Cambios moleculares en la remodelación cardiaca por síndrome metabólico.

Autores:
Vargas López, Misael
Cortés Martínez, Edgar Fernando
Velázquez Domínguez, José Antonio
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad de Cartagena
Repositorio:
Repositorio Universidad de Cartagena
Idioma:
spa
OAI Identifier:
oai:repositorio.unicartagena.edu.co:11227/13413
Acceso en línea:
https://doi.org/10.32997/rcb-2020-3160
Palabra clave:
Cardiac remodeling
Metabolic syndrome
Obesity
Diabetes
Dyslipidemia
Molecular biology
Remodelación cardiaca
Síndrome metabólico
Obesidad
Diabetes
Dislipidemias
Biología molecular
Rights
openAccess
License
Revista Ciencias Biomédicas - 2020
id UCART2_b231528b79619cbc67226c6e7d7db297
oai_identifier_str oai:repositorio.unicartagena.edu.co:11227/13413
network_acronym_str UCART2
network_name_str Repositorio Universidad de Cartagena
repository_id_str
dc.title.spa.fl_str_mv Cambios moleculares en la remodelación cardiaca por síndrome metabólico.
dc.title.translated.eng.fl_str_mv Molecular changes in cardiac remodeling due to metabolic syndrome.
title Cambios moleculares en la remodelación cardiaca por síndrome metabólico.
spellingShingle Cambios moleculares en la remodelación cardiaca por síndrome metabólico.
Cardiac remodeling
Metabolic syndrome
Obesity
Diabetes
Dyslipidemia
Molecular biology
Remodelación cardiaca
Síndrome metabólico
Obesidad
Diabetes
Dislipidemias
Biología molecular
title_short Cambios moleculares en la remodelación cardiaca por síndrome metabólico.
title_full Cambios moleculares en la remodelación cardiaca por síndrome metabólico.
title_fullStr Cambios moleculares en la remodelación cardiaca por síndrome metabólico.
title_full_unstemmed Cambios moleculares en la remodelación cardiaca por síndrome metabólico.
title_sort Cambios moleculares en la remodelación cardiaca por síndrome metabólico.
dc.creator.fl_str_mv Vargas López, Misael
Cortés Martínez, Edgar Fernando
Velázquez Domínguez, José Antonio
dc.contributor.author.spa.fl_str_mv Vargas López, Misael
Cortés Martínez, Edgar Fernando
Velázquez Domínguez, José Antonio
dc.subject.eng.fl_str_mv Cardiac remodeling
Metabolic syndrome
Obesity
Diabetes
Dyslipidemia
Molecular biology
topic Cardiac remodeling
Metabolic syndrome
Obesity
Diabetes
Dyslipidemia
Molecular biology
Remodelación cardiaca
Síndrome metabólico
Obesidad
Diabetes
Dislipidemias
Biología molecular
dc.subject.spa.fl_str_mv Remodelación cardiaca
Síndrome metabólico
Obesidad
Diabetes
Dislipidemias
Biología molecular
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-07-15 00:00:00
dc.date.available.none.fl_str_mv 2020-07-15 00:00:00
dc.date.issued.none.fl_str_mv 2020-07-15
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2215-7840
dc.identifier.doi.none.fl_str_mv 10.32997/rcb-2020-3160
dc.identifier.eissn.none.fl_str_mv 2389-7252
dc.identifier.url.none.fl_str_mv https://doi.org/10.32997/rcb-2020-3160
identifier_str_mv 2215-7840
10.32997/rcb-2020-3160
2389-7252
url https://doi.org/10.32997/rcb-2020-3160
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofjournal.spa.fl_str_mv Revista Ciencias Biomédicas
dc.relation.bitstream.none.fl_str_mv https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/3160/2687
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2020
dc.relation.citationendpage.none.fl_str_mv 146
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 131
dc.relation.citationvolume.spa.fl_str_mv 9
dc.relation.references.spa.fl_str_mv Al-Daghri NM, Alkharfy KM, Al-Saleh Y, Al-Attas OS, Alokail MS, Al-Othman A, et al. Modest reversal of metabolic syndrome manifestations with vitamin D status correction: A 12-month prospective study. Metabolism [Internet]. 2012; 61(5): 661-6. https://doi.org/10.1016/j.metabol.2011.09.017
