Pronóstico de insolvencia empresarial en Colombia a través de indicadores financieros.

Autores:
Correa Mejía, Diego Andrés
Lopera Castaño, Mauricio
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad de Cartagena
Repositorio:
Repositorio Universidad de Cartagena
Idioma:
spa
OAI Identifier:
oai:repositorio.unicartagena.edu.co:11227/13877
Acceso en línea:
https://hdl.handle.net/11227/13877
https://doi.org/10.32997/2463-0470-vol.27-num.2-2019-2639
Palabra clave:
Insolvency
Financial indicators
Financial analysis
Boosting algorithm
Logistic regression
Insolvencia empresarial
Indicadores financieros
Análisis financiero
Algoritmo boosting
Regresión logística
Insolvabilité des entreprises
Indicateurs financiers
Analyse financière
Algorithme de boosting
Régression logistique
Rights
openAccess
License
Panorama Económico - 2019
id UCART2_f935acec6b2343531a469298e7da4c1d
oai_identifier_str oai:repositorio.unicartagena.edu.co:11227/13877
network_acronym_str UCART2
network_name_str Repositorio Universidad de Cartagena
repository_id_str
dc.title.spa.fl_str_mv Pronóstico de insolvencia empresarial en Colombia a través de indicadores financieros.
dc.title.translated.eng.fl_str_mv Forecast of business insolvency in Colombia through financial indicators.
title Pronóstico de insolvencia empresarial en Colombia a través de indicadores financieros.
spellingShingle Pronóstico de insolvencia empresarial en Colombia a través de indicadores financieros.
Insolvency
Financial indicators
Financial analysis
Boosting algorithm
Logistic regression
Insolvencia empresarial
Indicadores financieros
Análisis financiero
Algoritmo boosting
Regresión logística
Insolvabilité des entreprises
Indicateurs financiers
Analyse financière
Algorithme de boosting
Régression logistique
title_short Pronóstico de insolvencia empresarial en Colombia a través de indicadores financieros.
title_full Pronóstico de insolvencia empresarial en Colombia a través de indicadores financieros.
title_fullStr Pronóstico de insolvencia empresarial en Colombia a través de indicadores financieros.
title_full_unstemmed Pronóstico de insolvencia empresarial en Colombia a través de indicadores financieros.
title_sort Pronóstico de insolvencia empresarial en Colombia a través de indicadores financieros.
dc.creator.fl_str_mv Correa Mejía, Diego Andrés
Lopera Castaño, Mauricio
dc.contributor.author.spa.fl_str_mv Correa Mejía, Diego Andrés
Lopera Castaño, Mauricio
dc.subject.eng.fl_str_mv Insolvency
Financial indicators
Financial analysis
Boosting algorithm
Logistic regression
topic Insolvency
Financial indicators
Financial analysis
Boosting algorithm
Logistic regression
Insolvencia empresarial
Indicadores financieros
Análisis financiero
Algoritmo boosting
Regresión logística
Insolvabilité des entreprises
Indicateurs financiers
Analyse financière
Algorithme de boosting
Régression logistique
dc.subject.spa.fl_str_mv Insolvencia empresarial
Indicadores financieros
Análisis financiero
Algoritmo boosting
Regresión logística
Insolvabilité des entreprises
Indicateurs financiers
Analyse financière
Algorithme de boosting
Régression logistique
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-04-01 00:00:00
dc.date.available.none.fl_str_mv 2019-04-01 00:00:00
dc.date.issued.none.fl_str_mv 2019-04-01
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0122-8900
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11227/13877
dc.identifier.doi.none.fl_str_mv 10.32997/2463-0470-vol.27-num.2-2019-2639
dc.identifier.eissn.none.fl_str_mv 2463-0470
dc.identifier.url.none.fl_str_mv https://doi.org/10.32997/2463-0470-vol.27-num.2-2019-2639
identifier_str_mv 0122-8900
10.32997/2463-0470-vol.27-num.2-2019-2639
2463-0470
url https://hdl.handle.net/11227/13877
https://doi.org/10.32997/2463-0470-vol.27-num.2-2019-2639
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofjournal.spa.fl_str_mv Panorama Económico
dc.relation.bitstream.none.fl_str_mv https://revistas.unicartagena.edu.co/index.php/panoramaeconomico/article/download/2639/2220
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2019
dc.relation.citationendpage.none.fl_str_mv 526
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 510
dc.relation.citationvolume.spa.fl_str_mv 27
