Inteligencia Artificial y Auditoría: Tendencias de la literatura científica
Objetivos: La inteligencia artificial se ha establecido como una fuerza disruptiva en una amplia gama de industrias, incluida la auditoría. En la última década, la Inteligencia artificial ha demostrado su capacidad para automatizar tareas, identificar patrones complejos y mejorar la precisión de los...
- Autores:
-
Fajardo Pereira, Johana
Toscano Hernández, Aníbal
García Alarcón, Héctor
Llanos Ayola, Jones
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Cartagena
- Repositorio:
- Repositorio Universidad de Cartagena
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unicartagena.edu.co:11227/17931
- Acceso en línea:
- https://hdl.handle.net/11227/17931
https://doi.org/10.32997/pe-2023-4575
- Palabra clave:
- Accounting
Artificial Intelligence
Automation
Digitalization
Financial Auditing
Auditoría financiera
Automatización
Contabilidad
Digitalización
Inteligencia Artificial
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0
id |
UCART2_bb403ac0ad0c5cb8c75ceae1b6242428 |
---|---|
oai_identifier_str |
oai:repositorio.unicartagena.edu.co:11227/17931 |
network_acronym_str |
UCART2 |
network_name_str |
Repositorio Universidad de Cartagena |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Inteligencia Artificial y Auditoría: Tendencias de la literatura científica |
dc.title.translated.eng.fl_str_mv |
Artificial Intelligence and Auditing: Trends in scientific literature |
title |
Inteligencia Artificial y Auditoría: Tendencias de la literatura científica |
spellingShingle |
Inteligencia Artificial y Auditoría: Tendencias de la literatura científica Accounting Artificial Intelligence Automation Digitalization Financial Auditing Auditoría financiera Automatización Contabilidad Digitalización Inteligencia Artificial |
title_short |
Inteligencia Artificial y Auditoría: Tendencias de la literatura científica |
title_full |
Inteligencia Artificial y Auditoría: Tendencias de la literatura científica |
title_fullStr |
Inteligencia Artificial y Auditoría: Tendencias de la literatura científica |
title_full_unstemmed |
Inteligencia Artificial y Auditoría: Tendencias de la literatura científica |
title_sort |
Inteligencia Artificial y Auditoría: Tendencias de la literatura científica |
dc.creator.fl_str_mv |
Fajardo Pereira, Johana Toscano Hernández, Aníbal García Alarcón, Héctor Llanos Ayola, Jones |
dc.contributor.author.spa.fl_str_mv |
Fajardo Pereira, Johana Toscano Hernández, Aníbal García Alarcón, Héctor Llanos Ayola, Jones |
dc.subject.eng.fl_str_mv |
Accounting Artificial Intelligence Automation Digitalization Financial Auditing |
topic |
Accounting Artificial Intelligence Automation Digitalization Financial Auditing Auditoría financiera Automatización Contabilidad Digitalización Inteligencia Artificial |
dc.subject.spa.fl_str_mv |
Auditoría financiera Automatización Contabilidad Digitalización Inteligencia Artificial |
description |
Objetivos: La inteligencia artificial se ha establecido como una fuerza disruptiva en una amplia gama de industrias, incluida la auditoría. En la última década, la Inteligencia artificial ha demostrado su capacidad para automatizar tareas, identificar patrones complejos y mejorar la precisión de los procesos de auditoría. El propósito fundamental de este estudio resumir y exponer los estudios científicos de la investigación relacionada con la inteligencia artificial y la auditoría a nivel mundial. Métodos: Se realizo un análisis bibliométrico que abarca un período de 37 años, desde 1984 hasta 2022. Para analizar y presentar los resultados se utilizó el paquete de análisis bibliométrico Biblioshiny, soportado en el programa R Studio, así como en el software VOSviewer, teniendo en cuenta 306 artículos y revisiones de literatura. Este enfoque cuantitativo nos permitió identificar patrones y tendencias en la investigación. Resultados: Los resultados reflejan cambios importantes en el número de publicaciones anuales al registrar que el 70,91% de los documentos se publicaron en los últimos 7 años (2016 a 2022) y solo el 29,08% fue publicado en los 30 años comprendidos entre 1984 y 2015. Además, entre las 234 revistas científicas con publicaciones relacionadas, se identifican las ocho principales que concentran un 12.8% de las publicaciones y acumulan 12.5% de las citaciones. El clúster más numeroso, representado en color rojo, resaltando los 10 principales “audit”, “Audit Quality”, “Auditing”, “Big Data”, “Big Data Analytics”, “Blockchain”, “Computers”, “Data Mining”, “Decision Making”. Conclusión: Esta investigación permite caracterizar la producción científica relacionada con la inteligencia artificial y la auditoria considerando la evolución temporal, características generales, redes de investigación con autores e instituciones, así como los clústeres temáticos de mayor relevancia en este campo de estudio. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-04-14T00:00:00Z 2024-09-05T20:24:32Z |
dc.date.available.none.fl_str_mv |
2023-04-14T00:00:00Z 2024-09-05T20:24:32Z |
dc.date.issued.none.fl_str_mv |
2023-04-14 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.eng.fl_str_mv |
Journal article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0122-8900 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11227/17931 |
dc.identifier.doi.none.fl_str_mv |
10.32997/pe-2023-4575 |
dc.identifier.eissn.none.fl_str_mv |
2463-0470 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.32997/pe-2023-4575 |
identifier_str_mv |
0122-8900 10.32997/pe-2023-4575 2463-0470 |
url |
https://hdl.handle.net/11227/17931 https://doi.org/10.32997/pe-2023-4575 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofjournal.spa.fl_str_mv |
