Risk and genetic susceptibility to arsenic exposure from drinking groundwater in populations of the Colombian Caribbean
Inorganic arsenic (InAs) is considered to be the principal form of arsenic (As) in groundwater. The presence of arsenic in waters naturally may occur and it is a serious global health issue, playing a very important role in the chronic toxicological effect in humans. According to International Agenc...
- Autores:
-
González Martínez, Farith Damián
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Cartagena
- Repositorio:
- Repositorio Universidad de Cartagena
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unicartagena.edu.co:11227/16529
- Acceso en línea:
- https://hdl.handle.net/11227/16529
http://dx.doi.org/10.57799/11227/11863
- Palabra clave:
- Agua - Análisis
Drinking wáter
Arsénico - Compuestos orgánicos
Toxicología ambiental
- Rights
- openAccess
- License
- Derechos Reservados - Universidad de Cartagena, 2020
id |
UCART2_c2fea2b21f3633a6524afd112b28118b |
---|---|
oai_identifier_str |
oai:repositorio.unicartagena.edu.co:11227/16529 |
network_acronym_str |
UCART2 |
network_name_str |
Repositorio Universidad de Cartagena |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Risk and genetic susceptibility to arsenic exposure from drinking groundwater in populations of the Colombian Caribbean |
title |
Risk and genetic susceptibility to arsenic exposure from drinking groundwater in populations of the Colombian Caribbean |
spellingShingle |
Risk and genetic susceptibility to arsenic exposure from drinking groundwater in populations of the Colombian Caribbean Agua - Análisis Drinking wáter Arsénico - Compuestos orgánicos Toxicología ambiental |
title_short |
Risk and genetic susceptibility to arsenic exposure from drinking groundwater in populations of the Colombian Caribbean |
title_full |
Risk and genetic susceptibility to arsenic exposure from drinking groundwater in populations of the Colombian Caribbean |
title_fullStr |
Risk and genetic susceptibility to arsenic exposure from drinking groundwater in populations of the Colombian Caribbean |
title_full_unstemmed |
Risk and genetic susceptibility to arsenic exposure from drinking groundwater in populations of the Colombian Caribbean |
title_sort |
Risk and genetic susceptibility to arsenic exposure from drinking groundwater in populations of the Colombian Caribbean |
dc.creator.fl_str_mv |
González Martínez, Farith Damián |
dc.contributor.advisor.none.fl_str_mv |
Johnson Restrepo, Boris |
dc.contributor.author.none.fl_str_mv |
González Martínez, Farith Damián |
dc.subject.armarc.none.fl_str_mv |
Agua - Análisis Drinking wáter Arsénico - Compuestos orgánicos Toxicología ambiental |
topic |
Agua - Análisis Drinking wáter Arsénico - Compuestos orgánicos Toxicología ambiental |
description |
Inorganic arsenic (InAs) is considered to be the principal form of arsenic (As) in groundwater. The presence of arsenic in waters naturally may occur and it is a serious global health issue, playing a very important role in the chronic toxicological effect in humans. According to International Agency for Research on Cancer (IARC), InAs species are classified in Group I as “carcinogens to human”. World Health Organization (WHO) had recommended a guideline value for arsenic in drinking water as a safe of 10 μg/L. Before starting this project, there was very little information on As concentrations in groundwater in Colombia. On the other hand, this research provided for the first time on two publications of international impact on As exposure in humans and the magnitude of the problem that had been completely unknown in Colombia. Lifetime average daily dose (LADD) is considered an important method for exposure assessment, because the effects