Diversidad genética de Pseudomonas aeruginosa y su relación con la resistencia bacteriana y producción de biopelículas en la ciudad de Cartagena de Indias D.C.T.-Colombia

P. aeruginosa es un patógeno oportunista que representa un problema de salud pública, siendo uno de microorganismos frecuentemente aislado en casos de infecciones asociadas a la atención en salud y que expresa resistencia a la mayoría de los antibióticos de uso rutinario. En este trabajo, realizamos...

Full description

Autores:
Valle Molinares, Roger Humberto
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2020
Institución:
Universidad de Cartagena
Repositorio:
Repositorio Universidad de Cartagena
Idioma:
spa
OAI Identifier:
oai:repositorio.unicartagena.edu.co:11227/15503
Acceso en línea:
https://hdl.handle.net/11227/15503
http://dx.doi.org/10.57799/11227/147
Palabra clave:
Microorganismos
Antibióticos - Efectos fisiológicos
Antibióticos
Microorganismo - Efecto de los antibióticos
Bacterias - Fisiología
Rights
openAccess
License
Derechos Reservados - Universidad de Cartagena, 2020
id UCART2_b1bd4be61494e9fc5f22417b6270f61a
oai_identifier_str oai:repositorio.unicartagena.edu.co:11227/15503
network_acronym_str UCART2
network_name_str Repositorio Universidad de Cartagena
repository_id_str
dc.title.spa.fl_str_mv Diversidad genética de Pseudomonas aeruginosa y su relación con la resistencia bacteriana y producción de biopelículas en la ciudad de Cartagena de Indias D.C.T.-Colombia
title Diversidad genética de Pseudomonas aeruginosa y su relación con la resistencia bacteriana y producción de biopelículas en la ciudad de Cartagena de Indias D.C.T.-Colombia
spellingShingle Diversidad genética de Pseudomonas aeruginosa y su relación con la resistencia bacteriana y producción de biopelículas en la ciudad de Cartagena de Indias D.C.T.-Colombia
Microorganismos
Antibióticos - Efectos fisiológicos
Antibióticos
Microorganismo - Efecto de los antibióticos
Bacterias - Fisiología
title_short Diversidad genética de Pseudomonas aeruginosa y su relación con la resistencia bacteriana y producción de biopelículas en la ciudad de Cartagena de Indias D.C.T.-Colombia
title_full Diversidad genética de Pseudomonas aeruginosa y su relación con la resistencia bacteriana y producción de biopelículas en la ciudad de Cartagena de Indias D.C.T.-Colombia
title_fullStr Diversidad genética de Pseudomonas aeruginosa y su relación con la resistencia bacteriana y producción de biopelículas en la ciudad de Cartagena de Indias D.C.T.-Colombia
title_full_unstemmed Diversidad genética de Pseudomonas aeruginosa y su relación con la resistencia bacteriana y producción de biopelículas en la ciudad de Cartagena de Indias D.C.T.-Colombia
title_sort Diversidad genética de Pseudomonas aeruginosa y su relación con la resistencia bacteriana y producción de biopelículas en la ciudad de Cartagena de Indias D.C.T.-Colombia
dc.creator.fl_str_mv Valle Molinares, Roger Humberto
dc.contributor.advisor.none.fl_str_mv Gómez Camargo, Doris Esther
dc.contributor.author.none.fl_str_mv Valle Molinares, Roger Humberto
dc.subject.armarc.none.fl_str_mv Microorganismos
Antibióticos - Efectos fisiológicos
Antibióticos
Microorganismo - Efecto de los antibióticos
Bacterias - Fisiología
topic Microorganismos
Antibióticos - Efectos fisiológicos
Antibióticos
Microorganismo - Efecto de los antibióticos
Bacterias - Fisiología
description P. aeruginosa es un patógeno oportunista que representa un problema de salud pública, siendo uno de microorganismos frecuentemente aislado en casos de infecciones asociadas a la atención en salud y que expresa resistencia a la mayoría de los antibióticos de uso rutinario. En este trabajo, realizamos un análisis de los perfiles de susceptibilidad, producción de biopelículas y expresión de genes asociados a resistencia antibiótica, de un total de 60 aislados (56 de origen clínico y 4 de origen ambiental). Los resultados obtenidos permitieron realizar una descripción fenotípica y genotípica de la población de P. aeruginosa que circula en la ciudad de Cartagena. La mayoría de los aislamientos mostraron elevados niveles de resistencia (30% MDR, 32% XDR y 15% PDR). Así mismo, se encontró que los marcadores de resistencia blaTEM y blaSHV son los más frecuentes en la población de P. aeruginosa con frecuencias de aparición del 26% y 100% respectivamente. Por otro lado, en este trabajo aportamos evidencia de la sobreexpresión en la biopelícula de los genes blaSHV lo que puede ser de utilidad a la hora es escoger el tratamiento antibiótico más adecuado para el manejo de infecciones crónicas de P. aeruginosa. También, aportamos información preliminar sobre el potencial uso de moléculas de origen natural (extractos crudos de animales marinos) y sintéticos (Tedrahydroquinolinas) en el tratamiento de infecciones de P. aeruginosa.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2022-07-28T18:28:12Z
dc.date.available.none.fl_str_mv 2022-07-28T18:28:12Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11227/15503
http://dx.doi.org/10.57799/11227/147
url https://hdl.handle.net/11227/15503
http://dx.doi.org/10.57799/11227/147
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad de Cartagena, 2020
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad de Cartagena, 2020
https://creativecommons.org/licenses/by-nc/4.0/
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Cartagena
dc.publisher.faculty.spa.fl_str_mv Facultad de Medicina
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.program.spa.fl_str_mv Doctorado en Medicina Tropical
institution Universidad de Cartagena
bitstream.url.fl_str_mv https://repositorio.unicartagena.edu.co/bitstream/11227/15503/1/TESIS%20DE%20GRADO%20PhD%20ROGER%20VALLE.pdf
https://repositorio.unicartagena.edu.co/bitstream/11227/15503/2/FORMATO%20CESION%20DE%20DERECHOS%20DE%20AUTOR%2c%20ROGER%20VALLE.pdf
https://repositorio.unicartagena.edu.co/bitstream/11227/15503/3/license.txt
https://repositorio.unicartagena.edu.co/bitstream/11227/15503/4/TESIS%20DE%20GRADO%20PhD%20ROGER%20VALLE.pdf.txt
https://repositorio.unicartagena.edu.co/bitstream/11227/15503/6/FORMATO%20CESION%20DE%20DERECHOS%20DE%20AUTOR%2c%20ROGER%20VALLE.pdf.txt
https://repositorio.unicartagena.edu.co/bitstream/11227/15503/5/TESIS%20DE%20GRADO%20PhD%20ROGER%20VALLE.pdf.jpg