dc.relation.references.spa.fl_str_mv Altman, E. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of Finance, 23(4), 589-609. https://doi.org/10.1111/j.1540-6261.1968.tb00843.x
Amendola, A., Giordano, F., Parrella, M., y Restaino, M. (2017). Variable selection in high-dimensional regression: a nonparametric procedure for business failure prediction. Applied Stochastic Models in Business and Industry, 33(4), 355-368. https://doi.org/10.1002/asmb.2240
Barboza, F. , Kimura, H., y Altman, E. (2017). Machine learning models and bankruptcy prediction. Expert Systems with Applications, 83, 405-417. https://doi.org/10.1016/j.eswa.2017.04.006
Beaver, W. (1966). Financial Ratios As Predictors of Failure. Journal of Accounting Research, 4(1966), 71-111. https://doi.org/10.2307/2490171
Ben, S. (2017). Bankruptcy prediction using Partial Least Squares Logistic Regression. Journal of Retailing and Consumer Services, 36(November 2016), 197-202. https://doi.org/10.1016/j.jretconser.2017.02.005
Bredart, X., Vella, V., y Bonello, J. (2018). Machine Learning Models for Predicting Financial Distress. Journal of Research in Economics, 2(2), 174-185. https://doi.org/10.24954/JORE.2018.22
Calabrese, R., y Osmetti, S. A. (2013). Modelling small and medium enterprise loan defaults as rare events: The generalized extreme value regression model. Journal of Applied Statistics, 40(6), 1172-1188. https://doi.org/10.1080/02664763.2013.784894
Calabrese, R., y Osmetti, S. A. (2015). Improving forecast of binary rare events data: A gam-based approach. Journal of Forecasting, 34(3), 230-239. https://doi.org/10.1002/for.2335
Correa-García, J. A. (2005). De la partida doble al análisis financiero. Contaduría Universidad de Antioquia, (46), 169-194.
Correa-García, J. A., Gómez, S., y Londoño, F. (2018). Indicadores financieros y su eficiencia en la explicación de la generación de valor en el sector cooperativo. Rev.fac.cienc.econ., XXVI(2), 129-144. https://doi.org/10.18359/rfce.3859
Correa, D., Laura, M., Camila, R., y Alejandra, Y. (2018). Los indicadores de costos: una herramienta para gestionar la generación de valor en las empresas industriales colombianas. Estudios Gerenciales, 34(147), 190-199. https://doi.org/10.18046/j.estger.2018.147.2643
Correa, J., Pulgarín, A., Muñoz, L., y Álvarez, M. (2010). Marco normativo y antecedentes de la revelación contable en Colombia. Contaduría Universidad de Antioquia, (56), 269-292.
Cultrera, L., y Brédart, X. (2016). Bankruptcy prediction: The case of Belgian SMEs. Review of Accounting and Finance, 15(1), 101-119. https://doi.org/10.1108/RAF-06-2014-0059
Dinca, G., Baba, M. C., Dinca, M. S., Dauti, B., y Deari, F. (2017). Insolvency risk prediction using the logit and logistic models: Some evidences from Romania. Economic Computation and Economic Cybernetics Studies and Research, 51(4), 139-157.
Eling, M., y Jia, R. (2018). Business failure, efficiency, and volatility: Evidence from the European insurance industry. International Review of Financial Analysis, 59, 58-76. https://doi.org/10.1016/j.irfa.2018.07.007
Gupta, J., Gregoriou, A., y Ebrahimi, T. (2018). Empirical comparison of hazard models in predicting SMEs failure. Quantitative Finance, 18(3), 437-466. https://doi.org/10.1080/14697688.2017.1307514
Hastie, T., Tibshirani, R., Friedman, J. (2017). The Elements of Statistical Learning. Data Mining, Inference, and Prediction, Standford, California.
Hebous, S., y De Mooij, R. (2018). Curbing Corporate Debt Bias: Do Limitations to Interest Deductibility Work? Journal of Banking y Finance, 1-11. https://doi.org/10.1016/j.jbankfin.2018.07.013
Jabeur, S. Ben, y Fahmi, Y. (2018). Forecasting financial distress for French firms: a comparative study. Empirical Economics, 54(3), 1173-1186. https://doi.org/10.1007/s00181-017-1246-1
Jayasekera, R. (2018). Prediction of company failure: Past, present and promising directions for the future. International Review of Financial Analysis, 55, 196-208. https://doi.org/10.1016/j.irfa.2017.08.009
Jones, S., Johnstone, D., y Wilson, R. (2017). Predicting Corporate Bankruptcy: An Evaluation of Alternative Statistical Frameworks. Journal of Business Finance and Accounting, 44(1-2), 3-34. https://doi.org/10.1111/jbfa.12218
Jovanovik, D., Todorovic, M., y Grbic, M. (2017). Financial Indicators as Predictors of Illiquidity. Romanian Journal of Economic Forecasting, 20(1), 128-149.