of toxicity of InAs may be accelerated with an increase in exposure dosage. Knowledge of the mechanism of environmental exposure to As will allow the understanding of the individual differences to identify susceptible groups. Urinary arsenic species such as trivalent arsenic (AsIII), pentavalent arsenic (AsV ), mono-methyl arsenic acid (MMA) and dimethyl arsenic acid (DMA) have been used as biomarkers for the LADD of arsenic. However, this profile's urinary of speciation can vary largely among individuals. This can be due to demographic, anthropometric factors such as age, sex, body mass index (BMI) and pregnancy, as well as smoking history and lifestyle. Besides, genetic factors have been reported to explain part of the variation and probably plays an important role in the arsenic methylation, increasing the susceptibility to arsenic exposure. Nevertheless, more consistent evidence is needed on the focus of this issue, which contributes explanations according to the effect of the interactions among different polymorphic variants and other potential factors involved on the metabolic process of As. The aim of this study was to evaluate the risk of arsenic exposure in humans and the effects of genetic variants on urinary arsenic profiles in people exposed from drinking groundwater of the Department of Bolivar, Colombia. For this purpose, specific surveys were used to assess the demographic and anthropometric information of the subjects and their lifestyle. The groundwater samples were analyzed for assessing total arsenic (TAs) and speciation (AsIII and AsV ) using highperformance liquid chromatography, with hydride generation (HG), couple to atomic fluorescence spectrometry (HPLC-HG-AFS). Likewise, the exposure and risk of arsenic was assessed by LADD method (µg/kg bw/day) and the Hazard quotient (HQ). Besides, urinary arsenic metabolites: AsIII, AsV , MMAV , and DMAV were measured using HPLC-HG-AFS. Six genetic polymorphisms (GSTO2-rs156697, GSTP1-rs1695, GSTT1, GSTM1, As3MT-rs3740400 and MT2Ars28366003) were evaluated from DNA samples by real-time and/or conventional PCR. Twenty-two groundwater wells from studied municipalities were analyzed. The high exposure of As (0.33 µg/kg bw/day) in the study population generated a risk of adverse health effects HQ=1.2. The urinary arsenic species concentrations were 0.80 µg/L for InAs, 0.60 µg/L for MMAV and 1.2 µg/L for DMAV . The associated between urinary arsenic species and genetic polymorphisms showed MMA urinary excretion higher in subjects with heterozygous and/or homozygous genotypes of As3MT. Furthermore, DMA and ratio MMA/InAs were lower in individuals with heterozygous and/or homozygous genotypes of GSTP1. Likewise, DMA and MMA concentrations were higher in GSTM1-null genotypes. For GSTT1 and MT2A genotypes no differences were found. Interactions gene-gene and gene-covariates modified the MMA and DMA urinary excretion. In conclusion, the interactions between As3MT*GSTM1 y GSTO2*GSTP1 polymorphic variants could be potential modifiers of the risk of toxicity to inorganic arsenic through an increase of MMA and InAs a decrease of DMA and primary methylation index (PMI ratio). The synergistic effect among these polymorphisms and age, daily doses of arsenic, and alcohol consumption might vary the arsenic individual metabolic capacity a large part. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2023-06-20T20:08:00Z |
dc.date.available.none.fl_str_mv |
2023-06-20T20:08:00Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11227/16529 http://dx.doi.org/10.57799/11227/11863 |
url |