Panorama Económico |
dc.relation.bitstream.none.fl_str_mv |
https://revistas.unicartagena.edu.co/index.php/panoramaeconomico/article/download/4575/3571 |
dc.relation.citationendpage.none.fl_str_mv |
187 |
dc.relation.citationissue.spa.fl_str_mv |
2 |
dc.relation.citationstartpage.none.fl_str_mv |
160 |
dc.relation.citationvolume.spa.fl_str_mv |
31 |
dc.relation.references.spa.fl_str_mv |
Al-Sayyed, S.M.; Al-Aroud, S. F.; Zayed, L. M., (2021). The effect of artificial intelligence technologies on audit evidence. Accounting, 7(2), 281–288. https://www.growingscience.com/ac/Vol7/ac_2020_188.pdf Appelbaum, D., (2016). Securing big data provenance for auditors: The big data provenance black box as reliable evidence. Journal of Emerging Technologies in Accounting, 13(1), 13–17. https://publications.aaahq.org/jeta/article-abstract/13/1/17/9219/Securing-Big-Data-Provenance-for-Auditors-The-Big?redirectedFrom=fulltext Aria, M.; Cuccurullo, C., (2017). Bibliometrix: An r-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://www.sciencedirect.com/science/article/abs/pii/S1751157717300500?via%3Dihub Atayah, O.F.; Alshater, M.M., (2021). Audit and tax in the context of emerging technologies: a retrospective analysis, current trends, and future opportunities. International Journal of Digital Accounting Research, 21, 95–128. https://www.uhu.es/ijdar/10.4192/1577-8517-v21_4.pdf Bastani, H.; Bastani, O.; Sinchaisri, P., (2022). Improving human decision-making with machine learning. Academy of Management Proceedings, 2022(1). https://hamsabastani.github.io/tips.pdf Boxwala, A.A.; Kim, J.; Grillo, J.M.; Ohno-Machado, L., (2011). Using statistical and machine learning to help institutions detect suspicious access to electronic health records. Journal of the American Medical Informatics Association, 18(4), 498–505. https://academic.oup.com/jamia/article/18/4/498/2909142?login=false Brown, B.; Balatsoukas, P.; Williams, R.; Sperrin, M.; Buchan, I., (2016). Interface design recommendations for computerised clinical audit and feedback: Hybrid usability evidence from a research-led system. International Journal of Medical Informatics, 94, 191–206. https://www.sciencedirect.com/science/article/pii/S138650561630171X Brzezicki, M.A.; Bridger, N.E.; Kobetić, M.D.; Ostrowski, M.; Grabowski, W.; Gill, S.S.; Neumann, S., (2020). Artificial intelligence outperforms human students in conducting neurosurgical audits. Clinical Neurology and Neurosurgery, 192. https://www.sciencedirect.com/science/article/abs/pii/S0303846720300755?via%3Dihub Cazazian, R., (2022). Blockchain technology adoption in artificial intelligence- based digital financial services, accounting information systems and audit quality control. August, 55–71. https://publications.aaahq.org/jeta/article-abstract/17/1/107/9324/Blockchain-Technology-Business-Data-Analytics-and?redirectedFrom=fulltext Char, D.S.; Shah, N.H.; Magnus, D., (2019). Implementing machine learning in health care — addressing. The New England Journal of Medicine, 981–983, 2018–2020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5962261 Commerford, B.P.; Dennis, S.A.; Joe, J.R.; Ulla, J.W., (2022). Man versus machine: Complex estimates and auditor reliance on artificial intelligence. Journal of Accounting Research, 60(1), 171–201. https://onlinelibrary.wiley.com/doi/epdf/10.1111/1475-679X.12407 Cossío, A., (2018). Bots, machine learning, servicios cognitivos realidad y perspectivas de la inteligencia artificial en España, 2018. PWC, 1–34. https://www.pwc.es/es/publicaciones/tecnologia/assets/pwc-ia-en-espana-2018.pdf Dai, J.; Vasarhelyi, M.A., (2017). Toward blockchain-based accounting and assurance. Journal of Information Systems, 31(3), 5–21. https://publications.aaahq.org/jis/article-abstract/31/3/5/1105/Toward-Blockchain-Based-Accounting-and-Assurance?redirectedFrom=fulltext Denning, D.E., (1987). An intrusion-detection model. IEEE Transactions on Software Engineering, 13(2), 222–232. https://ieeexplore.ieee.org/document/1702202 Dickey, G.; Blanke, S.; Seaton, L., (2019). Machine learning in auditing. The CPA Journal, 89(6), 16–21. https://www.cpajournal.com/2019/06/19/machine-learning-in-auditing Dungan, C.w; Chandlers, J. s., (1985). Auditor: A microcomputer-based expert system to support auditors in the field. University of South Florida at Sarasota, 2(4), 210–221. https://onlinelibrary.wiley.com/doi/10.1111/j.1468-0394.1985.tb00474.x Earley, C.E., (2015). Data analytics in auditing: Opportunities and challenges. Business Horizons, 58(5), 493–500. https://www.sciencedirect.com/science/article/abs/pii/S0007681315000592 Fan, L.; Yang, K.; Liu, L., (2020). New media environment, environmental information disclosure and firm valuation: Evidence from high-polluting enterprises in China. Journal of Cleaner Production, 277, 123253. https://www.sciencedirect.com/science/article/abs/pii/S0959652620332984 Fedyk, A.; Khimich, N.; Fedyk, T., (2022). Is artificial intelligence improving the audit process ? Review of Accounting Studies, june, 938–985. https://link.springer.com/article/10.1007/s11142-022-09697-x Fuentes-Doria, D.D.; Toscano-hernández, A. E.; Malvaceda-espinoza, E., (2020). Metodología de la investigacion (Juan Carlos Rodas Montoya (ed.). Editorial Universidad Pontificia Bolivariana. https://repository.upb.edu.co/handle/20.500.11912/6201 Gangsar, P.; Bajpei, A.R.; Porwal, R., (2022). A review on deep learning based condition monitoring and fault diagnosis of rotating machinery. Noise & vibration worldwide, 095745652211396. https://journals.sagepub.com/doi/10.1177/09574565221139638 