https://repositorio.unicartagena.edu.co/bitstream/11227/15503/7/FORMATO%20CESION%20DE%20DERECHOS%20DE%20AUTOR%2c%20ROGER%20VALLE.pdf.jpg
bitstream.checksum.fl_str_mv 46240084d4879cdf865b00b399f74cc2
11a53c135d18bdbddb4c722c439e54c4
7b38fcee9ba3bc8639fa56f350c81be3
3459e7a566cf7b4e301a36b4935b8981
36ac653bb504479753b541a8e4aaa016
1b4af938accacc3f1058cda682f760b3
77345ab6df38344a6e03f19a6cefb1df
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital Universidad de Cartagena
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808418244435902464
spelling Gómez Camargo, Doris Estherdfad495a08442d6ad11fa7be55f7b1ffValle Molinares, Roger Humbertod1ae1acb921558a33c7d0eeba72e67672022-07-28T18:28:12Z2022-07-28T18:28:12Z2020https://hdl.handle.net/11227/15503http://dx.doi.org/10.57799/11227/147P. aeruginosa es un patógeno oportunista que representa un problema de salud pública, siendo uno de microorganismos frecuentemente aislado en casos de infecciones asociadas a la atención en salud y que expresa resistencia a la mayoría de los antibióticos de uso rutinario. En este trabajo, realizamos un análisis de los perfiles de susceptibilidad, producción de biopelículas y expresión de genes asociados a resistencia antibiótica, de un total de 60 aislados (56 de origen clínico y 4 de origen ambiental). Los resultados obtenidos permitieron realizar una descripción fenotípica y genotípica de la población de P. aeruginosa que circula en la ciudad de Cartagena. La mayoría de los aislamientos mostraron elevados niveles de resistencia (30% MDR, 32% XDR y 15% PDR). Así mismo, se encontró que los marcadores de resistencia blaTEM y blaSHV son los más frecuentes en la población de P. aeruginosa con frecuencias de aparición del 26% y 100% respectivamente. Por otro lado, en este trabajo aportamos evidencia de la sobreexpresión en la biopelícula de los genes blaSHV lo que puede ser de utilidad a la hora es escoger el tratamiento antibiótico más adecuado para el manejo de infecciones crónicas de P. aeruginosa. También, aportamos información preliminar sobre el potencial uso de moléculas de origen natural (extractos crudos de animales marinos) y sintéticos (Tedrahydroquinolinas) en el tratamiento de infecciones de P. aeruginosa.DoctoradoDoctor(a) en Medicina Tropicalapplication/pdfspaUniversidad de CartagenaFacultad de MedicinaCartagena de IndiasDoctorado en Medicina TropicalDerechos Reservados - Universidad de Cartagena, 2020https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)http://purl.org/coar/access_right/c_abf2Diversidad genética de Pseudomonas aeruginosa y su relación con la resistencia bacteriana y producción de biopelículas en la ciudad de Cartagena de Indias D.C.T.-ColombiaTrabajo de grado - Doctoradoinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06Textinfo:eu-repo/semantics/doctoralThesishttps://purl.org/redcol/resource_type/TDhttp://purl.org/coar/version/c_970fb48d4fbd8a85MicroorganismosAntibióticos - Efectos fisiológicosAntibióticosMicroorganismo - Efecto de los antibióticosBacterias - FisiologíaAbdel-Aziz, S.M., A, A., 2014. Bacterial Biofilm: Dispersal and Inhibition Strategies. Sch. J. Biotechnol. 1. https://doi.org/10.18875/2375-6713.1.105Abdel-Gawad, S.M., El-Gaby, M.S.A., Heiba, H.I., Aly, H.M., Ghorab, M.M., 2005. Synthesis and Radiation Stability of Some New Biologically Active Hydroquinoline and Pyrimido[4,5- b ]quinoline Derivatives. J. Chinese Chem. Soc. 52, 1227–1236. https://doi.org/10.1002/jccs.200500177Angeles, L., 1984. The Clinical Challenge of Infections Due to Pseudomonas aeruginosa. Rev. Infect. Dis. 6, 603–607.Arzanlou, M., Chai, W.C., Venter, H., 2017. Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Essays Biochem. 61, 49–60. https://doi.org/10.1042/EBC20160063Azam, M.W., Khan, A.U., 2019. Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discov. Today 24, 350–359. https://doi.org/10.1016/j.drudis.2018.07.003Azimi, S., Kafil, H.S., Baghi, H.B., Shokrian, S., Najaf, K., Asgharzadeh, M., Yousefi, M., Shahrivar, F., Aghazadeh, M., 2016. Presence of exoY, exoS, exoU and exoT genes, antibiotic resistance and biofilm production among Pseudomonas aeruginosa isolates in Northwest Iran. GMS Hyg. Infect. Control 11, Doc04. https://doi.org/10.3205/dgkh000264Baena del Valle, J.A., Gomez Alegria, C.J., Gomez Camargo, D.E., 2014. Antimicrobial susceptibility and genotypification of Pseudomonas aeruginosa from cystic fibrosis patients and other diseases in Cartagena (Colombia). Salud UNINORTE 30, 104– 120.Baena Del Valle, J.A., Gómez Alegría, C.J., Gómez Camargo, D.E., 2011. Coexistencia de Pseudomonas aeruginosa y Candida albicans en infecciones nosocomiales en Cartagena de Indias (Colombia). Nov. Publicación Científica en Ciencias Biomédicas 9, 22–30.Baena, J., Gomez, C., Gomez, D., 2014. Antimicrobial susceptibility and genotypification of Pseudomonas aeruginosa from cystic fibrosis patients and other diseases in Cartagena (Colombia). Salud Uninorte 30, 104–120. https://doi.org/10.14482/sun.30.2.5679Bleves, S., Viarre, V., Salacha, R., Michel, G.P.F., Filloux, A., Voulhoux, R., 2010. Protein secretion systems in Pseudomonas aeruginosa: A wealth of pathogenic weapons. Int. J. Med. Microbiol. 300, 534–543. https://doi.org/10.1016/j.ijmm.2010.08.005Bokaeian, M., Zahedani, S.S., Bajgiran, M.S., Moghaddam, A.A., 2015. Frequency of PER, VEB, SHV, TEM and CTX-M genes in resistant strains of Pseudomonas aeruginosa Producing Extended Spectrum β-lactamases. Jundishapur J. Microbiol. 8, 1–6. https://doi.org/10.5812/jjm.13783Boles, B.R., Thoendel, M., Singh, P.K., 2005. Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol. Microbiol. 57, 1210–1223. https://doi.org/10.1111/j.1365-2958.2005.04743.xBrazas, M.D., Breidenstein, E.B.M., Overhage, J., Hancock, R.E.W., 2007. Role of Lon , an ATP-dependent protease homolog, in resistance of Pseudomonas aeruginosa to ciprofloxacin. Antimicrob. Agents Chemother. 51, 4276–4283. https://doi.org/10.1128/AAC.00830-07Breidenstein, E.B.M., de la Fuente-Nuñez, C., Hancock, R.E.., 2011. Pseudomonas aeruginosa: All roads lead to resistance. Trends Microbiol. 19, 419–426. https://doi.org/10.1016/j.tim.2011.04.005Breidenstein, E.B.M., Khaira, B.K., Wiegand, I., Overhage, J., Hancock, R.E.W., 2008. Complex Ciprofloxacin Resistome Revealed by Screening a Pseudomonas aeruginosa Mutant Library for Altered Susceptibility. Antimicrob. Agents Chemother. 