https://hdl.handle.net/11227/16529 http://dx.doi.org/10.57799/11227/11863 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad de Cartagena, 2020 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad de Cartagena, 2020 https://creativecommons.org/licenses/by-nc/4.0/ Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de Cartagena |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Farmacéuticas |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.publisher.program.spa.fl_str_mv |
Doctorado en Toxicología Ambiental |
institution |
Universidad de Cartagena |
bitstream.url.fl_str_mv |
https://dspace7-unicartagena.metabuscador.org/bitstreams/fb0f2b8e-c53f-4119-8d32-a0fd19ba33ba/download https://dspace7-unicartagena.metabuscador.org/bitstreams/5ddaf87a-5c25-4ce2-b52f-a46dc6454a7e/download https://dspace7-unicartagena.metabuscador.org/bitstreams/b8c55cb5-7dd7-482b-a647-03e80d8faa8e/download https://dspace7-unicartagena.metabuscador.org/bitstreams/02ef2caf-2439-4db9-a527-5bfdf2a1f217/download https://dspace7-unicartagena.metabuscador.org/bitstreams/8977b3f9-1aa9-43ac-be98-bae1731bae0b/download https://dspace7-unicartagena.metabuscador.org/bitstreams/7f02565e-10ca-4d87-a6e2-bb2614f743fd/download https://dspace7-unicartagena.metabuscador.org/bitstreams/0a03b2e2-824a-403a-b112-3a32bb83adda/download |
bitstream.checksum.fl_str_mv |
128ef3cc95912b7ddd10afc8f433a7a4 ba526b875418fcf6b0d8732ba45699fb 7b38fcee9ba3bc8639fa56f350c81be3 3388e3c7e4dfc0737963aecb3ad5cde0 30eaaecf46f47cff6b3051b5b83cbfde d76bc24281762ff53220cc106e84edfc bcf70220575db40be5f6f9425ce61781 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital Universidad de Cartagena |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814214047405441024 |
spelling |
Johnson Restrepo, BorisGonzález Martínez, Farith Damián2023-06-20T20:08:00Z2023-06-20T20:08:00Z2020https://hdl.handle.net/11227/16529http://dx.doi.org/10.57799/11227/11863Inorganic arsenic (InAs) is considered to be the principal form of arsenic (As) in groundwater. The presence of arsenic in waters naturally may occur and it is a serious global health issue, playing a very important role in the chronic toxicological effect in humans. According to International Agency for Research on Cancer (IARC), InAs species are classified in Group I as “carcinogens to human”. World Health Organization (WHO) had recommended a guideline value for arsenic in drinking water as a safe of 10 μg/L. Before starting this project, there was very little information on As concentrations in groundwater in Colombia. On the other hand, this research provided for the first time on two publications of international impact on As exposure in humans and the magnitude of the problem that had been completely unknown in Colombia. Lifetime average daily dose (LADD) is considered an important method for exposure assessment, because the effects of toxicity of InAs may be accelerated with an increase in exposure dosage. Knowledge of the mechanism of environmental exposure to As will allow the understanding of the individual differences to identify susceptible groups. Urinary arsenic species such as trivalent arsenic (AsIII), pentavalent arsenic (AsV ), mono-methyl arsenic acid (MMA) and dimethyl arsenic acid (DMA) have been used as biomarkers for the LADD of arsenic. However, this profile's urinary of speciation can vary largely among individuals. This can be due to demographic, anthropometric factors such as age, sex, body mass index (BMI) and pregnancy, as well as smoking history and lifestyle. Besides, genetic factors have been reported to explain part of the variation and probably plays an important role in the arsenic methylation, increasing the susceptibility to arsenic exposure. Nevertheless, more consistent evidence is needed on the focus of this issue, which contributes explanations according to the effect of the interactions among different polymorphic variants and other potential factors involved