Gentner, D.; Stelzer, B.; Ramosaj, B.; Brecht, L., (2018). Strategic foresight of future b2b customer opportunities through machine learning. Technology Innovation Management Review, 8(10), 5–17. https://timreview.ca/article/1189 González, G.C.; Sharma, P.N.; Galletta, D.F., (2012). The antecedents of the use of continuous auditing in the internal auditing context. International Journal of Accounting Information Systems, 13(3), 248–262. https://www.sciencedirect.com/science/article/abs/pii/S1467089512000401 Gotthardt, M.; Koivulaakso, D.; Paksoy, O.; Saramo, C.; Martikainen, M.; Lehner, O., (2020). Current state and challenges in the implementation of smart robotic process automation in accounting and auditing. ACRN Journal of Finance and Risk Perspectives, 9(1), 90–102. http://www.acrn-journals.eu/resources/jofrp09g.pdf Groza, A.; Toderean, L.; Muntean, G.A.; Nicoara, S.D., (2021). Agents that argue and explain classifications of retinal conditions. Journal of Medical and Biological Engineering, 41(5), 730–741. https://www.researchsquare.com/article/rs-201690/v1 Haenlein, M.; Kaplan, A., (2019). A brief history of artificial intelligence: California Management Review, 1–10. https://journals.sagepub.com/doi/abs/10.1177/0008125619864925 Hu, K.H.; Chen, F.H.; Hsu, M.F.; Tzeng, G.H., (2021). Identifying key factors for adopting artificial intelligence-enabled auditing techniques by joint utilization of fuzzy-rough set theory and MRDM technique. Technological and Economic Development of Economy, 27(2), 459–492. https://journals.vilniustech.lt/index.php/TEDE/article/view/13181 Huang, F.; No, W.G.; Vasarhelyi, M. A.; Yan, Z., (2022). Audit data analytics, machine learning, and full population testing. Journal of finance and data science, 8, 138–144. https://www.sciencedirect.com/science/article/pii/S240591882200006X Huang, F.; Vasarhelyi, M.A., (2019). Applying robotic process automation (RPA ) in auditing : A framework. International Journal of Accounting Information Systems, 100433. https://www.sciencedirect.com/science/article/abs/pii/S1467089518301738 Huang, H.; Yang, Y.; Xie, A., (2022). Do over-conservative going concern audit opinions exist ? evidence from the prediction model approach. Economics Letters, 212. https://www.sciencedirect.com/science/article/abs/pii/S016517652200012X Huerta, E.; Jensen, S., (2017). An accounting information systems perspective on data analytics and big data. Journal of Information Systems, 31(3), 101–114. https://publications.aaahq.org/jis/article-abstract/31/3/101/1097/An-Accounting-Information-Systems-Perspective-on?redirectedFrom=fulltext Huq, A. M.; Hartwig, F.; Rudholm, N., (2022). Do audited firms have a lower cost of debt? International Journal of Disclosure and Governance, 19(2), 153–175. https://link.springer.com/article/10.1057/s41310-021-00133-1 Issa, H.; Sun, T.; Vasarhelyi, M.A., (2016). Research ideas for artificial intelligence in auditing: the formalization of audit and workforce supplementation. Journal of Emerging Technologies in Accounting, 13(2), 1–20. https://publications.aaahq.org/jeta/article-abstract/13/2/1/9209/Research-Ideas-for-Artificial-Intelligence-in?redirectedFrom=fulltext Kachroo, P.; Member, S.; Saiewitz, A.; Raschke, R.; Agarwal, S., (2019). A new language and input-output hidden markov model for automated audit inquiry. IEEE Intelligent Systems, 00(0), 1–8. https://ieeexplore.ieee.org/document/8948253 Kokina, J.; Davenport, T.H., (2017). The emergence of artificial intelligence how automation is changing auditing. Journal of Emerging Technologies in Accounting, 14(1), 115–122. https://publications.aaahq.org/jeta/article-abstract/14/1/115/9198/The-Emergence-of-Artificial-Intelligence-How?redirectedFrom=fulltext Lee, B.; Gately, L.; Lok, S.W.; Tran, B.; Lee, M.; Wong, R.; Markman, B.; Dunn, K.; Wong, V.; Loft, M.; Jalili, A.; Anton, A.; To, R.; Andrews, M.; Gibbs, P., (2022). Leveraging comprehensive cancer registry data to enable a broad range of research, audit and patient support activities. Cancers, 14(17), 1–12. https://www.mdpi.com/2072-6694/14/17/4131 Leo Kumar; S.P., (2019). Knowledge-based expert system in manufacturing planning: state-of-the-art review. International Journal of Production Research, 57(15–16), 4766–4790. https://www.tandfonline.com/doi/abs/10.1080/00207543.2018.1424372 Li, S., (2022). Discussion on the construction of enterprise internal audit informatization. Journal of Advanced Transportation, 2022. https://www.hindawi.com/journals/jat/2023/9839620/ Maditati, D.R.; Munim, Z. H.; Schramm, H.J.; & Kummer, S., (2018). A review of green supply chain management: from bibliometric analysis to a conceptual framework and future research directions. Resources, Conservation and Recycling, 139, 150–162. https://www.sciencedirect.com/science/article/abs/pii/S0921344918302969?via%3Dihub Moffitt, R.; Vasarhelyi., (2018). Robotic process automation for auditing. Journal of Emerging Technologies in Accounting, 15(1), 1–10. https://publications.aaahq.org/jeta/article-abstract/15/1/1/9252/Robotic-Process-Automation-for-Auditing?redirectedFrom=fulltext Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; Clark, J.; Clarke, M.; Cook, D.; D’Amico, R.; Deeks, J.J.; Devereaux, P.J.; Dickersin, K.; Egger, M.; Ernst, E.; Tugwell, P., (2009). Preferred reporting items for systematic reviews and meta-analyses: The prisma statement. PLOS Medicine, 6(7). https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1000097 Molina, A.; Rodellar, J.; Boldú, L.; Acevedo, A.; Alferez, S.; Merino, A., (2021). Automatic identification of malaria and other red blood cell inclusions using convolutional neural