Understanding traffic congestion via network analysis, agent modeling, and the trajectory of urban expansion: a coastal city case.
The study of patterns of urban mobility is of utter importance for city growth projection and development planning. In this paper, we analyze the topological aspects of the street network of the coastal city of Cartagena de Indias employing graph theory and spatial syntax tools. We find that the res...
- Autores:
-
Amézquita-López, Julio
Valdés-Atencio, Jorge
Angulo-García, David
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2021
- Institución:
- Universidad de Cartagena
- Repositorio:
- Repositorio Universidad de Cartagena
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unicartagena.edu.co:11227/17730
- Acceso en línea:
- https://hdl.handle.net/11227/17730
- Palabra clave:
- Urban mobility
traffic analysis
Cartagena de Indias
- Rights
- openAccess
- License
- 2021 by the authors. Licensee MDPI, Basel, Switzerland.
id |
UCART2_babae2efc63cdd7a83373c410013e9d9 |
---|---|
oai_identifier_str |
oai:repositorio.unicartagena.edu.co:11227/17730 |
network_acronym_str |
UCART2 |
network_name_str |
Repositorio Universidad de Cartagena |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Understanding traffic congestion via network analysis, agent modeling, and the trajectory of urban expansion: a coastal city case. |
title |
Understanding traffic congestion via network analysis, agent modeling, and the trajectory of urban expansion: a coastal city case. |
spellingShingle |
Understanding traffic congestion via network analysis, agent modeling, and the trajectory of urban expansion: a coastal city case. Urban mobility traffic analysis Cartagena de Indias |
title_short |
Understanding traffic congestion via network analysis, agent modeling, and the trajectory of urban expansion: a coastal city case. |
title_full |
Understanding traffic congestion via network analysis, agent modeling, and the trajectory of urban expansion: a coastal city case. |
title_fullStr |
Understanding traffic congestion via network analysis, agent modeling, and the trajectory of urban expansion: a coastal city case. |
title_full_unstemmed |
Understanding traffic congestion via network analysis, agent modeling, and the trajectory of urban expansion: a coastal city case. |
title_sort |
Understanding traffic congestion via network analysis, agent modeling, and the trajectory of urban expansion: a coastal city case. |
dc.creator.fl_str_mv |
Amézquita-López, Julio Valdés-Atencio, Jorge Angulo-García, David |
dc.contributor.author.none.fl_str_mv |
Amézquita-López, Julio Valdés-Atencio, Jorge Angulo-García, David |
dc.contributor.editor.none.fl_str_mv |
Ana Vulevic Gualter Couto José Manuel Naranjo Gómez Higinio González Jorge |
dc.contributor.datamanager.none.fl_str_mv |
Rui Castanho |
dc.subject.armarc.none.fl_str_mv |
Urban mobility traffic analysis Cartagena de Indias |
topic |
Urban mobility traffic analysis Cartagena de Indias |
description |
The study of patterns of urban mobility is of utter importance for city growth projection and development planning. In this paper, we analyze the topological aspects of the street network of the coastal city of Cartagena de Indias employing graph theory and spatial syntax tools. We find that the resulting network can be understood on the basis of 400 years of the city’s history and its peripheral location that strongly influenced and shaped the growth of the city, and that the statistical properties of the network resemble those of self-organized cities. Moreover, we study the mobility through the network using a simple agent-based model that allows us to study the level of street congestion depending on the agents’ knowledge of the traffic while they travel through the network. We found that a purely shortest-path travel scheme is not an optimal strategy and that assigning small weights to traffic avoidance schemes increases the overall performance of the agents in terms of arrival success, occupancy of the streets, and traffic accumulation. Finally, we argue that localized congestion can be only partially ascribed to topological properties of the network and that it is important to consider the decision-making capability of the agents while moving through the network to explain the emergence of traffic congestion in the system. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T14:36:48Z |
dc.date.available.none.fl_str_mv |
2024-05-30T14:36:48Z |
dc.type.spa.fl_str_mv |
Articulo. |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TM |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11227/17730 |
url |
https://hdl.handle.net/11227/17730 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.spa.fl_str_mv |
2021 by the authors. Licensee MDPI, Basel, Switzerland. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
rights_invalid_str_mv |