52, 4486–4491. https://doi.org/10.1128/AAC.00222-08Brown, E.D., Wright, G.D., 2016. Antibacterial drug discovery in the resistance era. Nature 529, 336. https://doi.org/10.1038/nature17042Browne, P., Barret, M., Gara, F.O., Morrissey, J.P., 2010. Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria. BMC Microbiol. 10, 300. https://doi.org/10.1186/1471-2180-10-300Cabot, G., Ocampo-Sosa, A.A., Domínguez, M.A., Gago, J.F., Juan, C., Tubau, F., Rodríguez, C., Moyà, B., Peña, C., Martínez-Martínez, L., Oliver, A., 2012. Genetic markers of widespread extensively drug-resistant Pseudomonas aeruginosa highrisk clones. Antimicrob. Agents Chemother. 56, 6349–6357. https://doi.org/10.1128/AAC.01388-12Caiazza, N.C., Shanks, R.M.Q., Toole, G.A.O., 2005. Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J. Bacteriol. 187, 7351–7361. https://doi.org/10.1128/JB.187.21.7351Caldas A. Liliana, 2015. Bacterias-biofilms y resistencia antimicrobiana. Rev. Fac. ciencias la salud. Univ. del Cauca 17, 20–27.Calhoun, W., Carlson, R.P., Crossley, R., Datko, L.J., Dietrich, S., Heatherington, K., Marshall, L.A., Meade, P.J., Opalko, A., Shepherd, R.G., 1995. Synthesis and Antiinflammatory Activity of Certain 5,6,7,8-Tetrahydroquinolines and Related Compounds. J. Med. Chem. 38, 1473–1481. https://doi.org/10.1021/jm00009a008Campa, M., Bendinelli, M., Friedman, H., 1993. Pseudomonas aeruginosa as an opportunistic pathogen. https://doi.org/10.1007/978-1-4615-3036-7Campodónico, V.L., Llosa, N.J., Grout, M., Döring, G., Maira-Litrán, T., Pier, G.B., 2010. Evaluation of flagella and flagellin of Pseudomonas aeruginosa as vaccines. Infect. Immun. 78, 746–755. https://doi.org/10.1128/IAI.00806-09Castro-Orozco, R., Barreto-Maya, A.C., Guzmán-Álvarez, H., Ortega-Quiroz, R.J., Benítez-Peña, L., 2010. Antimicrobial resistance pattern for gram-negative uropathogens isolated from hospitalised patients and outpatients in Cartagena, 2005-2008. Rev. Salud Publica 12, 1010–1019. https://doi.org/10.1590/S0124- 00642010000600013Causapé, C.L., 2018. Clonal epidemiology and antimicrobial resistance in Pseudomonas aeruginosa chronic respiratory infections: interpatient transmission and resistome evolution of an international cystic fibrosis clone.Chatterjee, M., Anju, C.P., Biswas, L., Anil Kumar, V., Gopi Mohan, C., Biswas, R., 2016. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int. J. Med. Microbiol. 306, 48–58. https://doi.org/10.1016/j.ijmm.2015.11.004Chaudhry, W.N., Badar, R., Jamal, M., Jeong, J., Zafar, J., Andleeb, S., 2016. Clinico-microbiological study and antibiotic resistance profile of meca and ESBL gene prevalence in patients with diabetic foot infections. Exp. Ther. Med. 11, 1031– 1038. https://doi.org/10.3892/etm.2016.2996Chong, H., Li, Q., 2017. Microbial production of rhamnolipids : opportunities , challenges and strategies. Microb. Cell Fact. 1–12. https://doi.org/10.1186/s12934-017-0753-2Christensen, G.D., Simpson, W.A., Younger, J.J., Baddour, L.M., Barrett, F.F., Melton, D.M., Beachey, E.H., 1985. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 22, 996–1006. https://doi.org/10.1128/jcm.22.6.996-1006.1985Ciofu, O., Tolker-nielsen, T., 2019. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents: How P. aeruginosa can escape antibiotics. Front. Microbiol. 10. https://doi.org/10.3389/fmicb.2019.00913Clemence, F., Le Martret, O., DeleVallee, F., Benzoni, J., Jouanen, A., Jouquey, S., Mouren, M., Deraedtt, R., 1988. 4-Hydroxy-3-quinolinecarboxamides with Antiarthritic and Analgesic Activities. J. Med. Chem. 31, 1453–1462.Comas, I., Homolka, S., Niemann, S., Gagneux, S., 2009. Genotyping of genetically monomorphic bacteria: DNA sequencing in Mycobacterium tuberculosis highlights the limitations of current methodologies. PLoS One 4. https://doi.org/10.1371/journal.pone.0007815Conly, J.M., Johnston, B.L., 2005. Where are all the new antibiotics? The new antibiotic paradox. Can. J. Infect. Dis. Med. Microbiol. 16, 159–160. https://doi.org/10.1155/2005/892058Costerton, J.W., Stewart, P.S., Greenberg, E.P., 1999. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–22.Cristina, R., Dantas, C., Ferreira, M.L., William, D., Gontijo-filho, P.P., Ribas, R.M., 2017. Carbapenem-resistant Pseudomonas aeruginosa: association with virulence genes and biofilm. Brazilian J. Microbiol. 48, 211–217. https://doi.org/10.1016/j.bjm.2016.11.004Cummins, J., Reen, F.J., Baysse, C., Mooij, M.J., O’Gara, F., 2009. Subinhibitory concentrations of the cationic antimicrobial peptide colistin induce the pseudomonas quinolone signal in Pseudomonas aeruginosa. Microbiology 155, 2826–2837. https://doi.org/10.1099/mic.0.025643-0Das, T., Ibugo, A.I., Klare, W., Manefield, M., 2016. Role of pyocyanin and extracellular DNA in facilitating Pseudomonas aeruginosa biofilm formation, in: Microbial Biofilms - Importance and Applications. pp. 23–42.De Britto, S., Gajbar, T.D., Satapute, P., Sundaram, L., Lakshmikantha, R.Y., Jogaiah, S., Ito, S. ichi, 2020. Isolation and characterization of nutrient dependent pyocyanin from Pseudomonas aeruginosa and its dye and agrochemical properties. Sci. Rep. 10, 1–12. https://doi.org/10.1038/s41598-020-58335-6De Carvalho, C.C.C.R., 2007. Biofilms: recent developments on an old battle. Recent Pat. Biotechnol. 1, 49–57. https://doi.org/10.2174/187220807779813965De Souza, M.V.N., Pais, K.C., Kaiser, C.R., Peralta, M.A., de L. Ferreira, M., Lourenço, M.C.S., 2009. Synthesis and in vitro antitubercular activity of a series of quinoline derivatives. Bioorganic Med. Chem. 17, 1474–1480. https://doi.org/10.1016/j.bmc.2009.01.013Deligianni, E., Pattison, S., Berrar, D., Ternan, N.G., Haylock, R.W., Moore, J.E., Elborn, S.J., Dooley, J.S.G., 2010. Pseudomonas aeruginosa cystic fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro. BMC Microbiol. 10. https://doi.org/10.1186/1471-2180-10-38Depke, T., Franke, R., Brönstrup, M., 2017. Clustering of MS2 spectra using unsupervised methods to aid the identification of secondary metabolites from Pseudomonas aeruginosa. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1071, 19–28. https://doi.org/10.1016/j.jchromb.2017.06.002Depluverez, S., Devos, S., Devreese, B., 2016. The role of bacterial secretion systems in the virulence of Gram-negative airway pathogens associated with cystic fibrosis. Front. Microbiol. 