networks. Computers in Biology and Medicine, 136(July). https://www.sciencedirect.com/science/article/abs/pii/S0010482521004741?via%3Dihub Montoya Hernández, A.Y.; Valencia Duque, F.J., (2019). Inteligencia artificial al servicio de la auditoría: Una revisión sistemática de literatura. RISTI, 27, 213–226. https://www.risti.xyz/issues/ristie27.pdf Mugwira, T., (2022). Internet related technologies in the auditing profession: A wos bibliometric review of the past three decades and conceptual structure mapping. Revista de Contabilidad-Spanish Accounting Review, 25(2), 201–216. https://revistas.um.es/rcsar/article/view/428041 Noordin, N.A.; Hussainey, K.; Hayek, A.F., (2022). the use of artificial intelligence and audit quality: An analysis from the perspectives of external auditors in the UAE. Journal of Risk and Financial Management, 15(8). https://www.mdpi.com/1911-8074/15/8/339 Oala, L.; Murchison, A.G.; Balachandran, P.; Choudhary, S.; Fehr, J.; Leite, A.W.; Goldschmidt, P.G.; Johner, C.; Schörverth, E.D.M.; Nakasi, R.; Meyer, M.; Cabitza, F.; Baird, P.; Prabhu, C.; Weicken, E.; Liu, X.; Wenzel, M.; Vogler, S.; Akogo, D.; Wiegand, T., (2021). Machine learning for health: Algorithm auditing & quality control. Journal of Medical Systems, 45(12). https://link.springer.com/article/10.1007/s10916-021-01783-y Omoteso, K., (2012). The application of artificial intelligence in auditing : Looking back to the future. Expert Systems with Applications, 39(9), 8490–8495. https://www.sciencedirect.com/science/article/abs/pii/S095741741200111X?via%3Dihub Pejic bach, M., (2010). Profiling intelligent systems applications in fraud detection and prevention : survey of research articles. University of Zagreb, 80–85. https://ieeexplore.ieee.org/document/5416118 Pérez Dávila, F.L., (2017). Filosofía y ciencia, generadoras de conocimiento en investigación educativa. Revista Interamericana de Investigación, Educación y Pedagogía, 10(1), 255–276. https://revistas.usantotomas.edu.co/index.php/riiep/article/view/4762 Perianes-Rodríguez, A.; Waltman, L.; Eck, N.J.Van., (2016). Constructing bibliometric networks : A comparison between full and fractional counting. Journal of Informetrics, 1–38. https://www.sciencedirect.com/science/article/abs/pii/S1751157716302036?via%3Dihub Rijwani, P.; Jain, S., (2022). software effort estimation development from neural networks to deep learning approaches. Journal of Cases on Information Technology, 24(4), 1–16. https://www.igi-global.com/gateway/article/296715 Rozinat, A.Ã.; Aalst, W.M.P.Van Der., (2008). Conformance checking of processes based on monitoring real behavior. Information Systems 33, 33, 64–95. https://www.sciencedirect.com/science/article/abs/pii/S030643790700049X?via%3Dihub Saibene, A.; Assale, M.; & Giltri, M., (2021). Expert systems: Definitions, advantages and issues in medical field applications. Expert Systems with Applications, 177. https://www.sciencedirect.com/science/article/abs/pii/S0957417421003419?via%3Dihub Salijeni, G.; Samsonova-Taddei, A.; Turley, S., (2019). Big data and changes in audit technology: contemplating a research agenda. Accounting and Business Research, 49(1), 95–119. https://www.tandfonline.com/doi/abs/10.1080/00014788.2018.1459458 Sammour, T.; Cohen, L.; Karunatillake, A.I.; Lewis, M.; Lawrence, M.J.; Hunter, A.; Moore, J.W.; Thomas, M.L., (2017). Validation of an online risk calculator for the prediction of anastomotic leak after colon cancer surgery and preliminary exploration of artificial intelligence-based analytics. Techniques in Coloproctology, 21(11), 869–877. https://link.springer.com/article/10.1007/s10151-017-1701-1 Schetinin, V.; Jakaite, L.; & Krzanowski, W. (2018)., Artificial Intelligence in medicine bayesian averaging over decision tree models for trauma severity scoring. Artificial Intelligence in Medicine, 84, 139–145. https://www.sciencedirect.com/science/article/abs/pii/S0933365717301100?via%3Dihub Sun, Z.; Wan, J.; Yin, L.; Cao, Z.; Luo, T.; Wang, B., (2022). A blockchain-based audit approach for encrypted data in federated learning. Digital Communications and Networks, 8(5), 614–624. https://www.sciencedirect.com/science/article/pii/S2352864822000979?via%3Dihub Sutton, S.G.; Holt, M.; & Arnold, V., (2016). “The reports of my death are greatly exaggerated”—Artificial intelligence research in accounting. International Journal of Accounting Information Systems, 22, 60–73. https://www.sciencedirect.com/science/article/abs/pii/S1467089516300823?via%3Dihub Talaviya, T.; Shah, D.; Patel, N.; Yagnik, H.; & Shah, M., (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58–73. https://www.sciencedirect.com/science/article/pii/S258972172030012X?via%3Dihub Tiberius, V.; Hirth, S., (2019a). Impacts of digitization on auditing: A delphi study for Germany. Journal of International Accounting, Auditing and Taxation,” 37, 100288. https://www.sciencedirect.com/science/article/abs/pii/S1061951819300084?via%3Dihub Tiberius, V.; Hirth, S., (2019b). Impacts of Digitization on Auditing: A delphi Study for germany. Journal of International Accounting, Auditing and Taxation, 100288. https://www.sciencedirect.com/science/article/abs/pii/S1061951819300084?via%3Dihub Turing., (1950). Computing machinery and intelligence. Mind, 49, 433–460. https://phil415.pbworks.com/f/TuringComputing.pdf Zandi, D.; Reis, A.; Goodman, K., (2019). New ethical challenges of digital technologies, machine learning and artificial intelligence in public health : a call for papers. February, 1–2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6307511/pdf/BLT.18.227686.pdf Zhou, G., (2021). Research on the development of cpa audit from the perspective of artificial intelligence. E3S Web of Conferences, 251, 1–4. https://www.e3s conferences.org/articles/e3sconf/abs/2021/27/e3sconf_ictees2021_01056/e3sconf_ictees2021_01056.html |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0 |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de Cartagena |