on the metabolic process of As. The aim of this study was to evaluate the risk of arsenic exposure in humans and the effects of genetic variants on urinary arsenic profiles in people exposed from drinking groundwater of the Department of Bolivar, Colombia. For this purpose, specific surveys were used to assess the demographic and anthropometric information of the subjects and their lifestyle. The groundwater samples were analyzed for assessing total arsenic (TAs) and speciation (AsIII and AsV ) using highperformance liquid chromatography, with hydride generation (HG), couple to atomic fluorescence spectrometry (HPLC-HG-AFS). Likewise, the exposure and risk of arsenic was assessed by LADD method (µg/kg bw/day) and the Hazard quotient (HQ). Besides, urinary arsenic metabolites: AsIII, AsV , MMAV , and DMAV were measured using HPLC-HG-AFS. Six genetic polymorphisms (GSTO2-rs156697, GSTP1-rs1695, GSTT1, GSTM1, As3MT-rs3740400 and MT2Ars28366003) were evaluated from DNA samples by real-time and/or conventional PCR. Twenty-two groundwater wells from studied municipalities were analyzed. The high exposure of As (0.33 µg/kg bw/day) in the study population generated a risk of adverse health effects HQ=1.2. The urinary arsenic species concentrations were 0.80 µg/L for InAs, 0.60 µg/L for MMAV and 1.2 µg/L for DMAV . The associated between urinary arsenic species and genetic polymorphisms showed MMA urinary excretion higher in subjects with heterozygous and/or homozygous genotypes of As3MT. Furthermore, DMA and ratio MMA/InAs were lower in individuals with heterozygous and/or homozygous genotypes of GSTP1. Likewise, DMA and MMA concentrations were higher in GSTM1-null genotypes. For GSTT1 and MT2A genotypes no differences were found. Interactions gene-gene and gene-covariates modified the MMA and DMA urinary excretion. In conclusion, the interactions between As3MT*GSTM1 y GSTO2*GSTP1 polymorphic variants could be potential modifiers of the risk of toxicity to inorganic arsenic through an increase of MMA and InAs a decrease of DMA and primary methylation index (PMI ratio). The synergistic effect among these polymorphisms and age, daily doses of arsenic, and alcohol consumption might vary the arsenic individual metabolic capacity a large part.DoctoradoDoctor(a) en Toxicología Ambientalapplication/pdfengUniversidad de CartagenaFacultad de Ciencias FarmacéuticasCartagena de IndiasDoctorado en Toxicología AmbientalDerechos Reservados - Universidad de Cartagena, 2020https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)http://purl.org/coar/access_right/c_abf2Risk and genetic susceptibility to arsenic exposure from drinking groundwater in populations of the Colombian CaribbeanTrabajo de grado - Doctoradoinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06Textinfo:eu-repo/semantics/doctoralThesishttps://purl.org/redcol/resource_type/TDhttp://purl.org/coar/version/c_970fb48d4fbd8a85Agua - AnálisisDrinking wáterArsénico - Compuestos orgánicosToxicología ambientalAbdul, K.S., Jayasinghe, E.P., Chandana et al. 2015. Arsenic and human health effects: A review. Environ. Toxicol. Pharmacol. 40, 828-846.Abhyankar, L.N., Jones, M.R., Guallar, E., Navas, A.A. 2001. Arsenic Exposure and Hypertension: A Systematic Review. Environ. Health Perspect. 120, 494–500.Agusa, T., Iwata, H., Fujihara, J., Kunito, T., Takeshita, H., Trang, P.T., Viet, P.H., Tanabe, S., Minh, T.B. 2010. Genetic polymorphisms in glutathione S-transferase (GST) superfamily and arsenic metabolism in residents of the Red River Delta, Vietnam. Toxicol. Appl. Pharmacol. 