7, 1–8. https://doi.org/10.3389/fmicb.2016.01336Déziel, E., Lépine, F., Milot, S., He, J., Mindrinos, M.N., Tompkins, R.G., Rahme, L.G., 2004. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc. Natl. Acad. Sci. U. S. A. 101, 1339–1344. https://doi.org/10.1073/pnas.0307694100Di Domenico, E.G., Farulla, I., Prignano, G., Gallo, M.T., Vespaziani, M., Cavallo, I., Sperduti, I., Pontone, M., Bordignon, V., Cilli, L., De Santis, A., Di Salvo, F., Pimpinelli, F., La Parola, I.L., Toma, L., Ensoli, F., 2017. Biofilm is a major virulence determinant in bacterial colonization of chronic skin ulcers independently from the multidrug resistant phenotype. Int. J. Mol. Sci. 18. https://doi.org/10.3390/ijms18051077Dias Siqueira, V.L., Cardoso, R.F., de Pádua, R.A.F., Caleffi-Ferracioli, K.R., Helbel, C., Barreto Santos, A.C., Aoki, E.E., Nakamura, C.V., 2013. High genetic diversity among Pseudomonas aeruginosa and Acinetobacter spp. isolated in a public hospital in Brazil. Brazilian J. Pharm. Sci. 49, 49–56. https://doi.org/10.1590/S1984- 82502013000100006Díaz, Y.M., Laverde, G.V., Gamba, L.R., Wandurraga, H.M., Arévalo-Ferro, C., Rodríguez, F.R., Beltrán, C.D., Hernández, L.C., 2015. Biofilm inhibition activity of compounds isolated from two Eunicea species collected at the Caribbean Sea. Brazilian J. Pharmacogn. 25, 605–611. https://doi.org/10.1016/j.bjp.2015.08.007Dötsch, A., Pommerenke, C., Bredenbruch, F., Geffers, R., Häussler, S., 2009. Evaluation of a microarray-hybridization based method applicable for discovery of single nucleotide polymorphisms (SNPs) in the Pseudomonas aeruginosa genome. BMC Genomics 10, 1–13. https://doi.org/10.1186/1471-2164-10-29Drebes Dörr, N.C., Blokesch, M., 2018. Bacterial type VI secretion system facilitates niche domination. Proc. Natl. Acad. Sci. 115, 8855–8857. https://doi.org/10.1073/pnas.1812776115Dubois, V., Arpin, C., Noury, P., Quentin, C., 2002. Clinical strain of Pseudomonas aeruginosa carrying a blaTEM-21 gene located on a chromosomal interrupted TnA type transposon. Antimicrob. Agents Chemother. 46, 3624–3626. https://doi.org/10.1128/AAC.46.11.3624-3626.2002El-Fouly, M.Z., Sharaf, A.M., Shahin, A.A.M., El-Bialy, H.A., Omara, A.M.A., 2015. Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa. J. Radiat. Res. Appl. Sci. 8, 36–48. https://doi.org/10.1016/j.jrras.2014.10.007El-Shouny, W.A., Al-Baidani, A.R.H., Hamza, W.T., 2011. Antimicrobial activity of pyocyanin produced by Pseudomonas aeruginosa isolated from surgical woundinfections. Int. J. Pharm. Med. Sci. 1, 1–07.El Zowalaty, M.E., Al Thani, A.A., Webster, T.J., El Zowalaty, A.E., Schweizer, H.P., Nasrallah, G.K., Marei, H.E., Ashour, H.M., 2015. Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol. 10, 1683–1706. https://doi.org/10.2217/fmb.15.48Farouk El Moufti, M., Baddour, M., Abdel Hameed Harfoush, R., Mohamed Aly Owais, H., 2015. Characterization of some genotypic and phenotypic traits of biofilm producing clinical isolates of methicillin resistant Staphylococcus epidermidis. Am. J. Infect. Dis. Microbiol. 3, 95–103. https://doi.org/10.12691/ajidm-3-3-2Feldman, M., Bryan, R., Rajan, S., Scheffler, L., Brunnert, S., Tang, H., Prince, A., 1998. Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect. Immun. 66, 43–51. https://doi.org/10.1128/iai.66.1.43-51.1998Filloux, A., 2011. Protein secretion systems in Pseudomonas aeruginosa: An essay on diversity, evolution, and function. Front. Microbiol. 2, 1–21. https://doi.org/10.3389/fmicb.2011.00155Fraser-Liggett, C.M., 2005. Insights on biology and evolution from microbial genome sequencing. Genome Res. 15, 1603–1610. https://doi.org/10.1101/gr.3724205Fu, Y., Zhang, F., Zhang, W., Chen, X., Zhao, Y., Ma, J., Bao, L., Song, W., Ohsugi, T., Urano, T., Liu, S., 2007. Differential expression of blaSHV related to susceptibility to ampicillin in Klebsiella pneumoniae. Int. J. Antimicrob. Agents 29, 344–347. https://doi.org/10.1016/j.ijantimicag.2006.10.015Fujitani, S., Sun, H., Yu, V.L., Weingarten, J.A., 2011. Pneumonia due to Pseudomonas aeruginosa. Part I: Epidemiology, clinical diagnosis, and source. Chest 139, 909– 919. https://doi.org/10.1378/chest.10-0166Gellatly, S.L., Hancock, R.E.W., 2013. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathog. Dis. 67, 159–173. https://doi.org/10.1111/2049-632X.12033Gooderham, W.J., Bains, M., Mcphee, J.B., Wiegand, I., Hancock, R.E.W., 2008. Induction by cationic antimicrobial peptides and involvement in intrinsic polymyxin and antimicrobial peptide resistance, biofilm formation, and swarming motility of PsrA in Pseudomonas aeruginosa. J. Bacteriol. 190, 5624–5634. https://doi.org/10.1128/JB.00594-08Gooderham, W.J., Gellatly, S.L., Mcphee, J.B., Bains, M., Cosseau, C., Levesque, R.C., Hancock, R.E.W., 2009. The sensor kinase PhoQ mediates virulence in Pseudomonas aeruginosa. Microbiology 155, 699–711. https://doi.org/10.1099/mic.0.024554-0Goossens, H., 2003. Susceptibility of multi-drug-resistant Pseudomonas aeruginosa in intensive care units: Results from the European MYSTIC study group. Clin. Microbiol. Infect. 9, 980–983. https://doi.org/10.1046/j.1469-0691.2003.00690.xGreen, E.R., Mecsas, J., 2016. Bacterial Secretion Systems: An overview. Virulence Mech. Bact. Pathog. 4, 213–239. https://doi.org/10.1128/9781555819286.ch8Greenberg, E.P., Whiteley, M., Bangera, M.G., Bumgarner, R.E., Parsek, M.R., Teitzel, G.M., Lory, S., 2001. Gene expression in Pseudomonas aeruginosa biofilms. Nature 413, 860–864.Hachani, A., Lossi, N.S., Hamilton, A., Jones, C., Bleves, S., Albesa-Jové, D., Filloux, A., 2011. Type VI secretion system in Pseudomonas aeruginosa: Secretion and multimerization of VgrG proteins. J. Biol. Chem. 286, 12317–12327. https://doi.org/10.1074/jbc.M110.193045Hall, S., McDermott, C., Anoopkumar-Dukie, S., McFarland, A.J., Forbes, A., Perkins, A. V., Davey, A.K., Chess-Williams, R., Kiefel, M.J., Arora, D., Grant, G.D., 2016. Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins (Basel). 8, 1–14. https://doi.org/10.3390/toxins8080236Han, Y., Wang, T., Chen, G., Pu, Q., Liu, Q., Zhang, Y., Xu, L., Wu, M., Liang, H., 2019. A Pseudomonas aeruginosa type VI secretion system regulated by CueR facilitates copper acquisition. PLoS Pathog. 