dc.source.spa.fl_str_mv |
https://revistas.unicartagena.edu.co/index.php/panoramaeconomico/article/view/4575 |
institution |
Universidad de Cartagena |
bitstream.url.fl_str_mv |
https://repositorio.unicartagena.edu.co/bitstreams/ec89edb9-568b-47de-a734-11ccc8f20954/download |
bitstream.checksum.fl_str_mv |
5881d9475e8f491b0fcc2d1566c8710e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Biblioteca Digital Universidad de Cartagena |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1818153241971523584 |
spelling |
Fajardo Pereira, JohanaToscano Hernández, AníbalGarcía Alarcón, HéctorLlanos Ayola, Jones2023-04-14T00:00:00Z2024-09-05T20:24:32Z2023-04-14T00:00:00Z2024-09-05T20:24:32Z2023-04-140122-8900https://hdl.handle.net/11227/1793110.32997/pe-2023-45752463-0470https://doi.org/10.32997/pe-2023-4575Objetivos: La inteligencia artificial se ha establecido como una fuerza disruptiva en una amplia gama de industrias, incluida la auditoría. En la última década, la Inteligencia artificial ha demostrado su capacidad para automatizar tareas, identificar patrones complejos y mejorar la precisión de los procesos de auditoría. El propósito fundamental de este estudio resumir y exponer los estudios científicos de la investigación relacionada con la inteligencia artificial y la auditoría a nivel mundial. Métodos: Se realizo un análisis bibliométrico que abarca un período de 37 años, desde 1984 hasta 2022. Para analizar y presentar los resultados se utilizó el paquete de análisis bibliométrico Biblioshiny, soportado en el programa R Studio, así como en el software VOSviewer, teniendo en cuenta 306 artículos y revisiones de literatura. Este enfoque cuantitativo nos permitió identificar patrones y tendencias en la investigación. Resultados: Los resultados reflejan cambios importantes en el número de publicaciones anuales al registrar que el 70,91% de los documentos se publicaron en los últimos 7 años (2016 a 2022) y solo el 29,08% fue publicado en los 30 años comprendidos entre 1984 y 2015. Además, entre las 234 revistas científicas con publicaciones relacionadas, se identifican las ocho principales que concentran un 12.8% de las publicaciones y acumulan 12.5% de las citaciones. El clúster más numeroso, representado en color rojo, resaltando los 10 principales “audit”, “Audit Quality”, “Auditing”, “Big Data”, “Big Data Analytics”, “Blockchain”, “Computers”, “Data Mining”, “Decision Making”. Conclusión: Esta investigación permite caracterizar la producción científica relacionada con la inteligencia artificial y la auditoria considerando la evolución temporal, características generales, redes de investigación con autores e instituciones, así como los clústeres temáticos de mayor relevancia en este campo de estudio.Background and objectives: Artificial intelligence has established itself as a disruptive force in a wide range of industries, including auditing. Over the last decade, Artificial Intelligence has demonstrated its ability to automate tasks, identify complex patterns, and improve the accuracy of audit processes. The fundamental purpose of this study is to summarize and present the scientific studies of research related to artificial intelligence and auditing worldwide. Methods: A bibliometric analysis was carried out covering a period of 37 years, from 1984 to 2022. To analyze and present the results, the Biblioshiny bibliometric analysis package was used, supported by the R Studio program, as well as the VOSviewer software, taking into account 306 articles and literature reviews. This quantitative approach allowed us to identify patterns and trends in the research. Findings: The results reflect important changes in the number of annual publications by recording that 70.91% of the documents were published in the last 7 years (2016 to 2022) and only 29.08% were published in the 30 years between 1984 and 2015. Furthermore, among the 234 scientific journals with related publications, the eight main ones are identified, which concentrate 12.8% of the publications and accumulate 12.5% of the citations. The most numerous cluster, represented in red, highlighting the top 10 “audit”, “Audit Quality”, “Auditing”, “Big Data”, “Big Data Analytics”, “Blockchain”, “Computers”, “Data Mining”, “Decision Making. Conclusion: This research allows to characterize the scientific production related to artificial intelligence and auditing, considering the temporal evolution, general characteristics, research networks with authors and institutions, as well as the most relevant clusters in this field.application/pdfspaUniversidad de CartagenaPanorama Económicohttps://revistas.unicartagena.edu.co/index.php/panoramaeconomico/article/download/4575/3571187216031Al-Sayyed, S.M.; Al-Aroud, S. F.; Zayed, L. M., (2021). The effect of artificial intelligence technologies on audit evidence. Accounting, 7(2), 281–288. https://www.growingscience.com/ac/Vol7/ac_2020_188.pdfAppelbaum, D., (2016). Securing big data provenance for auditors: The big data provenance black box as reliable evidence. Journal of Emerging Technologies in Accounting, 13(1), 13–17. https://publications.aaahq.org/jeta/article-abstract/13/1/17/9219/Securing-Big-Data-Provenance-for-Auditors-The-Big?redirectedFrom=fulltextAria, M.; Cuccurullo, C., (2017). Bibliometrix: An