Alginato en procesos de criopreservación celular y su rol como factor inductor de diferenciación condrogénica
- Autores:
-
Giraldo Hoyos, Juliana María
Trochêz Wilchez, Diana Fernanda
Valencia Serna, Juliana
Zapata Linares, Natalia
Londoño Peláez, Carolina
Pineda Molina, Catalina
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Cartagena
- Repositorio:
- Repositorio Universidad de Cartagena
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unicartagena.edu.co:11227/13326
- Acceso en línea:
- https://hdl.handle.net/11227/13326
https://doi.org/10.32997/rcb-2011-3049
- Palabra clave:
- Células madre. Biomateriales. Tejido adiposo. Diferenciación celular
- Rights
- openAccess
- License
- Revista Ciencias Biomédicas - 2020
id |
UCART2_f5a8e7d16d8ee749b139234a214bddf0 |
---|---|
oai_identifier_str |
oai:repositorio.unicartagena.edu.co:11227/13326 |
network_acronym_str |
UCART2 |
network_name_str |
Repositorio Universidad de Cartagena |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Alginato en procesos de criopreservación celular y su rol como factor inductor de diferenciación condrogénica |
dc.title.translated.eng.fl_str_mv |
Alginato en procesos de criopreservación celular y su rol como factor inductor de diferenciación condrogénica |
title |
Alginato en procesos de criopreservación celular y su rol como factor inductor de diferenciación condrogénica |
spellingShingle |
Alginato en procesos de criopreservación celular y su rol como factor inductor de diferenciación condrogénica Células madre. Biomateriales. Tejido adiposo. Diferenciación celular |
title_short |
Alginato en procesos de criopreservación celular y su rol como factor inductor de diferenciación condrogénica |
title_full |
Alginato en procesos de criopreservación celular y su rol como factor inductor de diferenciación condrogénica |
title_fullStr |
Alginato en procesos de criopreservación celular y su rol como factor inductor de diferenciación condrogénica |
title_full_unstemmed |
Alginato en procesos de criopreservación celular y su rol como factor inductor de diferenciación condrogénica |
title_sort |
Alginato en procesos de criopreservación celular y su rol como factor inductor de diferenciación condrogénica |
dc.creator.fl_str_mv |
Giraldo Hoyos, Juliana María Trochêz Wilchez, Diana Fernanda Valencia Serna, Juliana Zapata Linares, Natalia Londoño Peláez, Carolina Pineda Molina, Catalina |
dc.contributor.author.spa.fl_str_mv |
Giraldo Hoyos, Juliana María Trochêz Wilchez, Diana Fernanda Valencia Serna, Juliana Zapata Linares, Natalia Londoño Peláez, Carolina Pineda Molina, Catalina |
dc.subject.spa.fl_str_mv |
Células madre. Biomateriales. Tejido adiposo. Diferenciación celular |
topic |
Células madre. Biomateriales. Tejido adiposo. Diferenciación celular |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-12-21 00:00:00 |
dc.date.available.none.fl_str_mv |
2020-12-21 00:00:00 |
dc.date.issued.none.fl_str_mv |
2020-12-21 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.eng.fl_str_mv |
Journal article |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2215-7840 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11227/13326 |
dc.identifier.doi.none.fl_str_mv |
10.32997/rcb-2011-3049 |
dc.identifier.eissn.none.fl_str_mv |
2389-7252 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.32997/rcb-2011-3049 |
identifier_str_mv |
2215-7840 10.32997/rcb-2011-3049 2389-7252 |
url |
https://hdl.handle.net/11227/13326 https://doi.org/10.32997/rcb-2011-3049 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista Ciencias Biomédicas |