15, 1–25. https://doi.org/10.1371/journal.ppat.1008198Hancock, R.E.W., 1998. Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative Gram-negative bacteria. Clin. Infect. Dis. 27, S93–S99. https://doi.org/10.1086/514909Hancock, R.E.W., Brinkman, F.S.L., 2002. Function of Pseudomonas porins in uptake and efflux. Annu. Rev. Microbiol. 17–38. https://doi.org/10.1146/annurev.micro.56.012302.160310Hancock, R.E.W., Speert, D.P., 2000. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist. Updat. 3, 247–255. https://doi.org/10.1054/drup.2000.0152Hassan, Y.H., Hanna Aka, S.T., Jalal, S.T., 2019. Correlation between blaSHV Gene and Biofilm Formation among Beta Lactamase Producing Uropathogenic Isolates from Patients in Erbil City in Iraq. Mol Biol 8, 2168–9547.Hauser, A.R., 2011. Pseudomonas aeruginosa: So many virulence factors, so little time. Crit Care Med. 39, 2193–2194. https://doi.org/10.1097/CCM.0b013e318221742d.PseudomonasHennequin, C., Aumeran, C., Robin, F., Traore, O., Forestier, C., 2012. Antibiotic resistance and plasmid transfer capacity in biofilm formed with a CTX-M-15- producing Klebsiella pneumoniae isolate. J. Antimicrob. Chemother. 67, 2123–2130. https://doi.org/10.1093/jac/dks169Henrichfreise, B., Wiegand, I., Pfister, W., Wiedemann, B., 2007. Resistance mechanisms of multiresistant Pseudomonas aeruginosa strains from Germany and correlation with hypermutation. Antimicrob. Agents Chemother. 51, 4062–4070. https://doi.org/10.1128/AAC.00148-07Herrmann, G., Yang, L., Wu, H., Song, Z., Wang, H., Høiby, N., Ulrich, M., Molin, S., Riethmüller, J., Döring, G., 2010. Colistin-tobramycin combinations are superior to monotherapy concerning the killing of biofilm Pseudomonas aeruginosa. J. Infect. Dis. 202, 1585–1592. https://doi.org/10.1086/656788Hocquet, D., Berthelot, P., Roussel-Delvallez, M., Favre, R., Jeannot, K., Bajolet, O., Marty, N., Grattard, F., Mariani-Kurkdjian, P., Bingen, E., Husson, M.O., Couetdic, G., Plésiat, P., 2007. Pseudomonas aeruginosa may accumulate drug resistance mechanisms without losing its ability to cause bloodstream infections. Antimicrob. Agents Chemother. 51, 3531–3536. https://doi.org/10.1128/AAC.00503-07Hoge, R., Pelzer, A., Rosenau, F., Wilhelm, S., 2010. “Weapons of a pathogen : Proteases and their role in virulence of Pseudomonas aeruginosa” 45, 383–395.Høiby, N., 2017. A short history of microbial biofilms and biofilm infections. Apmis 125, 272–275. https://doi.org/10.1111/apm.12686Høiby, N., 1977. Pseudomonas aeruginosa infection in cystic fibrosis. Acta Phth. microbiol. scand 85, 149–152.Holla, S., Poojary, K.N., Poojary, B., Bhat, S., Kumari, S., 2005. Synthesis, characterization and antibacterial activity studies on some fluorine containing quinoline-4-carboxylic acids and their derivatives. Indian J. Chem. 44, 2114–2119.Hood, R.D., Singh, P., Hsu, F.S., Güvener, T., Carl, M.A., Trinidad, R.R.S., Silverman, J.M., Ohlson, B.B., Hicks, K.G., Plemel, R.L., Li, M., Schwarz, S., Wang, W.Y., Merz, A.J., Goodlett, D.R., Mougous, J.D., 2010. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7, 25–37. https://doi.org/10.1016/j.chom.2009.12.007Horna, G., Quezada, K., Ramos, S., Mosqueda, N., Rubio, M., Guerra, H., Ruiz, J., 2019. Specific type IV pili groups in clinical isolates of Pseudomonas aeruginosa. Int. Microbiol. 22, 131–141. https://doi.org/10.1007/s10123-018-00035-3Imada, K., 2018. Bacterial flagellar axial structure and its construction. Biophys. Rev. 10, 559–570. https://doi.org/10.1007/s12551-017-0378-zInaba, S., Nishigaki, T., Takekawa, N., Kojima, S., Homma, M., 2017. Localization and domain characterization of the SflA regulator of flagellar formation in Vibrio alginolyticus. Genes to Cells 22, 619–627. https://doi.org/10.1111/gtc.12501Inacio, H.S.M., Bomfim, M.R.Q., França, R.O., Farias, L.M., Carvalho, M.A.R., Serufo, J.C., Santos, S.G., 2014. Phenotypic and genotypic diversity of multidrug-resistant Pseudomonas aeruginosa isolates from bloodstream infections recovered in the hospitals of Belo Horizonte, Brazil. Chemotherapy 60, 54–62. https://doi.org/10.1159/000365726Instituto Nacional de salud, 2017. Resultados del programa de informe de resultados de la vigilancia por laboratorio de resistencia antimicrobiana en infecciones asociadas a la atención en salud (IAAS) 2017.Instituto Nacional de Salud, 2020. Reporte semana epidemiológica 10, Boletín epidemiológico semanal. https://doi.org/10.33610/23576189.2020.07Jacobsen, T., Bardiaux, B., Francetic, O., Izadi-Pruneyre, N., Nilges, M., 2019. Structure and function of minor pilins of type IV pili. Med. Microbiol. Immunol. https://doi.org/10.1007/s00430-019-00642-5Jain, R., Behrens, A.J., Kaever, V., Kazmierczak, B.I., 2012. Type IV pilus assembly in Pseudomonas aeruginosa over a broad range of cyclic di-GMP concentrations. J. Bacteriol. 194, 4285–4294. https://doi.org/10.1128/JB.00803-12Jamal, M., Tasneem, U., Hussain, T., Andleeb, and S., 2015. Bacterial biofilm: Its composition, formation and role in human infections. Res. Rev. J. Microbiol. Biotechnol. 4, 1–14.Jayaseelan, S., Ramaswamy, D., Dharmaraj, S., 2014. Pyocyanin: Production, applications, challenges and new insights. World J. Microbiol. Biotechnol. 30, 1159– 1168. https://doi.org/10.1007/s11274-013-1552-5Jeukens, J., Freschi, L., Kukavica-ibrulj, I., Tucker, N.P., Levesque, R.C., 2019. Genomics of antibiotic-resistance prediction in Pseudomonas aeruginosa. Ann. N. Y. Acad. Sci. 1435, 5–17. https://doi.org/10.1111/nyas.13358Johansen, C., Falholt, P., Gram, L., 1997. Enzymatic removal and disinfection of bacterial biofilms. Appl. Environ. Microbiol. 63.Johansson, E., Welinder-Olsson, C., Gilljam, M., Pourcel, C., Lindblad, A., 2015. Genotyping of Pseudomonas aeruginosa reveals high diversity, stability over time and good outcome of eradication. J. Cyst. Fibros. 14, 353–360. https://doi.org/10.1016/j.jcf.2014.09.016Kang, C., Kim, S., Kim, H., Park, S., Choe, Y., Oh, M., Kim, E., Choe, K., 2003. Pseudomonas aeruginosa Bacteremia: Risk Factors for Mortality and Influence of Delayed Receipt of Effective Antimicrobial Therapy on Clinical Outcome. Clin. Infect. Dis. 37, 745–751. https://doi.org/10.1086/377200Kearns, D.B., 2010. A field guide to bacterial swarming motility. Nat. Rev. Microbiol. 