r-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://www.sciencedirect.com/science/article/abs/pii/S1751157717300500?via%3DihubAtayah, O.F.; Alshater, M.M., (2021). Audit and tax in the context of emerging technologies: a retrospective analysis, current trends, and future opportunities. International Journal of Digital Accounting Research, 21, 95–128. https://www.uhu.es/ijdar/10.4192/1577-8517-v21_4.pdfBastani, H.; Bastani, O.; Sinchaisri, P., (2022). Improving human decision-making with machine learning. Academy of Management Proceedings, 2022(1). https://hamsabastani.github.io/tips.pdfBoxwala, A.A.; Kim, J.; Grillo, J.M.; Ohno-Machado, L., (2011). Using statistical and machine learning to help institutions detect suspicious access to electronic health records. Journal of the American Medical Informatics Association, 18(4), 498–505. https://academic.oup.com/jamia/article/18/4/498/2909142?login=falseBrown, B.; Balatsoukas, P.; Williams, R.; Sperrin, M.; Buchan, I., (2016). Interface design recommendations for computerised clinical audit and feedback: Hybrid usability evidence from a research-led system. International Journal of Medical Informatics, 94, 191–206. https://www.sciencedirect.com/science/article/pii/S138650561630171XBrzezicki, M.A.; Bridger, N.E.; Kobetić, M.D.; Ostrowski, M.; Grabowski, W.; Gill, S.S.; Neumann, S., (2020). Artificial intelligence outperforms human students in conducting neurosurgical audits. Clinical Neurology and Neurosurgery, 192. https://www.sciencedirect.com/science/article/abs/pii/S0303846720300755?via%3DihubCazazian, R., (2022). Blockchain technology adoption in artificial intelligence- based digital financial services, accounting information systems and audit quality control. August, 55–71. https://publications.aaahq.org/jeta/article-abstract/17/1/107/9324/Blockchain-Technology-Business-Data-Analytics-and?redirectedFrom=fulltextChar, D.S.; Shah, N.H.; Magnus, D., (2019). Implementing machine learning in health care — addressing. The New England Journal of Medicine, 981–983, 2018–2020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5962261Commerford, B.P.; Dennis, S.A.; Joe, J.R.; Ulla, J.W., (2022). Man versus machine: Complex estimates and auditor reliance on artificial intelligence. Journal of Accounting Research, 60(1), 171–201. https://onlinelibrary.wiley.com/doi/epdf/10.1111/1475-679X.12407Cossío, A., (2018). Bots, machine learning, servicios cognitivos realidad y perspectivas de la inteligencia artificial en España, 2018. PWC, 1–34. https://www.pwc.es/es/publicaciones/tecnologia/assets/pwc-ia-en-espana-2018.pdfDai, J.; Vasarhelyi, M.A., (2017). Toward blockchain-based accounting and assurance. Journal of Information Systems, 31(3), 5–21. https://publications.aaahq.org/jis/article-abstract/31/3/5/1105/Toward-Blockchain-Based-Accounting-and-Assurance?redirectedFrom=fulltextDenning, D.E., (1987). An intrusion-detection model. IEEE Transactions on Software Engineering, 13(2), 222–232. https://ieeexplore.ieee.org/document/1702202Dickey, G.; Blanke, S.; Seaton, L., (2019). Machine learning in auditing. The CPA Journal, 89(6), 16–21. https://www.cpajournal.com/2019/06/19/machine-learning-in-auditingDungan, C.w; Chandlers, J. s., (1985). Auditor: A microcomputer-based expert system to support auditors in the field. University of South Florida at Sarasota, 2(4), 210–221. https://onlinelibrary.wiley.com/doi/10.1111/j.1468-0394.1985.tb00474.xEarley, C.E., (2015). Data analytics in auditing: Opportunities and challenges. Business Horizons, 58(5), 493–500. https://www.sciencedirect.com/science/article/abs/pii/S0007681315000592Fan, L.; Yang, K.; Liu, L., (2020). New media environment, environmental information disclosure and firm valuation: Evidence from high-polluting enterprises in China. Journal of Cleaner Production, 277, 123253. https://www.sciencedirect.com/science/article/abs/pii/S0959652620332984Fedyk, A.; Khimich, N.; Fedyk, T., (2022). Is artificial intelligence improving the audit process ? Review of Accounting Studies, june, 938–985. https://link.springer.com/article/10.1007/s11142-022-09697-xFuentes-Doria, D.D.; Toscano-hernández, A. E.; Malvaceda-espinoza, E., (2020). Metodología de la investigacion (Juan Carlos Rodas Montoya (ed.). Editorial Universidad Pontificia Bolivariana. https://repository.upb.edu.co/handle/20.500.11912/6201Gangsar, P.; Bajpei, A.R.; Porwal, R., (2022). A review on deep learning based condition monitoring and fault diagnosis of rotating machinery. Noise & vibration worldwide, 095745652211396. https://journals.sagepub.com/doi/10.1177/09574565221139638Gentner, D.; Stelzer, B.; Ramosaj, B.; Brecht, L., (2018). Strategic foresight of future b2b customer opportunities through machine learning. Technology Innovation Management Review, 8(10), 5–17. https://timreview.ca/article/1189González, G.C.; Sharma, P.N.; Galletta, D.F., (2012). The antecedents of the use of continuous auditing in the internal auditing context. International Journal of Accounting Information Systems, 13(3), 248–262. https://www.sciencedirect.com/science/article/abs/pii/S1467089512000401Gotthardt, M.; Koivulaakso, D.; Paksoy, O.; Saramo, C.; Martikainen, M.; Lehner, O., (2020). Current state and challenges in the implementation of smart robotic process automation in accounting and auditing. ACRN Journal of Finance and Risk Perspectives, 9(1), 90–102. http://www.acrn-journals.eu/resources/jofrp09g.pdfGroza, A.; Toderean, L.; Muntean, G.A.; Nicoara, S.D., (2021). Agents that argue and explain classifications of retinal conditions. Journal of Medical and Biological Engineering, 41(5), 730–741. https://www.researchsquare.com/article/rs-201690/v1Haenlein, M.; Kaplan, A., (2019). A brief history