242, 352– 362.Agusa, T., Kunito, T., Tue, N.M., Lan, V.T., Fujihara, J., Takeshita, H., Minh, T.B., Trang, P.T., Takahashi, S., Viet, P.H., Tanabe, S., Iwata, H. 2012. Individual variations in arsenic metabolism in Vietnamese: the association with arsenic exposure and GSTP1 genetic polymorphism. Metallomics 4, 9-100.Agusa, T., Fujihara, J., Takeshita, H., Iwata, H. 2011. Individual variations in inorganic arsenic metabolism associated with AS3MT genetic polymorphisms. Int. J. Mol. Sci. 12, 2351– 2382.Ahmed, S., Akhtar, E., Roy, A., von Ehrenstein, O.S., Vahter, M., Wagatsuma, Y., Raqib, R. 2017. Arsenic exposure alters lunch function and airway inflammation in children: A cohort study in rural Bangladesh. Environ. Int. 101, 108–116.Allen, G. 2016. Risk identification. In Threat Assessment and Risk Analysis: An Applied Approach, eds. G Allen and R. Derr. Amsterdam: Elsevier and BH.Alonso, D.L., Latorre, S., Castillo, E., Brandao, P.F. 2014. Environmental occurrence of arsenic in Colombia: A review. Env. Pollut. 186, 272–281.Amini, M.K.C., Abbaspour, M.B., Winkel, L., Hug, S.J., Hoehn, E., Yang, H., Johnson, C.A. 2008. Statistical K.C. Modeling of Global Geogenic Arsenic Contamination in Groundwater. Environ. Sci. Technol. 42, 3669-3675.Antonelli, R., Shao, K., Thomas, D., Sams, R., Cowden, J. 2014. AS3MT, GSTO, and PNP polymorphisms: impact on arsenic methylation and implications for disease susceptibility. Environ. Res. 132,156-67.Asante, D.K. 2002. Public Health Risk Assessment for Human Exposure to Chemicals. Dordrecht: Kluwer Academic Publishers.ATSDR. 1993. Toxicological Profiles for Arsenic. TP-92/02. Agency for Toxic Substances and Disease Registry, U.S. Department of Health & Human Services, Atlanta, GA.Bang, S., Korfiatis, G.P., Meng, X. 2005. Removal of arsenic from water by zerovalent iron. J. Hazard Mat. 121, 61-67.Barrera, G. 2012. Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol. 2012, 137289.Barlow, S., Renwick, A.G., Kleiner, J., et al. 2006. Risk assessment of substances that are both genotoxic and carcinogenic report of an International Conference organized by EFSA and WHO with support of ILSI Europe. Food Chem. Toxicol. 44, 1636- 1650.Bhattacharjee, P., Banerjee, M., Giri, K. 2013. Role of genomic instability in arsenic-induced carcinogenicity: A review. Env. Int. 53, 29–40.Bissen, M., Frimmel, F.H. 2003. Arsenic-a review. Part I: Occurrence, toxicity, speciation, mobility. Acta Hydrochim. Hydrobiol. 31:9–18.Biswas, B.K. 2000. Groundwater arsenic poisoning in Bangladesh. PhD Thesis (Unpublished), School of Environmental Studies (SOES), Kolkata: Jadavpur UniversityBrinkman, G.L., Coates, O. 1963. The effect of bronchitis, smoking and occupation in ventilation. Am. Rev. Respir. Dis. 87, 684–693.Bui, T., Tuyet, T.T., Johnston, R., Nguyen, H. 2014. Assessing Health Risk due to Exposure to Arsenic in Drinking Water in Hanam Province, Vietnam. Int. J. Environ. Res. Public Health 1, 7575- 7591.PublicationORIGINAL2020_TESIS DE GRADO_FARITH D. GONZÁLEZ MARTÍNEZ.pdf2020_TESIS DE GRADO_FARITH D. GONZÁLEZ MARTÍNEZ.pdfapplication/pdf4955730https://dspace7-unicartagena.metabuscador.org/bitstreams/fb0f2b8e-c53f-4119-8d32-a0fd19ba33ba/download128ef3cc95912b7ddd10afc8f433a7a4MD51GRADO FORMATO CESION DE DERECHOS DE AUTOR GRADO FARITH GONZALEZ 2.pdfGRADO FORMATO CESION DE DERECHOS DE AUTOR GRADO FARITH GONZALEZ 2.pdfapplication/pdf209018https://dspace7-unicartagena.metabuscador.org/bitstreams/5ddaf87a-5c25-4ce2-b52f-a46dc6454a7e/downloadba526b875418fcf6b0d8732ba45699fbMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81756https://dspace7-unicartagena.metabuscador.org/bitstreams/b8c55cb5-7dd7-482b-a647-03e80d8faa8e/download7b38fcee9ba3bc8639fa56f350c81be3MD53TEXT2020_TESIS DE GRADO_FARITH D. GONZÁLEZ MARTÍNEZ.pdf.txt2020_TESIS DE GRADO_FARITH D. GONZÁLEZ MARTÍNEZ.pdf.txtExtracted texttext/plain205363https://dspace7-unicartagena.metabuscador.org/bitstreams/02ef2caf-2439-4db9-a527-5bfdf2a1f217/download3388e3c7e4dfc0737963aecb3ad5cde0MD54GRADO