Tadic M, Cuspidi C. Childhood obesity and cardiac remodeling: From cardiac structure to myocardial mechanics. J Cardiovasc Med. 2015;16(8):538-46. https://doi.org/10.2459/JCM.0000000000000261
XuZ,SunJ,TongQ,LinQ,QianL,ParkY,etal.The role of ERK1/2 in the development of diabetic cardiomyopathy. Int J Mol Sci. 2016;17(12):1-17. https://doi.org/10.3390/ijms17122001
Martínez-Martínez E, López-Ándres N, Jurado-López R, Rousseau E, Bartolomé MV, Fernández-Celis A, et al. Galectin-3 participates in cardiovascular remodeling associated with obesity. Hypertension. 2015;66(5):961- 9. https://doi.org/10.1161/HYPERTENSIONAHA.115.06032
De Boer RA, V an Der V elde AR. Galectin-3: A new biomarker for heart failure progression and prognosis. Laboratoriums Medizin. 2013;37(5):251-60. https://doi.org/10.1515/labmed-2012-0073
Bobronnikova L. Galectin-3 as a potential biomarker of metabolic disorders and cardiovascular remodeling in patients with hypertension and type 2 diabetes. Vessel Plus. 2017;1(2):61-7. https://doi.org/10.20517/2574-1209.2016.10
Yue Y, Meng K, Pu Y, Zhang X. Transforming growth factor beta (TGF-β) mediates cardiac fibrosis and induces diabetic cardiomyopathy. Diabetes Res Clin Pract [Internet]. 2017; 133: 124-30. Available from: https://doi.org/10.1016/j.diabres.2017.08.018
Liu G, Ma C, Yang H, Zhang PY. Transforming growth factor β and its role in heart disease. Exp Ther Med. 2017;13(5):2123-8. https://doi.org/10.3892/etm.2017.4246
Liu X, Liang E, Song X, Du Z, Zhang Y, Zhao Y. Inhibition of Pin1 alleviates myocardial fibrosis and dysfunction in STZ-induced diabetic mice. Biochem Biophys Res Commun 2016; 479(1): 109-15. https://doi.org/10.1016/j.bbrc.2016.09.050
Shaker YM, Soliman HA, Ezzat E, Hussein NS, Ashour E, Donia A, et al. Serum and urinary transforming growth factor beta 1 as biochemical markers in diabetic nephropathy patients. Beni-Suef Univ J Basic Appl Sci. 2014;3(1):16-23. https://doi.org/10.1016/j.bjbas.2014.02.002
Huang GL, Qiu JH, Li BBin, Wu JJ, Lu Y, Liu XY, et al. Prolyl isomerase pin1 regulated signaling pathway revealed by pin1 +/+ and Pin1 -/- mouse embryonic fibroblast cells. Pathol Oncol Res. 2013; 19(4): 667-75. https://doi.org/10.1007/s12253-013-9629-x
Turner, Blythe. Cardiac Fibroblast p38 MAPK: A Critical Regulator of Myocardial Remodeling. J Cardiovasc Dev Dis. 2019;6(3):27. https://doi.org/10.3390/jcdd6030027
Muslin JA. MAPK Signaling in cardiovascular health and desease: Molecular mechanism and therapeutic targets. Clin Sci. 2009;115(7):203-18. https://doi.org/10.1042/CS20070430
Wang S, Ding L, Ji H, Xu Z, Liu Q, Zheng Y. Therole of p38 MAPK in the development of diabetic cardiomyopathy. Int J Mol Sci. 2016;17(7):1-14. https://doi.org/10.3390/ijms18010001
Craige SM, Chen K, Blanton RM, Keaney JF, Kant S. JNK and cardiometabolic dysfunction. Biosci Rep. 2019;39(7):1-18. https://doi.org/10.1042/BSR20190267
Pal M, Febbraio MA, Lancaster GI. The roles of c-Jun NH2-terminal kinases (JNKs) in obesity and insulin resistance. J Physiol. 2016; 594(2): 267-79. https://doi.org/10.1113/JP271457
Schumacher-Bass SM, Traynham CJ, Koch WJ. G protein-coupled receptor kinase 2 as a therapeutic target for heart failure. Drug Discov Today Ther Strateg. 2012;9(4):1-14. https://doi.org/10.1016/j.ddstr.2014.01.002
Woodall MC, Ciccarelli M, Woodall BP, Koch WJ. GRK2 - A Link Between Myocardial Contractile Function and Cardiac Metabolism. Circ Res. 2014;114(10):1661-70. https://doi.org/10.1161/CIRCRESAHA.114.300513
Goncąlves N, Falcaõ-Pires I, Leite-Moreira AF. Adipokines and their receptors: Potential new targets in cardiovascular diseases. Future Med Chem. 2015;7(2):139-57. https://doi.org/10.4155/fmc.14.147