of artificial intelligence: California Management Review, 1–10. https://journals.sagepub.com/doi/abs/10.1177/0008125619864925Hu, K.H.; Chen, F.H.; Hsu, M.F.; Tzeng, G.H., (2021). Identifying key factors for adopting artificial intelligence-enabled auditing techniques by joint utilization of fuzzy-rough set theory and MRDM technique. Technological and Economic Development of Economy, 27(2), 459–492. https://journals.vilniustech.lt/index.php/TEDE/article/view/13181Huang, F.; No, W.G.; Vasarhelyi, M. A.; Yan, Z., (2022). Audit data analytics, machine learning, and full population testing. Journal of finance and data science, 8, 138–144. https://www.sciencedirect.com/science/article/pii/S240591882200006XHuang, F.; Vasarhelyi, M.A., (2019). Applying robotic process automation (RPA ) in auditing : A framework. International Journal of Accounting Information Systems, 100433. https://www.sciencedirect.com/science/article/abs/pii/S1467089518301738Huang, H.; Yang, Y.; Xie, A., (2022). Do over-conservative going concern audit opinions exist ? evidence from the prediction model approach. Economics Letters, 212. https://www.sciencedirect.com/science/article/abs/pii/S016517652200012XHuerta, E.; Jensen, S., (2017). An accounting information systems perspective on data analytics and big data. Journal of Information Systems, 31(3), 101–114. https://publications.aaahq.org/jis/article-abstract/31/3/101/1097/An-Accounting-Information-Systems-Perspective-on?redirectedFrom=fulltextHuq, A. M.; Hartwig, F.; Rudholm, N., (2022). Do audited firms have a lower cost of debt? International Journal of Disclosure and Governance, 19(2), 153–175. https://link.springer.com/article/10.1057/s41310-021-00133-1Issa, H.; Sun, T.; Vasarhelyi, M.A., (2016). Research ideas for artificial intelligence in auditing: the formalization of audit and workforce supplementation. Journal of Emerging Technologies in Accounting, 13(2), 1–20. https://publications.aaahq.org/jeta/article-abstract/13/2/1/9209/Research-Ideas-for-Artificial-Intelligence-in?redirectedFrom=fulltextKachroo, P.; Member, S.; Saiewitz, A.; Raschke, R.; Agarwal, S., (2019). A new language and input-output hidden markov model for automated audit inquiry. IEEE Intelligent Systems, 00(0), 1–8. https://ieeexplore.ieee.org/document/8948253Kokina, J.; Davenport, T.H., (2017). The emergence of artificial intelligence how automation is changing auditing. Journal of Emerging Technologies in Accounting, 14(1), 115–122. https://publications.aaahq.org/jeta/article-abstract/14/1/115/9198/The-Emergence-of-Artificial-Intelligence-How?redirectedFrom=fulltextLee, B.; Gately, L.; Lok, S.W.; Tran, B.; Lee, M.; Wong, R.; Markman, B.; Dunn, K.; Wong, V.; Loft, M.; Jalili, A.; Anton, A.; To, R.; Andrews, M.; Gibbs, P., (2022). Leveraging comprehensive cancer registry data to enable a broad range of research, audit and patient support activities. Cancers, 14(17), 1–12. https://www.mdpi.com/2072-6694/14/17/4131Leo Kumar; S.P., (2019). Knowledge-based expert system in manufacturing planning: state-of-the-art review. International Journal of Production Research, 57(15–16), 4766–4790. https://www.tandfonline.com/doi/abs/10.1080/00207543.2018.1424372Li, S., (2022). Discussion on the construction of enterprise internal audit informatization. Journal of Advanced Transportation, 2022. https://www.hindawi.com/journals/jat/2023/9839620/Maditati, D.R.; Munim, Z. H.; Schramm, H.J.; & Kummer, S., (2018). A review of green supply chain management: from bibliometric analysis to a conceptual framework and future research directions. Resources, Conservation and Recycling, 139, 150–162. https://www.sciencedirect.com/science/article/abs/pii/S0921344918302969?via%3DihubMoffitt, R.; Vasarhelyi., (2018). Robotic process automation for auditing. Journal of Emerging Technologies in Accounting, 15(1), 1–10. https://publications.aaahq.org/jeta/article-abstract/15/1/1/9252/Robotic-Process-Automation-for-Auditing?redirectedFrom=fulltextMoher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; Clark, J.; Clarke, M.; Cook, D.; D’Amico, R.; Deeks, J.J.; Devereaux, P.J.; Dickersin, K.; Egger, M.; Ernst, E.; Tugwell, P., (2009). Preferred reporting items for systematic reviews and meta-analyses: The prisma statement. PLOS Medicine, 6(7). https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1000097Molina, A.; Rodellar, J.; Boldú, L.; Acevedo, A.; Alferez, S.; Merino, A., (2021). Automatic identification of malaria and other red blood cell inclusions using convolutional neural networks. Computers in Biology and Medicine, 136(July). https://www.sciencedirect.com/science/article/abs/pii/S0010482521004741?via%3DihubMontoya Hernández, A.Y.; Valencia Duque, F.J., (2019). Inteligencia artificial al servicio de la auditoría: Una revisión sistemática de literatura. RISTI, 27, 213–226. https://www.risti.xyz/issues/ristie27.pdfMugwira, T., (2022). Internet related technologies in the auditing profession: A wos bibliometric review of the past three decades and conceptual structure mapping. Revista de Contabilidad-Spanish Accounting Review, 25(2), 201–216. https://revistas.um.es/rcsar/article/view/428041Noordin, N.A.; Hussainey, K.; Hayek, A.F., (2022). the use of artificial intelligence and audit quality: An analysis from the perspectives of external auditors in the UAE. Journal of Risk and Financial Management, 15(8). https://www.mdpi.com/1911-8074/15/8/339Oala, L.; Murchison, A.G.; Balachandran, P.; Choudhary, S.; Fehr, J.; Leite, A.W.; Goldschmidt, P.G.; Johner, C.; Schörverth, E.D.M.; Nakasi, R.; Meyer, M.; Cabitza, F.; Baird, P.; Prabhu, C.; Weicken, E.; Liu, X.; Wenzel, M.; Vogler, S.; Akogo, D.; Wiegand, T., (2021). Machine