8, 634–644. https://doi.org/10.1038/nrmicro2405Khan, W., Bernier, S.P., Kuchma, S.L., Hammond, J.H., Hasan, F., O’Toole, G.A., 2010. Aminoglycoside resistance of Pseudomonas aeruginosa biofilms modulated by extracellular polysaccharide. Int. Microbiol. 13, 207–212. https://doi.org/10.2436/20.1501.01.127Kidd, T.J., Ritchie, S.R., Ramsay, K.A., Grimwood, K., Bell, S.C., Rainey, P.B., 2012. Pseudomonas aeruginosa Exhibits Frequent Recombination, but Only a Limited Association between Genotype and Ecological Setting. PLoS One 7. https://doi.org/10.1371/journal.pone.0044199Kim, W.G., Kim, J.P., Yoo, I.D., 1996. Benzastatins A, B, C, and D : New free radical scavengers from Streptomyces nitrosporeus 30643 II. Structure determination. J. Antibiot. (Tokyo). 49, 26–30. https://doi.org/10.7164/antibiotics.49.26Kojic, M., Aguilar, C., Venturi, V., 2002. TetR Family Member PsrA Directly Binds the Pseudomonas rpoS and psrA Promoters. J. Bacteriol. 184, 2324–2330. https://doi.org/10.1128/JB.184.8.2324Kolpen, M., Appeldorff, C.F., Brandt, S., Mousavi, N., Kragh, K.N., Aydogan, S., Uppal, H.A., Bjarnsholt, T., Ciofu, O., Høiby, N., Jensen, P., 2018. Increased bactericidal activity of colistin on Pseudomonas aeruginosa biofilms in anaerobic conditions. Pathog. Dis. 74, 1–7. https://doi.org/10.1093/femspd/ftv086Koo, J., Lamers, R.P., Rubinstein, J.L., Burrows, L.L., Howell, P.L., 2016. Structure of the Pseudomonas aeruginosa type IVa pilus secretin at 7.4 Å. Structure 24, 1778–1787. https://doi.org/10.1016/j.str.2016.08.007Kurhekar, J.V., 2020. Antimicrobial lead compounds from marine plants. Phytochem. as Lead Compd. New Drug Discov. 257–274. https://doi.org/10.1016/b978-0-12- 817890-4.00017-2Kuznetsova, M. V., Maslennikova, I.L., Karpunina, T.I., Nesterova, L.Y., Demakov, V.A., 2013. Interactions of Pseudomonas aeruginosa in predominant biofilm or planktonic forms of existence in mixed culture with Escherichia coli in vitro. Can. J. Microbiol. 59, 604–610. https://doi.org/10.1139/cjm-2013-0168Lalucat, J., Mulet, M., Gomila, M., García-Valdés, E., 2020. Genomics in bacterial taxonomy: Impact on the genus pseudomonas. Genes (Basel). 11. https://doi.org/10.3390/genes11020139Lanini, S., D’Arezzo, S., Puro, V., Martini, L., Imperi, F., Piselli, P., Montanaro, M., Paoletti, S., Visca, P., Ippolito, G., 2011. Molecular epidemiology of a Pseudomonas aeruginosa hospital outbreak driven by a contaminated disinfectant-soap dispenser. PLoS One 6. https://doi.org/10.1371/journal.pone.0017064Lau, G.W., Hassett, D.J., Ran, H., Kong, F., 2004. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol. Med. 10, 599–606. https://doi.org/10.1016/j.molmed.2004.10.002Lavrado, J., Moreira, R., Paulo, a, 2010. Indoloquinolines as scaffolds for drug discovery. Curr. Med. Chem. 17, 2348–2370.Lee, K., Yoon, S.S., 2017. Pseudomonas aeruginosa biofilm, a programmed bacterial life for fitness. J. Microbiol. Biotechnol. 27, 1053–1064. https://doi.org/10.4014/jmb.1611.11056Leighton, T.L., Buensuceso, R.N.C., Howell, P.L., Burrows, L.L., 2015. Biogenesis of Pseudomonas aeruginosa type IV pili and regulation of their function. Environ. Microbiol. 17, 4148–4163. https://doi.org/10.1111/1462-2920.12849Leiker, K., Weitao, T., 2016. The SOS Response of Biofilms. Int. J. Clin. Med. Microbiol. 1, 1–7.Li, W., Raoult, D., Fournier, P.E., 2009. Bacterial strain typing in the genomic era. FEMS Microbiol. Rev. 33, 892–916. https://doi.org/10.1111/j.1574-6976.2009.00182.xLien, Y.W., Lai, E.M., 2017. Type VI secretion effectors: Methodologies and biology. Front. Cell. Infect. Microbiol. 7, 1–11. https://doi.org/10.3389/fcimb.2017.00254Lima, J.L. da C., Alves, L.R., Jacomé, P.R.L. de A., Bezerra Neto, J.P., Maciel, M.A.V., Morais, M.M.C. de, 2018. Biofilm production by clinical isolates of Pseudomonas aeruginosa and structural changes in LasR protein of isolates non biofilm-producing. Brazilian J. Infect. Dis. 22, 129–136. https://doi.org/10.1016/j.bjid.2018.03.00Linares, J.F., Moreno, R., Fajardo, A., Martínez-solano, L., Escalante, R., Rojo, F., Martínez, J.L., 2010. The global regulator Crc modulates metabolism , susceptibility to antibiotics and virulence in Pseudomonas aeruginosa. Environ. Microbiol. 12, 3196–3212. https://doi.org/10.1111/j.1462-2920.2010.02292.xLindegaard, Mikkel; Long, Katherine; Molin, Søren; Johansen, H.K., 2016. The evolution and adaptation of clinical Pseudomonas aeruginosa isolates from early cystic fibrosis infections.Lister, P.D., Wolter, D.J., Hanson, N.D., 2009. Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev. 22, 582–610. https://doi.org/10.1128/CMR.00040-09Livermore, D.M., 2002. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin. Infect. Dis. 34, 634–640. https://doi.org/10.1086/338782Lo, A., Cervoni, M., Stefanelli, R., Mancone, C., Imperi, F., 2020. Effect of lipid A aminoarabinosylation on Pseudomonas aeruginosa colistin resistance and fitness. Int. J. Antimicrob. Agents 55, 105957. https://doi.org/10.1016/j.ijantimicag.2020.105957López-Causapé, C., Sommer, L.M., Cabot, G., Rubio, R., Ocampo-Sosa, A.A., Johansen, H.K., Figuerola, J., Cantón, R., Kidd, T.J., Molin, S., Oliver, A., 2017. Evolution of the Pseudomonas aeruginosa mutational resistome in an international Cystic Fibrosis clone. Sci. Rep. 7, 1–15. https://doi.org/10.1038/s41598-017-05621-5Macfarlane, E.L.A., Kwasnicka, A., Hancock, R.E.W., 2000. Role of Pseudomonas aeruginosa PhoP-PhoQ in resistance to antimicrobial cationic peptides and aminoglycosides. Microbiology 146, 2543–2554.Madsen, J.S., Burmølle, M., Hansen, L.H., Sørensen, S.J., 2012. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol. Med. Microbiol. 65, 183–195. https://doi.org/10.1111/j.1574-695X.2012.00960.xMagalhães, B., Valot, B., Abdelbary, M.M.H., Prod’hom, G., Greub, G., Senn, L., Blanc, D.S., 2020. Combining Standard Molecular Typing and Whole Genome Sequencing to Investigate Pseudomonas aeruginosa Epidemiology in Intensive Care Units. Front. Public Heal. 8, 1–10. https://doi.org/10.3389/fpubh.2020.00003Magiorakos, a, Srinivasan, A., Carey, R.B., Carmeli, Y., Falagas, M.E., Giske, C.G., Harbarth, S., Hindler, J.F., 2011. Bacteria : an International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Microbiology 18, 268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.xMah, T.