dc.relation.bitstream.none.fl_str_mv |
https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/3049/2580 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 2 , Año 2011 |
dc.relation.citationendpage.none.fl_str_mv |
209 |
dc.relation.citationissue.spa.fl_str_mv |
2 |
dc.relation.citationstartpage.none.fl_str_mv |
201 |
dc.relation.citationvolume.spa.fl_str_mv |
2 |
dc.relation.references.spa.fl_str_mv |
Pu LLQ, Cui X, Fink BF, Gao D, Vasconez HC. Adipose aspirates as a source for human processed lipoaspirate cells after optimal cryopreservation. Plast. Reconstr. Surg. 2006;117(6):1845- 1850. Ringe J, Kaps C, Burmester G-R, Sittinger M. Stem cells for regenerative medicine: advances in the engineering of tissues and organs. Naturwissenschaften. 2002;89(8):338-351. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 2002;13(12):4279-4295. Schäffler A, Büchler C. Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells. 2007;25(4):818-827. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211-228. Mizuno H, Zuk PA, Zhu M, Lorenz HP, Benhaim P, Hedrick MH. Myogenic differentiation by human processed lipoaspirate cells. Plast. Reconstr. Surg. 2002;109(1):199-209; discussion 210-211. Huang JI, Beanes SR, Zhu M, Lorenz HP, Hedrick MH, Benhaim P. Rat extramedullary adipose tissue as a source of osteochondrogenic progenitor cells. Plast. Reconstr. Surg. 2002;109(3):1033- 1041; discussion 1042-1043. Huang JI, Zuk PA, Jones NF, Zhu M, Lorenz HP, Hedrick MH, et al. Chondrogenic potential of multipotential cells from human adipose tissue. Plast. Reconstr. Surg. 2004;113(2):585-594. Weinzierl K, Hemprich A, Frerich B. Bone engineering with adipose tissue derived stromal cells. J Craniomaxillofac Surg. 2006;34(8):466-471. Ashjian PH, Elbarbary AS, Edmonds B, DeUgarte D, Zhu M, Zuk PA, et al. In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast. Reconstr. Surg. 2003;111(6):1922-1931. Pineda Molina C, Londoño Peláez C. Obtención de células madre del tejido adiposo y su potencial de diferenciación osteogénico. Revista Ingeniería Biomédica. 2009;3(5):58-65. Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. U.S.A. 2010;107(11):4872-4877. Awad HA, Halvorsen Y-DC, Gimble JM, Guilak F. Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng. 2003;9(6):1301-1312. Betre H, Ong SR, Guilak F, Chilkoti A, Fermor B, Setton LA. Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials. 2006;27(1):91-99. Erickson GR, Gimble JM, Franklin DM, Rice HE, Awad H, Guilak F. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem. Biophys. Res. Commun. 2002;290(2):763-769. Zapata NM, Zuluaga NJ, Betancur SN, López LE. Cultivo de tejido cartilaginoso articular: acercamiento conceptual. Revista EIA. 2007;8:117-129. Jin X bing, Sun Y sheng, Zhang K, Wang J, Shi T ping, Ju X dong, et al. Ectopic neocartilage formation from predifferentiated human adipose derived stem cells induced by adenoviralmediated transfer of hTGF beta2. Biomaterials. 2007;28(19):2994-3003. Lee JW, Kim YH, Kim S-H, Han SH, Hahn SB. Chondrogenic differentiation of mesenchymal stem cells and its clinical applications. Yonsei Med. J. 2004 30;45 Suppl:41-47. Bonaventure J, Kadhom N, Cohen-Solal L, Ng KH, Bourguignon J, Lasselin C, et al. Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp. Cell Res. 1994;212(1):97-104. Stensvaag V, Furmanek T, Lønning K, Terzis AJA, Bjerkvig R, Visted T. Cryopreservation of alginate-encapsulated recombinant cells for antiangiogenic therapy. Cell Transplant. 2004;13(1):35-44. Herrler A, Eisner S, Bach V, Weissenborn U, Beier HM. Cryopreservation of spermatozoa in alginic acid capsules. Fertil. Steril. 