Hui X, Lam KS, Vanhoutte PM, Xu A. Adiponectin and cardiovascular health: An update. Br J Pharmacol. 2012;165(3):574-90. https://doi.org/10.1111/j.1476-5381.2011.01395.x
Imo A. E, David C. GJ, Carlos J. R, Haiying C, Alain G. B. Mechanisms of heart failure in obesity. Obes Res Clin Pr. 2014;8(6):e540-8. https://doi.org/10.1016/j.orcp.2013.12.005
Katsiki N, Mikhailidis DP , Banach M. Leptin, cardiovascular diseases and type 2 diabetes mellitus review-article. Acta Pharmacol Sin. 2018;39(7):1176-88. https://doi.org/10.1038/aps.2018.40
Fujioka S, Niu J, Schmidt C, Sclabas GM, Peng B, Uwagawa T, et al. NF-kβ and AP-1 Connection : Mechanism of NF-kβ Dependent Regulation of AP-1 Activity. 2004; 24(17): 7806-19. https://doi.org/10.1128/MCB.24.17.7806-7819.2004
Craig R, Wagner M, McCardle T, Craig AG, Glembotski CC. The Cytoprotective Effects of the Glycoprotein 130 Receptor-coupled Cytokine, Cardiotrophin-1, Require Activation of NF-κB. J Biol Chem. 2001;276(40):37621- 9. https://doi.org/10.1074/jbc.M103276200
Hernández-Gutiérrez S, Rojas-del Castillo E. edigraphic.com. El Pap del factor transcripción NF-κB en la célula cardíaca. 2005;75:363-70.
Higuchi M, Manna SK, Sasaki R, Aggarwal BB. Regulation of the activation of nuclear factor κB by mitochondrial respiratory function: Evidence for the reactive oxygen species-dependent and -independent pathways. Antioxidants Redox Signal. 2002; 4(6): 945-55. https://doi.org/10.1089/152308602762197489
Purcell NH, Tang G, Yu C, Mercurio F, DiDonato JA, Lin A. Activation of NF-κB is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes. Proc Natl Acad Sci U S A. 2001;98(12):6668-73. https://doi.org/10.1073/pnas.111155798
Park KR, Kwon MS, An JY, Lee JG, Youn HS, Lee Y, et al. Structural implications of Ca2+-dependent actin- bundling function of human EFhd2/Swiprosin-1. Sci Rep. 2016;6(July):1-15. https://doi.org/10.1038/srep39095
Huh YH, Kim SH, Chung KH, Oh S, Kwon MS, Choi HW, et al. Swiprosin-1 modulates actin dynamics by regulating the F-actin accessibility to cofilin. Cell Mol Life Sci. 2013; 70(24): 4841-54. https://doi.org/10.1007/s00018-013-1447-5
Schreckenberg R, Pöling J, Lörchner H. Swiprosin- 1/EFhD-2 Expression in Cardiac Remodeling and Post- Infarct Repair : Effect of Ischemic Conditioning. 2020; 2: 1-13.
Nippert F, Schreckenberg R, Hess A, Weber M, Schlüter KD. The effects of swiprosin-1 on the formation of pseudopodia-like structures and β- adrenoceptor coupling in cultured adult rat ventricular cardiomyocytes. PLoS One. 2016; 11(12): 1-15. https://doi.org/10.1371/journal.pone.0167655
dc.rights.spa.fl_str_mv Revista Ciencias Biomédicas - 2020
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Revista Ciencias Biomédicas - 2020
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Cartagena
dc.source.spa.fl_str_mv https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/3160
institution Universidad de Cartagena
bitstream.url.fl_str_mv https://repositorio.unicartagena.edu.co/bitstreams/0182e198-8d9e-4738-a336-fb50972de8c7/download
bitstream.checksum.fl_str_mv 5902e8537d25f33a7e9ab79b5599b418
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Biblioteca Digital Universidad de Cartagena
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814214207520899072