Kovacova, M., y Kliestik, T. (2017). Logit and Probit application for the prediction of bankruptcy in Slovak companies. Equilibrium-Quarterly Journal of Economics and Economic Policy, 12(4), 775-791. https://doi.org/10.24136/eq.v12i4.40
Le, T., Son, L. H., Vo, M. T., Lee, M. Y., y Baik, S. W. (2018). A cluster-based boosting algorithm for bankruptcy prediction in a highly imbalanced dataset. Symmetry, 10(7), 1-12. https://doi.org/10.3390/sym10070250
Ley 1116. (2006). Diario Oficial No. 46.494 de 27 de diciembre de 2006, Colombia, diciembre 27 de 2006.
Lyandres, E., y Zhdanov, A. (2013). Investment opportunities and bankruptcy prediction. Journal of Financial Markets, 16(3), 439-476. https://doi.org/10.1016/j.finmar.2012.10.003
Nyitrai, T., y Virág, M. (2018). The effects of handling outliers on the performance of bankruptcy prediction models. Socio-Economic Planning Sciences, 1-9. https://doi.org/10.1016/0304-3762(82)90059-1
Pérez, J., Lopera, M., y Vásquez, F. (2017). Estimación de la probabilidad de riesgo de quiebra en las empresas colombianas a partir de un modelo para eventos raros. Cuadernos de Administración, 30(54), 7-38. https://doi.org/10.11144/Javeriana.cao30-54.eprqe
Rodríguez, J. (2007). Nuevo régimen de insolvencia. Bogotá, Colombia: Universidad Externado de Colombia.
Romero, F., Melgarejo, Z., y Vera, M. (2015). Fracaso empresarial de las pequeñas y medianas empresas (pymes) en Colombia. Suma de Negocios, 6(13), 29-41. https://doi.org/10.1016/j.sumneg.2015.08.003
Tian, S. , y Yu, Y. (2017). Financial ratios and bankruptcy predictions: An international evidence. International Review of Economics and Finance, 51, 510-526. https://doi.org/10.1016/j.iref.2017.07.025
Upegui, A. y Londoño, Á. (2011). Comentarios al régimen de insolvencia empresarial. Bogotá, Colombia: Legis Editores.
Vélez, L. (2011). ¿Qué tan bueno es el sistema de insolvencia empresarial colombiano? Revista Supersociedades, 2, 5-6.
Wang, G., Ma, J., y Yang, S. (2014). An improved boosting based on feature selection for corporate bankruptcy prediction. Expert Systems with Applications, 41(5), 2353-2361. https://doi.org/10.1016/j.eswa.2013.09.033
Wilches, R. (2008). Vacíos e inconsistencias estructurales del nuevo régimen de insolvencia empresarial colombiano. Identificación y propuestas de solución. Vniversitas, (117), 197-218.
Wilches, R. (2009). La insolvencia transfronteriza en el derecho colombiano. Revista de Derecho, (32), 162-198.
Yazdanfar, D., y Öhman, P. (2015). Debt financing and firm performance: an empirical study based on Swedish data. The Journal of Risk Finance, 16(1), 102-118. https://doi.org/10.1108/JRF-06-2014-0085
dc.rights.spa.fl_str_mv Panorama Económico - 2019
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Panorama Económico - 2019
https://creativecommons.org/licenses/by-nc-sa/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Cartagena
dc.source.spa.fl_str_mv https://revistas.unicartagena.edu.co/index.php/panoramaeconomico/article/view/2639
institution Universidad de Cartagena
bitstream.url.fl_str_mv https://repositorio.unicartagena.edu.co/bitstreams/4110ee0e-bd90-41f9-9242-ac8693e632dc/download
bitstream.checksum.fl_str_mv cccffa7b2cffd45d598f095296979bfa
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Biblioteca Digital Universidad de Cartagena
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814214205634510848
spelling Correa Mejía, Diego AndrésLopera Castaño, Mauricio2019-04-01 00:00:002019-04-01 00:00:002019-04-010122-8900https://hdl.handle.net/11227/1387710.32997/2463-0470-vol.27-num.2-2019-26392463-0470https://doi.org/10.32997/2463-0470-vol.27-num.2-2019-2639application/pdfspaUniversidad de CartagenaPanorama Económicohttps://revistas.unicartagena.edu.co/index.php/panoramaeconomico/article/download/2639/2220Núm. 2 , Año 2019526251027Altman, E. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of Finance, 23(4), 589-609. https://doi.org/10.1111/j.1540-6261.1968.tb00843.xAmendola, A., Giordano, F., Parrella, M., y Restaino, M. (2017). Variable selection in high-dimensional regression: a nonparametric procedure for business failure prediction. Applied Stochastic Models in Business and Industry, 33(4), 355-368. https://doi.org/10.1002/asmb.2240Barboza, F. , Kimura, H., y Altman, E. (2017). Machine learning models and bankruptcy prediction. Expert Systems with Applications, 83, 405-417. https://doi.org/10.1016/j.eswa.2017.04.006Beaver, W. (1966). Financial Ratios As Predictors of Failure. Journal of Accounting Research, 4(1966), 71-111. https://doi.org/10.2307/2490171Ben, S. (2017). Bankruptcy prediction using Partial Least Squares Logistic Regression. Journal of Retailing and Consumer Services, 36(November 2016), 197-202. https://doi.org/10.1016/j.jretconser.2017.02.005Bredart, X., Vella, V., y Bonello, J. (2018). Machine Learning Models for Predicting Financial Distress. Journal of Research in Economics, 2(2), 174-185. https://doi.org/10.24954/JORE.2018.22Calabrese, R., y Osmetti, S. A. (2013). Modelling small and medium enterprise loan defaults as rare events: The generalized extreme value regression model. Journal of Applied Statistics, 40(6), 1172-1188. https://doi.org/10.1080/02664763.2013.784894Calabrese, R., y Osmetti, S. A. (2015). Improving forecast of binary rare events data: A gam-based approach. Journal of Forecasting, 34(3), 230-239. https://doi.org/10.1002/for.2335Correa-García, J. A. (2005). De la partida doble al análisis financiero. Contaduría Universidad de Antioquia, (46), 169-194.Correa-García, J. A., Gómez, S., y Londoño, F. (2018). Indicadores financieros y su eficiencia en la explicación de la generación de valor en el sector cooperativo. Rev.fac.cienc.econ., XXVI(2), 129-144. https://doi.org/10.18359/rfce.3859Correa, D., Laura, M., Camila, R., y Alejandra, Y. (2018). Los indicadores de costos: una herramienta para gestionar la generación de valor en las empresas industriales colombianas. Estudios Gerenciales, 34(147), 190-199. https://doi.org/10.18046/j.estger.2018.147.2643Correa, J., Pulgarín, A., Muñoz, L., y Álvarez, M. (2010). Marco normativo y antecedentes de la revelación contable en Colombia. Contaduría Universidad de Antioquia, (56), 269-292.Cultrera, L., y Brédart, X. (2016). Bankruptcy prediction: The case of Belgian SMEs. Review of Accounting and Finance, 15(1), 101-119. https://doi.org/10.1108/RAF-06-2014-0059Dinca, G., Baba, M. C., Dinca, M. S., Dauti, B., y Deari, F. (2017). Insolvency risk prediction using the logit and logistic models: Some evidences from Romania. Economic Computation and Economic Cybernetics Studies and Research, 51(4), 139-157.Eling, M., y Jia, R. (2018). Business failure, efficiency, and volatility: Evidence from the European insurance industry. International Review of Financial Analysis, 59, 58-76. https://doi.org/10.1016/j.irfa.2018.07.007Gupta, J., Gregoriou, A., y Ebrahimi, T. (2018). Empirical comparison of hazard models in predicting SMEs failure. Quantitative Finance, 18(3), 437-466. https://doi.org/10.1080/14697688.2017.1307514Hastie, T., Tibshirani, R., Friedman, J. (2017). The Elements of Statistical Learning. Data Mining, Inference, and Prediction, Standford, California.Hebous, S., y De Mooij, R. (2018). Curbing Corporate Debt Bias: Do Limitations to Interest Deductibility Work? Journal of Banking y Finance, 1-11. https://doi.org/10.1016/j.jbankfin.2018.07.013Jabeur, S. Ben, y Fahmi, Y. (2018). Forecasting financial distress for French firms: a comparative study. Empirical Economics, 54(3), 1173-1186. https://doi.org/10.1007/s00181-017-1246-1Jayasekera, R. (2018). Prediction of company failure: Past, present and promising directions for the future. International Review of Financial Analysis, 55, 196-208. https://doi.org/10.1016/j.irfa.2017.08.009Jones, S., Johnstone, D., y Wilson, R. (2017). Predicting Corporate Bankruptcy: An Evaluation of Alternative Statistical Frameworks. Journal of Business Finance and Accounting, 44(1-2), 