2021 by the authors. Licensee MDPI, Basel, Switzerland. https://creativecommons.org/licenses/by-nc/4.0/ Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de Huelva. |
dc.publisher.place.spa.fl_str_mv |
Spain |
dc.source.spa.fl_str_mv |
Texto |
institution |
Universidad de Cartagena |
bitstream.url.fl_str_mv |
https://dspace7-unicartagena.metabuscador.org/bitstreams/5c14c309-e072-4755-8fcc-097c07ec2410/download https://dspace7-unicartagena.metabuscador.org/bitstreams/974ddc1f-643d-4a23-a4c4-571b675322a7/download https://dspace7-unicartagena.metabuscador.org/bitstreams/28e21482-a4a8-45e1-b0a1-70d9f80c60bf/download |
bitstream.checksum.fl_str_mv |
76a0488b81e8eb49fe73a24cb5e693d0 2b5ca4058bc0790a94cb7bc042d23399 2c08b52be4eef043b583c417b9236b40 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital Universidad de Cartagena |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1818153157211979776 |
spelling |
Amézquita-López, JulioValdés-Atencio, JorgeAngulo-García, DavidAna VulevicGualter CoutoJosé Manuel Naranjo GómezHiginio González JorgeRui Castanho2024-05-30T14:36:48Z2024-05-30T14:36:48Z2021https://hdl.handle.net/11227/17730The study of patterns of urban mobility is of utter importance for city growth projection and development planning. In this paper, we analyze the topological aspects of the street network of the coastal city of Cartagena de Indias employing graph theory and spatial syntax tools. We find that the resulting network can be understood on the basis of 400 years of the city’s history and its peripheral location that strongly influenced and shaped the growth of the city, and that the statistical properties of the network resemble those of self-organized cities. Moreover, we study the mobility through the network using a simple agent-based model that allows us to study the level of street congestion depending on the agents’ knowledge of the traffic while they travel through the network. We found that a purely shortest-path travel scheme is not an optimal strategy and that assigning small weights to traffic avoidance schemes increases the overall performance of the agents in terms of arrival success, occupancy of the streets, and traffic accumulation. Finally, we argue that localized congestion can be only partially ascribed to topological properties of the network and that it is important to consider the decision-making capability of the agents while moving through the network to explain the emergence of traffic congestion in the system.application/pdfspaUniversidad de Huelva.Spain2021 by the authors. Licensee MDPI, Basel, Switzerland.https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)http://purl.org/coar/access_right/c_abf2TextoUnderstanding traffic congestion via network analysis, agent modeling, and the trajectory of urban expansion: a coastal city case.Articulo.info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttps://purl.org/redcol/resource_type/TMhttp://purl.org/coar/version/c_970fb48d4fbd8a85Urban mobilitytraffic analysisCartagena de IndiasPumain, D.; Saint-Julien, T. Análisis Espacial: Las Interacciones; Universidad de Concepción-Facultad de Arquitectura, Urbanisme y Geografía: Concepción, Chile, 2014.Barthélemy, M. Spatial networks. Phys. Rep. 2011, 499, 1–101. [CrossRef]Crucitti, P.; Latora, V.; Porta, S. Centrality measures in spatial networks of urban streets. Phys. Rev. E 2006, 73, 036125. [CrossRef]Crucitti, P.; Latora, V.; Porta, S. Centrality in networks of urban streets. Chaos Interdiscip. J. Nonlinear Sci. 2006, 16, 015113. [CrossRef] [PubMed]Duan, Y.; Lu, F. Robustness of city road networks at different granularities. Phys. A Stat. Mech. Appl. 2014, 411, 21–34. [CrossRef]Manley, E.; Cheng, T. Understanding road congestion as an emergent property of traffic networks. In Proceedings of the 14th WMSCI, Orlando, FL, USA, 29 June–2 July 2010.PublicationORIGINALinfrastructures-06-00085-v2 (3) (6).pdfinfrastructures-06-00085-v2 (3) (6).pdfapplication/pdf9796810https://dspace7-unicartagena.metabuscador.org/bitstreams/5c14c309-e072-4755-8fcc-097c07ec2410/download76a0488b81e8eb49fe73a24cb5e693d0MD51TEXTinfrastructures-06-00085-v2 (3) (6).pdf.txtinfrastructures-06-00085-v2 (3) (6).pdf.txtExtracted texttext/plain54861https://dspace7-unicartagena.metabuscador.org/bitstreams/974ddc1f-643d-4a23-a4c4-571b675322a7/download2b5ca4058bc0790a94cb7bc042d23399MD52THUMBNAILinfrastructures-06-00085-v2 (3) (6).pdf.jpginfrastructures-06-00085-v2 (3) (6).pdf.jpgGenerated Thumbnailimage/jpeg16334https://dspace7-unicartagena.metabuscador.org/bitstreams/28e21482-a4a8-45e1-b0a1-70d9f80c60bf/download2c08b52be4eef043b583c417b9236b40MD5311227/17730oai:dspace7-unicartagena.metabuscador.org:11227/177302024-08-28 17:26:33.606https://creativecommons.org/licenses/by-nc/4.0/2021 by the authors. Licensee MDPI, Basel, Switzerland.restrictedhttps://dspace7-unicartagena.metabuscador.orgBiblioteca Digital Universidad de Cartagenabdigital@metabiblioteca.com |