spelling Vargas López, MisaelCortés Martínez, Edgar FernandoVelázquez Domínguez, José Antonio2020-07-15 00:00:002020-07-15 00:00:002020-07-152215-784010.32997/rcb-2020-31602389-7252https://doi.org/10.32997/rcb-2020-3160application/pdfspaUniversidad de CartagenaRevista Ciencias Biomédicashttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/3160/2687Núm. 2 , Año 202014621319Al-Daghri NM, Alkharfy KM, Al-Saleh Y, Al-Attas OS, Alokail MS, Al-Othman A, et al. Modest reversal of metabolic syndrome manifestations with vitamin D status correction: A 12-month prospective study. Metabolism [Internet]. 2012; 61(5): 661-6. https://doi.org/10.1016/j.metabol.2011.09.017Tadic M, Cuspidi C. Childhood obesity and cardiac remodeling: From cardiac structure to myocardial mechanics. J Cardiovasc Med. 2015;16(8):538-46. https://doi.org/10.2459/JCM.0000000000000261XuZ,SunJ,TongQ,LinQ,QianL,ParkY,etal.The role of ERK1/2 in the development of diabetic cardiomyopathy. Int J Mol Sci. 2016;17(12):1-17. https://doi.org/10.3390/ijms17122001Martínez-Martínez E, López-Ándres N, Jurado-López R, Rousseau E, Bartolomé MV, Fernández-Celis A, et al. Galectin-3 participates in cardiovascular remodeling associated with obesity. Hypertension. 2015;66(5):961- 9. https://doi.org/10.1161/HYPERTENSIONAHA.115.06032De Boer RA, V an Der V elde AR. Galectin-3: A new biomarker for heart failure progression and prognosis. Laboratoriums Medizin. 2013;37(5):251-60. https://doi.org/10.1515/labmed-2012-0073Bobronnikova L. Galectin-3 as a potential biomarker of metabolic disorders and cardiovascular remodeling in patients with hypertension and type 2 diabetes. Vessel Plus. 2017;1(2):61-7. https://doi.org/10.20517/2574-1209.2016.10Yue Y, Meng K, Pu Y, Zhang X. Transforming growth factor beta (TGF-β) mediates cardiac fibrosis and induces diabetic cardiomyopathy. Diabetes Res Clin Pract [Internet]. 2017; 133: 124-30. Available from: https://doi.org/10.1016/j.diabres.2017.08.018Liu G, Ma C, Yang H, Zhang PY. Transforming growth factor β and its role in heart disease. Exp Ther Med. 2017;13(5):2123-8. https://doi.org/10.3892/etm.2017.4246Liu X, Liang E, Song X, Du Z, Zhang Y, Zhao Y. Inhibition of Pin1 alleviates myocardial fibrosis and dysfunction in STZ-induced diabetic mice. Biochem Biophys Res Commun 2016; 479(1): 109-15. https://doi.org/10.1016/j.bbrc.2016.09.050Shaker YM, Soliman HA, Ezzat E, Hussein NS, Ashour E, Donia A, et al. Serum and urinary transforming growth factor beta 1 as biochemical markers in diabetic nephropathy patients. Beni-Suef Univ J Basic Appl Sci. 2014;3(1):16-23. https://doi.org/10.1016/j.bjbas.2014.02.002Huang GL, Qiu JH, Li BBin, Wu JJ, Lu Y, Liu XY, et al. Prolyl isomerase pin1 regulated signaling pathway revealed by pin1 +/+ and Pin1 -/- mouse embryonic fibroblast cells. Pathol Oncol Res. 2013; 19(4): 667-75. https://doi.org/10.1007/s12253-013-9629-xTurner, Blythe. Cardiac Fibroblast p38 MAPK: A Critical Regulator of Myocardial Remodeling. J Cardiovasc Dev Dis. 2019;6(3):27. https://doi.org/10.3390/jcdd6030027Muslin JA. MAPK Signaling in cardiovascular health and desease: Molecular mechanism and therapeutic targets. Clin Sci. 2009;115(7):203-18. https://doi.org/10.1042/CS20070430Wang S, Ding L, Ji H, Xu Z, Liu Q, Zheng Y. Therole of p38 MAPK in the development of diabetic cardiomyopathy. Int J Mol Sci. 2016;17(7):1-14. https://doi.org/10.3390/ijms18010001Craige SM, Chen K, Blanton RM, Keaney JF, Kant S. JNK and cardiometabolic dysfunction. Biosci Rep. 2019;39(7):1-18. https://doi.org/10.1042/BSR20190267Pal M, Febbraio MA, Lancaster GI. The roles of c-Jun NH2-terminal kinases (JNKs) in obesity and insulin resistance. J Physiol. 2016; 594(2): 267-79. https://doi.org/10.1113/JP271457Schumacher-Bass SM, Traynham CJ, Koch WJ. G protein-coupled receptor kinase 2 as a therapeutic target for heart failure. Drug Discov Today Ther Strateg. 