2006;85(1):208-213. Bhakta G, Lee KH, Magalhães R, Wen F, Gouk SS, Hutmacher DW, et al. Cryopreservation of alginate-fibrin beads involving bone marrow derived mesenchymal stromal cells by vitrification. Biomaterials. 2009;30(3):336-343. García F, Zapata NM, López LE, Londoño Peláez C. Caracterización de una fuente celular bovina multipotente y su potencial aplicación como modelo para la evaluación de biomateriales. 2008; Fuentes Lacouture MF. Optimización del sistema de cultivo y caracterización de células madre mesenquimales obtenidas a partir de médula ósea humana [Trabajo de grado]. Colombia (BOG): Pontificia Universidad Javeriana; 2008. 83 p. Freshney I. Culture of Animal Cells: A manual of basic technique fifth edition. 5th ed. New York: Wiley & Liss; 2005. Wilson A, Butler PE, Seifalian AM. Adipose-derived stem cells for clinical applications: a review. Cell Prolif. 2011;44(1):86-98. Takata A, Otsuka M, Kogiso T, Kojima K, Yoshikawa T, Tateishi R, et al. Direct differentiation of hepatic cells from human induced pluripotent stem cells using a limited number of cytokines. Hepatol Int [Internet]. 2011 [cited 2011];Available from: http://www.springerlink.com/index/10.1007/s12072-011-9251-5 Hsieh-Bonassera ND, Wu I, Lin JK, Schumacher BL, Chen AC, Masuda K, et al. Expansion and redifferentiation of chondrocytes from osteoarthritic cartilage: cells for human cartilage tissue engineering. Tissue Eng Part A. 2009;15(11):3513-3523. Little CJ, Bawolin NK, Chen D. Mechanical Properties of Natural Cartilage and Tissue Engineered Constructs. Tissue Engineering Part B: Reviews. 2011;110316043918076. Sugii S, Kida Y, Berggren WT, Evans RM. Feeder-dependent and feeder-independent iPS cell derivation from human and mouse adipose stem cells. Nat Protoc. 2011;6(3):346-358. Goh BC, Thirumala S, Kilroy G, Devireddy RV, Gimble JM. Cryopreservation characteristics of adipose-derived stem cells: maintenance of differentiation potential and viability. J Tissue Eng Regen Med. 2007;1(4):322-324. Guyomard C, Rialland L, Fremond B, Chesne C, Guillouzo A. Influence of alginate gel entrapment and cryopreservation on survival and xenobiotic metabolism capacity of rat hepatocytes. Toxicol. Appl. Pharmacol. 1996;141(2):349-356. Rialland L, Guyomard C, Scotte M, Chesné C, Guillouzo A. Viability and drug metabolism capacity of alginate-entrapped hepatocytes after cryopreservation. Cell Biol. Toxicol. 2000;16(2):105-116. Malpique R, Ehrhart F, Katsen-Globa A, Zimmermann H, Alves PM. Cryopreservation of adherent cells: strategies to improve cell viability and function after thawing. Tissue Eng Part C Methods. 2009;15(3):373-386. |
dc.rights.spa.fl_str_mv |
Revista Ciencias Biomédicas - 2020 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Revista Ciencias Biomédicas - 2020 https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de Cartagena |
dc.source.spa.fl_str_mv |
https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/3049 |
institution |
Universidad de Cartagena |
bitstream.url.fl_str_mv |
https://repositorio.unicartagena.edu.co/bitstreams/34495799-b527-4ec4-97df-a4baf04f3e59/download |
bitstream.checksum.fl_str_mv |
8f3fea5d852b12a8e20e9fd0e76e168b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Biblioteca Digital Universidad de Cartagena |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1818153148097757184 |
spelling |
