAL.pdf.jpgPROYECTO DE GRADO_2_ENTREGA FINAL.pdf.jpgRIUCACimage/jpeg9802https://repository.ucatolica.edu.co/bitstreams/05356327-03fe-4811-bc97-4e6a7681283e/downloadf4bc7149766a9c245ea7f6be47968a9eMD54F-010-GB-008_RESUMEN_ANALÍTICO_EN_EDUCACIÓN_RAE_VS_01.pdf.jpgF-010-GB-008_RESUMEN_ANALÍTICO_EN_EDUCACIÓN_RAE_VS_01.pdf.jpgRIUCACimage/jpeg18603https://repository.ucatolica.edu.co/bitstreams/85250df0-ecf8-4a3c-9cf3-ca277d35156a/downloadab01fc19fa2d4ca20e68cf2176622b6aMD5610983/26635oai:repository.ucatolica.edu.co:10983/266352023-06-26 19:30:44.996https://repository.ucatolica.edu.coRepositorio Institucional Universidad Católica de Colombia - RIUCaCbdigital@metabiblioteca.com