-F., Pitts, B., Pellock, B., Walker, G.C., Stewart, P.S., Toole, G. a O., 2003. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Lett. to Nat. 426, 1–5. https://doi.org/10.1038/nature02090.1.Manaia, C.M., Macedo, G., Fatta-Kassinos, D., Nunes, O.C., 2016. Antibiotic resistance in urban aquatic environments: can it be controlled? Appl. Microbiol. Biotechnol. 100, 1543–1557. https://doi.org/10.1007/s00253-015-7202-0Marganakop, S.B., Kamble, R.R., Hoskeri, J., Prasad, D.J., Meti, G.Y., 2014. Facile synthesis of novel quinoline derivatives as anticancer agents. Med. Chem. Res. 23, 2727–2735. https://doi.org/10.1007/s00044-013-0855-2Marston, H.D., Dixon, D.M., Knisely, J.M., Palmore, T.N., Fauci, A.S., 2016. Antimicrobial resistance. JAMAthe J. Am. Med. Assoc. 316, 1193–1204. https://doi.org/10.1001/jama.2016.11764Martínez Díaz, Y., Vanegas Laverde, G., Reina Gamba, L., Mayorga Wandurraga, H., Arévalo-Ferro, C., Ramos Rodríguez, F., Duque Beltrán, C., Castellanos Hernández, L., 2015. Biofilm inhibition activity of compounds isolated from two Eunicea species collected at the Caribbean Sea. Rev. Bras. Farmacogn. 1–7. https://doi.org/10.1016/j.bjp.2015.08.007Martínez, J.L., Rojo, F., 2011. Metabolic regulation of antibiotic resistance. FEMS Microbiol. Rev. 35, 768–789. https://doi.org/10.1111/j.1574-6976.2011.00282.xMarvig, R.L., Johansen, H.K., Molin, S., Jelsbak, L., 2013. Genome Analysis of a Transmissible Lineage of Pseudomonas aeruginosa Reveals Pathoadaptive Mutations and Distinct Evolutionary Paths of Hypermutators. PLoS Genet. 9. https://doi.org/10.1371/journal.pgen.1003741Maurice, N.M., Bedi, B., Sadikot, R.T., 2018. Pseudomonas aeruginosa biofilms: Host response and clinical implications in lung infections. Am. J. Respir. Cell Mol. Biol. 58, 428–439. https://doi.org/10.1165/rcmb.2017-0321TRMavrodi, D. V, Bonsall, R.F., Delaney, S.M., Soule, M.J., Phillips, G., Thomashow, L.S., 2001. Functional Analysis of Genes for Biosynthesis of Pyocyanin and Phenazine-1- Carboxamide from Pseudomonas aeruginosa PAO1. J. Bacteriol. 183, 6454–6465. https://doi.org/10.1128/JB.183.21.6454Mazgaeen, L., Gurung, P., 2020. Recent advances in lipopolysaccharide recognition systems. Int. J. Mol. Sci. 21.McQuade, R., Stock, S.P., 2018. Secretion systems and secreted proteins in gramnegative entomopathogenic bacteria: Their roles in insect virulence and beyond. Insects 9. https://doi.org/10.3390/insects9020068Mohanty, S., Baliyarsingh, B., Kumar Nayak, S., 2020. Antimicrobial resistance in Pseudomonas aeruginosa: A concise review, in: Antimicrobial Resistance [Working Title]. IntechOpen. https://doi.org/http://dx.doi.org/10.5772/57353Montero, M.M., 2012. Pseudomonas aeruginosa multiresistente: aspectos epidemiológicos, clínicos y terapéuticosMulet, M., Lalucat, J., García-Valdés, E., 2010. DNA sequence-based analysis of the Pseudomonas species. Environ. Microbiol. 12, 1513–1530. https://doi.org/10.1111/j.1462-2920.2010.02181.xNanvazadeh, F., Khosravi, A.D., Zolfaghari, M.R., Parhizgari, N., 2013. Genotyping of Pseudomonas aeruginosa strains isolated from burn patients by RAPD-PCR. Burns 39, 1409–1413. https://doi.org/10.1016/j.burns.2013.03.008Navarro, F., Calvo, J., Cantón, R., Fernández-Cuenca, F., Mirelis, B., 2011. Detección fenotípica de mecanismos de resistencia en microorganismos gramnegativos. Enferm. Infecc. Microbiol. Clin. 29, 524–534. https://doi.org/10.1016/j.eimc.2011.03.011Nelson, J.M., Chiller, T.M., Powers, J.H., Angulo, F.J., 2007. Fluoroquinolone-resistant Campylobacter species and the withdrawal of fluoroquinolones from use in poultry: a public health success story. Clin. Infect. Dis. 44, 977–80. https://doi.org/10.1086/512369Nguyen, Y., Harvey, H., Sugiman-Marangos, S., Bell, S.D., Buensuceso, R.N.C., Junop, M.S., Burrows, L.L., 2015. Structural and functional studies of the Pseudomonas aeruginosa Minor Pilin, PilE. J. Biol. Chem. 290, 26856–26865. https://doi.org/10.1074/jbc.M115.683334O’Loughlin, C.T., Miller, L.C., Siryaporn, A., Drescher, K., Semmelhack, M.F., Bassler, B.L., 2013. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc. Natl. Acad. Sci. 110, 17981–17986. https://doi.org/10.1073/pnas.1316981110Ochoa Diaz, M.M., Gómez Camargo, D.E., Rodríguez Otálora, M.C., 2015. La prevalencia de patógenos en unidades de cuidados intensivos adultos del distrito de Cartagena de Indias [WWW Document]. Opinión & Salud. URL https://www.opinionysalud.com/la-prevalencia-de-patogenos-en-unidades-decuidados-intensivos-adultos-del-distrito-de-cartagena-de-indias/ (accessed 6.7.18).Ochoa, S.A., López-montiel, F., Escalona, G., Cruz-córdova, A., Dávila, L.B., Lópezmartínez, B., Jiménez-tapia, Y., Giono, S., Eslava, C., Hernández-castro, R., Xicohtencatl-cortes, J., 2013. Características patogénicas de cepas de Pseudomonas aeruginosa resistentes a carbapenémicos, asociadas con la formación de biopelículas. Bol. Med. Hosp. Infant. Mex. 70, 138–150.Orlandi, V.T., Bolognese, F., Chiodaroli, L., Tolker-Nielsen, T., Barbieri, P., 2015. Pigments influence the tolerance of pseudomonas aeruginosa PAO1 to photodynamically induced oxidative stress. Microbiology 161, 2298–2309. https://doi.org/10.1099/mic.0.000193Ostrup Jensen, P., Givskov, M., Bjarnsholt, T., Moser, C., 2010. The immune system vs. Pseudomonas aeruginosa biofilms. FEMS Immunol. Med. Microbiol. 59, 292–305. https://doi.org/10.1111/j.1574-695X.2010.00706.xOtero-Gonzalez, a. J., Magalhaes, B.S., Garcia-Villarino, M., Lopez-Abarrategui, C., Sousa, D. a., Dias, S.C., Franco, O.L., 2010. Antimicrobial peptides from marine invertebrates as a new frontier for microbial infection control. FASEB J. 24, 1320– 1334. https://doi.org/10.1096/fj.09-143388Pachori, P., Gothalwal, R., Gandhi, P., 2019. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis. 6, 109– 119. https://doi.org/10.1016/j.gendis.2019.04.001Pang, Z., Raudonis, R., Glick, B.R., Lin, T.J., Cheng, Z., 2019. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 37, 177–192. https://doi.org/10.1016/j.biotechadv.2018.11.013Pappa, O., Mandilara, G., Vatopoulos, A., Mavridou, A., 2013. Typing of Pseudomonas aeruginosa strains isolated from Greek water samples by three typing methods: Serotyping, Random Amplified Polymorphic DNA (RAPD) and Pulsed Field Gel Electrophoresis (PFGE). Water Sci. Technol. 