Giraldo Hoyos, Juliana MaríaTrochêz Wilchez, Diana FernandaValencia Serna, JulianaZapata Linares, NataliaLondoño Peláez, CarolinaPineda Molina, Catalina2020-12-21 00:00:002020-12-21 00:00:002020-12-212215-7840https://hdl.handle.net/11227/1332610.32997/rcb-2011-30492389-7252https://doi.org/10.32997/rcb-2011-3049application/pdfspaUniversidad de CartagenaRevista Ciencias Biomédicashttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/3049/2580Núm. 2 , Año 201120922012Pu LLQ, Cui X, Fink BF, Gao D, Vasconez HC. Adipose aspirates as a source for human processed lipoaspirate cells after optimal cryopreservation. Plast. Reconstr. Surg. 2006;117(6):1845- 1850.Ringe J, Kaps C, Burmester G-R, Sittinger M. Stem cells for regenerative medicine: advances in the engineering of tissues and organs. Naturwissenschaften. 2002;89(8):338-351.Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 2002;13(12):4279-4295.Schäffler A, Büchler C. Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells. 2007;25(4):818-827.Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211-228.Mizuno H, Zuk PA, Zhu M, Lorenz HP, Benhaim P, Hedrick MH. Myogenic differentiation by human processed lipoaspirate cells. Plast. Reconstr. Surg. 2002;109(1):199-209; discussion 210-211.Huang JI, Beanes SR, Zhu M, Lorenz HP, Hedrick MH, Benhaim P. Rat extramedullary adipose tissue as a source of osteochondrogenic progenitor cells. Plast. Reconstr. Surg. 2002;109(3):1033- 1041; discussion 1042-1043.Huang JI, Zuk PA, Jones NF, Zhu M, Lorenz HP, Hedrick MH, et al. Chondrogenic potential of multipotential cells from human adipose tissue. Plast. Reconstr. Surg. 2004;113(2):585-594.Weinzierl K, Hemprich A, Frerich B. Bone engineering with adipose tissue derived stromal cells. J Craniomaxillofac Surg. 2006;34(8):466-471.Ashjian PH, Elbarbary AS, Edmonds B, DeUgarte D, Zhu M, Zuk PA, et al. In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast. Reconstr. Surg. 2003;111(6):1922-1931.Pineda Molina C, Londoño Peláez C. Obtención de células madre del tejido adiposo y su potencial de diferenciación osteogénico. Revista Ingeniería Biomédica. 2009;3(5):58-65.Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. U.S.A. 2010;107(11):4872-4877.Awad HA, Halvorsen Y-DC, Gimble JM, Guilak F. Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng. 2003;9(6):1301-1312.Betre H, Ong SR, Guilak F, Chilkoti A, Fermor B, Setton LA. Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials. 2006;27(1):91-99.Erickson GR, Gimble JM, Franklin DM, Rice HE, Awad H, Guilak F. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem. Biophys. Res. Commun. 2002;290(2):763-769.Zapata NM, Zuluaga NJ, Betancur SN, López LE. Cultivo de tejido cartilaginoso articular: acercamiento conceptual. Revista EIA. 2007;8:117-129.Jin X bing, Sun Y sheng, Zhang K, Wang J, Shi T ping, Ju X dong, et al. Ectopic neocartilage formation from predifferentiated human adipose derived stem cells induced by adenoviralmediated transfer of hTGF beta2. Biomaterials. 2007;28(19):2994-3003.Lee JW, Kim YH, Kim S-H, Han SH, Hahn SB. Chondrogenic differentiation of mesenchymal stem cells and its clinical applications. Yonsei Med. J. 2004 30;45 Suppl:41-47.Bonaventure J, Kadhom N, Cohen-Solal L, Ng KH, Bourguignon J, Lasselin C, et al. Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp. Cell Res. 1994;212(1):97-104.Stensvaag V, Furmanek T, Lønning K, Terzis AJA, Bjerkvig R, Visted T. Cryopreservation of alginate-encapsulated recombinant cells for antiangiogenic therapy. Cell Transplant. 2004;13(1):35-44.Herrler A, Eisner S, Bach V, Weissenborn U, Beier HM. Cryopreservation of spermatozoa in alginic acid capsules. Fertil. Steril. 