learning for health: Algorithm auditing & quality control. Journal of Medical Systems, 45(12). https://link.springer.com/article/10.1007/s10916-021-01783-yOmoteso, K., (2012). The application of artificial intelligence in auditing : Looking back to the future. Expert Systems with Applications, 39(9), 8490–8495. https://www.sciencedirect.com/science/article/abs/pii/S095741741200111X?via%3DihubPejic bach, M., (2010). Profiling intelligent systems applications in fraud detection and prevention : survey of research articles. University of Zagreb, 80–85. https://ieeexplore.ieee.org/document/5416118Pérez Dávila, F.L., (2017). Filosofía y ciencia, generadoras de conocimiento en investigación educativa. Revista Interamericana de Investigación, Educación y Pedagogía, 10(1), 255–276. https://revistas.usantotomas.edu.co/index.php/riiep/article/view/4762Perianes-Rodríguez, A.; Waltman, L.; Eck, N.J.Van., (2016). Constructing bibliometric networks : A comparison between full and fractional counting. Journal of Informetrics, 1–38. https://www.sciencedirect.com/science/article/abs/pii/S1751157716302036?via%3DihubRijwani, P.; Jain, S., (2022). software effort estimation development from neural networks to deep learning approaches. Journal of Cases on Information Technology, 24(4), 1–16. https://www.igi-global.com/gateway/article/296715Rozinat, A.Ã.; Aalst, W.M.P.Van Der., (2008). Conformance checking of processes based on monitoring real behavior. Information Systems 33, 33, 64–95. https://www.sciencedirect.com/science/article/abs/pii/S030643790700049X?via%3DihubSaibene, A.; Assale, M.; & Giltri, M., (2021). Expert systems: Definitions, advantages and issues in medical field applications. Expert Systems with Applications, 177. https://www.sciencedirect.com/science/article/abs/pii/S0957417421003419?via%3DihubSalijeni, G.; Samsonova-Taddei, A.; Turley, S., (2019). Big data and changes in audit technology: contemplating a research agenda. Accounting and Business Research, 49(1), 95–119. https://www.tandfonline.com/doi/abs/10.1080/00014788.2018.1459458Sammour, T.; Cohen, L.; Karunatillake, A.I.; Lewis, M.; Lawrence, M.J.; Hunter, A.; Moore, J.W.; Thomas, M.L., (2017). Validation of an online risk calculator for the prediction of anastomotic leak after colon cancer surgery and preliminary exploration of artificial intelligence-based analytics. Techniques in Coloproctology, 21(11), 869–877. https://link.springer.com/article/10.1007/s10151-017-1701-1Schetinin, V.; Jakaite, L.; & Krzanowski, W. (2018)., Artificial Intelligence in medicine bayesian averaging over decision tree models for trauma severity scoring. Artificial Intelligence in Medicine, 84, 139–145. https://www.sciencedirect.com/science/article/abs/pii/S0933365717301100?via%3DihubSun, Z.; Wan, J.; Yin, L.; Cao, Z.; Luo, T.; Wang, B., (2022). A blockchain-based audit approach for encrypted data in federated learning. Digital Communications and Networks, 8(5), 614–624. https://www.sciencedirect.com/science/article/pii/S2352864822000979?via%3DihubSutton, S.G.; Holt, M.; & Arnold, V., (2016). “The reports of my death are greatly exaggerated”—Artificial intelligence research in accounting. International Journal of Accounting Information Systems, 22, 60–73. https://www.sciencedirect.com/science/article/abs/pii/S1467089516300823?via%3DihubTalaviya, T.; Shah, D.; Patel, N.; Yagnik, H.; & Shah, M., (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58–73. https://www.sciencedirect.com/science/article/pii/S258972172030012X?via%3DihubTiberius, V.; Hirth, S., (2019a). Impacts of digitization on auditing: A delphi study for Germany. Journal of International Accounting, Auditing and Taxation,” 37, 100288. https://www.sciencedirect.com/science/article/abs/pii/S1061951819300084?via%3DihubTiberius, V.; Hirth, S., (2019b). Impacts of Digitization on Auditing: A delphi Study for germany. Journal of International Accounting, Auditing and Taxation, 100288. https://www.sciencedirect.com/science/article/abs/pii/S1061951819300084?via%3DihubTuring., (1950). Computing machinery and intelligence. Mind, 49, 433–460. https://phil415.pbworks.com/f/TuringComputing.pdfZandi, D.; Reis, A.; Goodman, K., (2019). New ethical challenges of digital technologies, machine learning and artificial intelligence in public health : a call for papers. February, 1–2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6307511/pdf/BLT.18.227686.pdfZhou, G., (2021). Research on the development of cpa audit from the perspective of artificial intelligence. E3S Web of Conferences, 251, 1–4. https://www.e3s conferences.org/articles/e3sconf/abs/2021/27/e3sconf_ictees2021_01056/e3sconf_ictees2021_01056.htmlhttps://creativecommons.org/licenses/by-nc-nd/4.0http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.https://revistas.unicartagena.edu.co/index.php/panoramaeconomico/article/view/4575AccountingArtificial IntelligenceAutomationDigitalizationFinancial AuditingAuditoría financieraAutomatizaciónContabilidadDigitalizaciónInteligencia ArtificialInteligencia Artificial y Auditoría: Tendencias de la literatura científicaArtificial Intelligence and Auditing: Trends in scientific literatureArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTREFPublicationOREORE.xmltext/xml2710https://repositorio.unicartagena.edu.co/bitstreams/ec89edb9-568b-47de-a734-11ccc8f20954/download5881d9475e8f491b0fcc2d1566c8710eMD5111227/17931oai:repositorio.unicartagena.edu.co:11227/179312024-09-05 15:24:32.39https://creativecommons.org/licenses/by-nc-nd/4.0metadata.onlyhttps://repositorio.unicartagena.edu.coBiblioteca Digital Universidad de Cartagenabdigital@metabiblioteca.com |