2012;9(4):1-14. https://doi.org/10.1016/j.ddstr.2014.01.002Woodall MC, Ciccarelli M, Woodall BP, Koch WJ. GRK2 - A Link Between Myocardial Contractile Function and Cardiac Metabolism. Circ Res. 2014;114(10):1661-70. https://doi.org/10.1161/CIRCRESAHA.114.300513Goncąlves N, Falcaõ-Pires I, Leite-Moreira AF. Adipokines and their receptors: Potential new targets in cardiovascular diseases. Future Med Chem. 2015;7(2):139-57. https://doi.org/10.4155/fmc.14.147Hui X, Lam KS, Vanhoutte PM, Xu A. Adiponectin and cardiovascular health: An update. Br J Pharmacol. 2012;165(3):574-90. https://doi.org/10.1111/j.1476-5381.2011.01395.xImo A. E, David C. GJ, Carlos J. R, Haiying C, Alain G. B. Mechanisms of heart failure in obesity. Obes Res Clin Pr. 2014;8(6):e540-8. https://doi.org/10.1016/j.orcp.2013.12.005Katsiki N, Mikhailidis DP , Banach M. Leptin, cardiovascular diseases and type 2 diabetes mellitus review-article. Acta Pharmacol Sin. 2018;39(7):1176-88. https://doi.org/10.1038/aps.2018.40Fujioka S, Niu J, Schmidt C, Sclabas GM, Peng B, Uwagawa T, et al. NF-kβ and AP-1 Connection : Mechanism of NF-kβ Dependent Regulation of AP-1 Activity. 2004; 24(17): 7806-19. https://doi.org/10.1128/MCB.24.17.7806-7819.2004Craig R, Wagner M, McCardle T, Craig AG, Glembotski CC. The Cytoprotective Effects of the Glycoprotein 130 Receptor-coupled Cytokine, Cardiotrophin-1, Require Activation of NF-κB. J Biol Chem. 2001;276(40):37621- 9. https://doi.org/10.1074/jbc.M103276200Hernández-Gutiérrez S, Rojas-del Castillo E. edigraphic.com. El Pap del factor transcripción NF-κB en la célula cardíaca. 2005;75:363-70.Higuchi M, Manna SK, Sasaki R, Aggarwal BB. Regulation of the activation of nuclear factor κB by mitochondrial respiratory function: Evidence for the reactive oxygen species-dependent and -independent pathways. Antioxidants Redox Signal. 2002; 4(6): 945-55. https://doi.org/10.1089/152308602762197489Purcell NH, Tang G, Yu C, Mercurio F, DiDonato JA, Lin A. Activation of NF-κB is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes. Proc Natl Acad Sci U S A. 2001;98(12):6668-73. https://doi.org/10.1073/pnas.111155798Park KR, Kwon MS, An JY, Lee JG, Youn HS, Lee Y, et al. Structural implications of Ca2+-dependent actin- bundling function of human EFhd2/Swiprosin-1. Sci Rep. 2016;6(July):1-15. https://doi.org/10.1038/srep39095Huh YH, Kim SH, Chung KH, Oh S, Kwon MS, Choi HW, et al. Swiprosin-1 modulates actin dynamics by regulating the F-actin accessibility to cofilin. Cell Mol Life Sci. 2013; 70(24): 4841-54. https://doi.org/10.1007/s00018-013-1447-5Schreckenberg R, Pöling J, Lörchner H. Swiprosin- 1/EFhD-2 Expression in Cardiac Remodeling and Post- Infarct Repair : Effect of Ischemic Conditioning. 2020; 2: 1-13.Nippert F, Schreckenberg R, Hess A, Weber M, Schlüter KD. The effects of swiprosin-1 on the formation of pseudopodia-like structures and β- adrenoceptor coupling in cultured adult rat ventricular cardiomyocytes. PLoS One. 2016; 11(12): 1-15. https://doi.org/10.1371/journal.pone.0167655Revista Ciencias Biomédicas - 2020https://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/3160Cardiac remodelingMetabolic syndromeObesityDiabetesDyslipidemiaMolecular biologyRemodelación cardiacaSíndrome metabólicoObesidadDiabetesDislipidemiasBiología molecularCambios moleculares en la remodelación cardiaca por síndrome metabólico.Molecular changes in cardiac remodeling due to metabolic syndrome.Artículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlePublicationOREORE.xmltext/xml2524https://repositorio.unicartagena.edu.co/bitstreams/0182e198-8d9e-4738-a336-fb50972de8c7/download5902e8537d25f33a7e9ab79b5599b418MD5111227/13413oai:repositorio.unicartagena.edu.co:11227/134132024-09-05 15:30:47.809https://creativecommons.org/licenses/by-nc-sa/4.0/Revista Ciencias Biomédicas - 2020metadata.onlyhttps://repositorio.unicartagena.edu.coBiblioteca Digital Universidad de Cartagenabdigital@metabiblioteca.com