2006;85(1):208-213.Bhakta G, Lee KH, Magalhães R, Wen F, Gouk SS, Hutmacher DW, et al. Cryopreservation of alginate-fibrin beads involving bone marrow derived mesenchymal stromal cells by vitrification. Biomaterials. 2009;30(3):336-343.García F, Zapata NM, López LE, Londoño Peláez C. Caracterización de una fuente celular bovina multipotente y su potencial aplicación como modelo para la evaluación de biomateriales. 2008;Fuentes Lacouture MF. Optimización del sistema de cultivo y caracterización de células madre mesenquimales obtenidas a partir de médula ósea humana [Trabajo de grado]. Colombia (BOG): Pontificia Universidad Javeriana; 2008. 83 p.Freshney I. Culture of Animal Cells: A manual of basic technique fifth edition. 5th ed. New York: Wiley & Liss; 2005.Wilson A, Butler PE, Seifalian AM. Adipose-derived stem cells for clinical applications: a review. Cell Prolif. 2011;44(1):86-98.Takata A, Otsuka M, Kogiso T, Kojima K, Yoshikawa T, Tateishi R, et al. Direct differentiation of hepatic cells from human induced pluripotent stem cells using a limited number of cytokines. Hepatol Int [Internet]. 2011 [cited 2011];Available from: http://www.springerlink.com/index/10.1007/s12072-011-9251-5Hsieh-Bonassera ND, Wu I, Lin JK, Schumacher BL, Chen AC, Masuda K, et al. Expansion and redifferentiation of chondrocytes from osteoarthritic cartilage: cells for human cartilage tissue engineering. Tissue Eng Part A. 2009;15(11):3513-3523.Little CJ, Bawolin NK, Chen D. Mechanical Properties of Natural Cartilage and Tissue Engineered Constructs. Tissue Engineering Part B: Reviews. 2011;110316043918076.Sugii S, Kida Y, Berggren WT, Evans RM. Feeder-dependent and feeder-independent iPS cell derivation from human and mouse adipose stem cells. Nat Protoc. 2011;6(3):346-358.Goh BC, Thirumala S, Kilroy G, Devireddy RV, Gimble JM. Cryopreservation characteristics of adipose-derived stem cells: maintenance of differentiation potential and viability. J Tissue Eng Regen Med. 2007;1(4):322-324.Guyomard C, Rialland L, Fremond B, Chesne C, Guillouzo A. Influence of alginate gel entrapment and cryopreservation on survival and xenobiotic metabolism capacity of rat hepatocytes. Toxicol. Appl. Pharmacol. 1996;141(2):349-356.Rialland L, Guyomard C, Scotte M, Chesné C, Guillouzo A. Viability and drug metabolism capacity of alginate-entrapped hepatocytes after cryopreservation. Cell Biol. Toxicol. 2000;16(2):105-116.Malpique R, Ehrhart F, Katsen-Globa A, Zimmermann H, Alves PM. Cryopreservation of adherent cells: strategies to improve cell viability and function after thawing. Tissue Eng Part C Methods. 2009;15(3):373-386.Revista Ciencias Biomédicas - 2020https://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccesshttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/3049Células madre. Biomateriales. Tejido adiposo. Diferenciación celularAlginato en procesos de criopreservación celular y su rol como factor inductor de diferenciación condrogénicaAlginato en procesos de criopreservación celular y su rol como factor inductor de diferenciación condrogénicaArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlePublicationOREORE.xmltext/xml2598https://repositorio.unicartagena.edu.co/bitstreams/34495799-b527-4ec4-97df-a4baf04f3e59/download8f3fea5d852b12a8e20e9fd0e76e168bMD5111227/13326oai:repositorio.unicartagena.edu.co:11227/133262024-09-05 15:30:36.909https://creativecommons.org/licenses/by-nc-sa/4.0/Revista Ciencias Biomédicas - 2020metadata.onlyhttps://repositorio.unicartagena.edu.coBiblioteca Digital Universidad de Cartagenabdigital@metabiblioteca.com |