3-34. https://doi.org/10.1111/jbfa.12218Jovanovik, D., Todorovic, M., y Grbic, M. (2017). Financial Indicators as Predictors of Illiquidity. Romanian Journal of Economic Forecasting, 20(1), 128-149.Kovacova, M., y Kliestik, T. (2017). Logit and Probit application for the prediction of bankruptcy in Slovak companies. Equilibrium-Quarterly Journal of Economics and Economic Policy, 12(4), 775-791. https://doi.org/10.24136/eq.v12i4.40Le, T., Son, L. H., Vo, M. T., Lee, M. Y., y Baik, S. W. (2018). A cluster-based boosting algorithm for bankruptcy prediction in a highly imbalanced dataset. Symmetry, 10(7), 1-12. https://doi.org/10.3390/sym10070250Ley 1116. (2006). Diario Oficial No. 46.494 de 27 de diciembre de 2006, Colombia, diciembre 27 de 2006.Lyandres, E., y Zhdanov, A. (2013). Investment opportunities and bankruptcy prediction. Journal of Financial Markets, 16(3), 439-476. https://doi.org/10.1016/j.finmar.2012.10.003Nyitrai, T., y Virág, M. (2018). The effects of handling outliers on the performance of bankruptcy prediction models. Socio-Economic Planning Sciences, 1-9. https://doi.org/10.1016/0304-3762(82)90059-1Pérez, J., Lopera, M., y Vásquez, F. (2017). Estimación de la probabilidad de riesgo de quiebra en las empresas colombianas a partir de un modelo para eventos raros. Cuadernos de Administración, 30(54), 7-38. https://doi.org/10.11144/Javeriana.cao30-54.eprqeRodríguez, J. (2007). Nuevo régimen de insolvencia. Bogotá, Colombia: Universidad Externado de Colombia.Romero, F., Melgarejo, Z., y Vera, M. (2015). Fracaso empresarial de las pequeñas y medianas empresas (pymes) en Colombia. Suma de Negocios, 6(13), 29-41. https://doi.org/10.1016/j.sumneg.2015.08.003Tian, S. , y Yu, Y. (2017). Financial ratios and bankruptcy predictions: An international evidence. International Review of Economics and Finance, 51, 510-526. https://doi.org/10.1016/j.iref.2017.07.025Upegui, A. y Londoño, Á. (2011). Comentarios al régimen de insolvencia empresarial. Bogotá, Colombia: Legis Editores.Vélez, L. (2011). ¿Qué tan bueno es el sistema de insolvencia empresarial colombiano? Revista Supersociedades, 2, 5-6.Wang, G., Ma, J., y Yang, S. (2014). An improved boosting based on feature selection for corporate bankruptcy prediction. Expert Systems with Applications, 41(5), 2353-2361. https://doi.org/10.1016/j.eswa.2013.09.033Wilches, R. (2008). Vacíos e inconsistencias estructurales del nuevo régimen de insolvencia empresarial colombiano. Identificación y propuestas de solución. Vniversitas, (117), 197-218.Wilches, R. (2009). La insolvencia transfronteriza en el derecho colombiano. Revista de Derecho, (32), 162-198.Yazdanfar, D., y Öhman, P. (2015). Debt financing and firm performance: an empirical study based on Swedish data. The Journal of Risk Finance, 16(1), 102-118. https://doi.org/10.1108/JRF-06-2014-0085Panorama Económico - 2019https://creativecommons.org/licenses/by-nc-sa/4.0http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.https://revistas.unicartagena.edu.co/index.php/panoramaeconomico/article/view/2639InsolvencyFinancial indicatorsFinancial analysisBoosting algorithmLogistic regressionInsolvencia empresarialIndicadores financierosAnálisis financieroAlgoritmo boostingRegresión logísticaInsolvabilité des entreprisesIndicateurs financiersAnalyse financièreAlgorithme de boostingRégression logistiquePronóstico de insolvencia empresarial en Colombia a través de indicadores financieros.Forecast of business insolvency in Colombia through financial indicators.Artículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlePublicationOREORE.xmltext/xml2577https://repositorio.unicartagena.edu.co/bitstreams/4110ee0e-bd90-41f9-9242-ac8693e632dc/downloadcccffa7b2cffd45d598f095296979bfaMD5111227/13877oai:repositorio.unicartagena.edu.co:11227/138772024-09-05 15:19:46.682https://creativecommons.org/licenses/by-nc-sa/4.0Panorama Económico - 2019metadata.onlyhttps://repositorio.unicartagena.edu.coBiblioteca Digital Universidad de Cartagenabdigital@metabiblioteca.com