FORMATO CESION DE DERECHOS DE AUTOR GRADO FARITH GONZALEZ 2.pdf.txtGRADO FORMATO CESION DE DERECHOS DE AUTOR GRADO FARITH GONZALEZ 2.pdf.txtExtracted texttext/plain2926https://dspace7-unicartagena.metabuscador.org/bitstreams/8977b3f9-1aa9-43ac-be98-bae1731bae0b/download30eaaecf46f47cff6b3051b5b83cbfdeMD56THUMBNAIL2020_TESIS DE GRADO_FARITH D. GONZÁLEZ MARTÍNEZ.pdf.jpg2020_TESIS DE GRADO_FARITH D. GONZÁLEZ MARTÍNEZ.pdf.jpgGenerated Thumbnailimage/jpeg14175https://dspace7-unicartagena.metabuscador.org/bitstreams/7f02565e-10ca-4d87-a6e2-bb2614f743fd/downloadd76bc24281762ff53220cc106e84edfcMD55GRADO FORMATO CESION DE DERECHOS DE AUTOR GRADO FARITH GONZALEZ 2.pdf.jpgGRADO FORMATO CESION DE DERECHOS DE AUTOR GRADO FARITH GONZALEZ 2.pdf.jpgGenerated Thumbnailimage/jpeg16125https://dspace7-unicartagena.metabuscador.org/bitstreams/0a03b2e2-824a-403a-b112-3a32bb83adda/downloadbcf70220575db40be5f6f9425ce61781MD5711227/16529oai:dspace7-unicartagena.metabuscador.org:11227/165292024-08-28 17:06:24.878https://creativecommons.org/licenses/by-nc/4.0/Derechos Reservados - Universidad de Cartagena, 2020open.accesshttps://dspace7-unicartagena.metabuscador.orgBiblioteca Digital Universidad de Cartagenabdigital@metabiblioteca.comCkFsIGZpcm1hciB5IHByZXNlbnRhciBlc3RhIGxpY2VuY2lhLCB1c3RlZCAoQVVUT1IgTyBBVVRPUkVTKSAgbyBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGVsIHByb3BpZXRhcmlvKFMpIGdhcmFudGl6YSBhICBsYSBVTklWRVJTSURBRCBERSBDQVJUQUdFTkEgZWwgZGVyZWNobyBleGNsdXNpdm8gZGUgcmVwcm9kdWNpciwgdHJhZHVjaXIgKGNvbW8gc2UgZGVmaW5lIG3DoXMgYWRlbGFudGUpIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byAoaW5jbHV5ZW5kbyBlbCByZXN1bWVuKSBlbiB0b2RvIGVsIG11bmRvICBlbiBmb3JtYSBpbXByZXNhIHkgZW4gZm9ybWF0byBlbGVjdHLDs25pY28geSBlbiBjdWFscXVpZXIgbWVkaW8sIGluY2x1eWVuZG8gYXVkaW8gbyB2aWRlby4KClVzdGVkIGFjZXB0YSBxdWUgbGEgVU5JVkVSU0lEQUQgREUgQ0FSVEFHRU5BICBwdWVkZSwgc2luIGNhbWJpYXIgZWwgY29udGVuaWRvIGNvbnZlcnRpcmxvLCBwcmVzZW50YXJsbyAgYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgbG9zIGZpbmVzIGRlIGNvbnNlcnZhY2nDs24uCgpVc3RlZCB0YW1iacOpbiBhY2VwdGEgcXVlIGxhIFVOSVZFUlNJREFEIERFIENBUlRBR0VOQSAgIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byBwYXJhIGZpbmVzIGRlIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24uCgpVc3RlZCBkZWNsYXJhIHF1ZSBlbCBkb2N1bWVudG8gZXMgdW4gdHJhYmFqbyBvcmlnaW5hbCB5ICBxdWUgdGllbmUgZWwgZGVyZWNobyBkZSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuICBUYW1iacOpbiByZXByZXNlbnRhbiAgbG8gbWVqb3IgZGUgc3UgY29ub2NpbWllbnRvIHkgbm8gaW5mcmluZ2VuICBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbmFkaWUuCgpTaSBlbCBkb2N1bWVudG8gY29udGllbmUgbWF0ZXJpYWxlcyBkZSBsb3MgcXVlIG5vIHRpZW5lIGxvcyAgZGVyZWNob3MgZGUgYXV0b3IsIHVzdGVkIGRlY2xhcmEgcXVlIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gc2luIHJlc3RyaWNjacOzbiBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zLCBkYSBhIGNvbmNlZGVyICBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgeSBxdWUgY29tbyBtYXRlcmlhbCBwcm9waWVkYWQgIGRlIHRlcmNlcm9zICBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyB5IHJlY29ub2NpZG8gZGVudHJvIGRlbCB0ZXh0byBvIGVsIGNvbnRlbmlkbyBkZSBsYSBwcmVzZW50YWNpw7NuLgoKU2kgbGEgcHJlc2VudGFjacOzbiBzZSBiYXNhIGVuICB0cmFiYWpvcyBRVUUgU0UgSEEgcGF0cm9jaW5hZG8gbyBhcG95YWRvIFBPUiBVTkEgQUdFTkNJQSBVIE9SR0FOSVpBQ0nDk04gUVVFIE5PIFNFQSBMQSBVTklWRVJTSURBRCBERSBDQVJUQUdFTkEsIE1BTklGSUVTVEEgUVVFIFRJRU5FIFFVRSBDVU1QTElSIGRlcmVjaG9zIGEgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHF1ZSBleGlnZW4gZXN0ZSBDb250cmF0byBvIGFjdWVyZG8uCgpEaWNlIHF1ZSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgc3Ugbm9tYnJlIChzKSBjb21vIGVsIGF1dG9yIChzKSBvIHByb3BpZXRhcmlvIChhKSBkZSBsb3MgZG9jdW1lbnRvIHkgbm8gaGFyw6EgbmluZ3VuYSBhbHRlcmFjacOzbiwgZXhlbnRvIGxhcyBwZXJtaXRpZGFzIGVuIGVzdGEgbGljZW5jaWEgcGFyYSBzdSBwcmVzZW50YWNpw7NuLgoKCg== |