67, 1380–1388. https://doi.org/10.2166/wst.2013.678Parkins, M.D., Somayaji, R., Waters, V.J., 2018. Epidemiology, biology, and impact of clonal Pseudomonas aeruginosa infections in Cystic Fibrosis. Clin. Microbiol. Rev. 31, 1–38. https://doi.org/10.1128/CMR.00019-18Paterson, D.L., Bonomo, R.A., 2012. Extended spectrum beta lactamases: A critical update. Clin. Microbiol. Rev. 18, 115–129. https://doi.org/10.2174/978160805292911201010115Pearson, J.P., Gray, K.M., Passador, L., Tucker, K.D., Eberhard, A., Iglewski, B.H., Greenberg, E.P., 1994. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc. Natl. Acad. Sci. U. S. A. 91, 197– 201. https://doi.org/10.1073/pnas.91.1.197Pearson, J.P., Passador, L., Iglewski, B.H., Greenberg, E.P., 1995. A second Nacylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. 92, 1490–1494. https://doi.org/10.1073/pnas.92.5.1490Pérez, M.J., Falqué, E., Domínguez, H., 2016. Antimicrobial action of compounds from marine seaweed. Mar. Drugs 14. https://doi.org/10.3390/md14030052Persat, A., Inclan, Y.F., Engel, J.N., Stone, H.A., Gitai, Z., 2015. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa. Proc. Diversidad genética de P. aeruginosa 115 Natl. Acad. Sci. U. S. A. 112, 7563–7568. https://doi.org/10.1073/pnas.1502025112Phoon, H.Y.P., Hussin, H., Hussain, B.M., Lim, S.Y., Woon, J.J., Er, Y.X., Thong, K.L., 2018. Distribution, genetic diversity and antimicrobial resistance of clinically important bacteria from the environment of a tertiary hospital in Malaysia. J. Glob. Antimicrob. Resist. 14, 132–140. https://doi.org/10.1016/j.jgar.2018.02.022Pirnay, J.-P., Bilocq, F., Pot, B., Cornelis, P., Zizi, M., Van Eldere, J., Deschaght, P., Vaneechoutte, M., Jennes, S., Pitt, T., De Vos, D., 2009. Pseudomonas aeruginosa population structure revisited. PLoS One 4, e7740. https://doi.org/10.1371/journal.pone.0007740Pirnay, J.P., De Vos, D., Mossialos, D., Vanderkelen, A., Cornelis, P., Zizi, M., 2002. Analysis of the Pseudomonas aeruginosa oprD gene from clinical and environmental isolates. Environ. Microbiol. 4, 872–882. https://doi.org/10.1046/j.1462- 2920.2002.00281.xProhaszka, L., Rozsnyai, T., 1990. Potentiation of the anticoccidial effect of salinomycin with dihydroquinoline-type antioxidants. Avian Pathol. 19, 15–21. https://doi.org/10.1080/03079459008418652Qaiyumi, S., 2007. Macro- and Microdilution Methods of Antimicrobial Susceptibility Testing, in: Schwalbe, R., Steele-Moore, L., Goodwin, A.C. (Eds.), Antimicrobial Susceptibility Testing Protocols. CRC Press, Boca Raton, FL, p. 430.Rabin, N., Zheng, Y., Opoku-Temeng, C., Du, Y., Bonsu, E., Sintim, H.O., 2015. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med. Chem. 7, 493–512. https://doi.org/10.4155/fmc.15.6Rada, A.M., Hernández-Gómez, C., Restrepo, E., Villegas, M.V., 2019. Distribución y caracterización molecular de betalactamasas en bacterias Gram negativas en Colombia, 2001-2016. Biomédica 39, 199–220. https://doi.org/10.7705/biomedica.v39i3.4351Rao, X., Huang, X., Zhou, Z., Lin, X., 2013. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinforma. Biomath. 3, 71–85.Rasamiravaka, T., Labtani, Q., Duez, P., El Jaziri, M., 2015. The formation of biofilms by Pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res. Int. 2015. https://doi.org/10.1155/2015/759348Rasko, D.A., Ernst, K.E., 2019. Genomic and phenotypic diversity among ten laboratory isolates of Pseudomonas aeruginosa PAO1. J. Bacteriol. 201, 1–18.Reyes, E.A.P., Bale, M.J., Cannon, W.H., Matsen, J.M., 1981. Identification of Pseudomonas aeruginosa by pyocyanin production on Tech agar. J. Clin. Microbiol. 13, 456–458. https://doi.org/10.1128/jcm.13.3.456-458.1981RO, B., BO, O., BY, M., PA, E., JC, I., M, T., 2017. Prevalence of Aac(6’)-Ib-Cr and Qepa genes among quinolone resistant uropathogens isolated from asymptomatic female students of a Northern University on Nigeria. Clin. Microbiol. Open Access 06. https://doi.org/10.4172/2327-5073.1000298Robinson, D.A., Thomas, J.C., Hanage, W.P., 2011. Population Structure of Pathogenic Bacteria, First Edit. ed, Genetics and Evolution of Infectious Diseases. Elsevier Inc. https://doi.org/10.1016/B978-0-12-384890-1.00003-0Rocha, A.J., De Oliveira Barsottini, M.R., Rocha, R.R., Laurindo, M.V., De Moraes, F.L.L., Da Rocha, S.L., 2019. Pseudomonas aeruginosa: Virulence factors and antibiotic resistance genes. Brazilian Arch. Biol. Technol. 62, 1–15. https://doi.org/10.1590/1678-4324-2019180503Rumbaugh, K.P., Sauer, K., 2020. Biofilm dispersion. Nat. Rev. Microbiol. 18, 571–586. https://doi.org/10.1038/s41579-020-0385-0Sawa, T., 2014. The molecular mechanism of acute lung injury caused by Pseudomonas aeruginosa: From bacterial pathogenesis to host response. J. Intensive Care 2, 1– 11. https://doi.org/10.1186/2052-0492-2-10Saxena, S., Banerjee, G., Garg, R., Singh, M., 2014. Comparative study of biofilm formation in pseudomonas aeruginosa isolates from patients of lower respiratory tract infection. J. Clin. Diagnostic Res. 8, 9–11. https://doi.org/10.7860/JCDR/2014/7808.4330Schwartz, D.C., Cantor, C.R., 1984. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37, 67–75. https://doi.org/10.1016/0092-8674(84)90301-5Sgro, G.G., Oka, G.U., Souza, D.P., Cenens, W., Bayer-Santos, E., Matsuyama, B.Y., Bueno, N.F., Dos Santos, T.R., Alvarez-Martinez, C.E., Salinas, R.K., Farah, C.S., 2019. Bacteria-killing type IV secretion systems. Front. Microbiol. 10, 1–20. https://doi.org/10.3389/fmicb.2019.01078Sheng, R., Yi, Y., Chen, T., 2020. Flagellation of Shewanella oneidensis Impacts Bacterial Fitness in Different Environments. Curr. Microbiol. 77, 1790–1799. https://doi.org/10.1007/s00284-020-01999-0Sherrard, L.J., Tunney, M.M., Elborn, J.S., 2014. Antimicrobial resistance in the respiratory microbiota of people with cystic fibrosis. Lancet 384, 703–713. https://doi.org/10.1016/S0140-6736(14)61137-5Singh, S.B., Barrett, J.F., 2006. Empirical antibacterial drug discovery—Foundation in natural products. Biochem. Pharmacol. 71, 1006–1015. https://doi.org/10.1016/j.bcp.2005.12.016Smith, L.C., Ghosh, J., Buckley, K.M., Clow, L.A., Dheilly, N.M., Haug, T., Henson, J.H., Li, C., Lun, C.M., Majeske, A.J., Matranga, V., Nair, S. V, Rast, J.P., Raftos, D.A., Roth, M., Sacchi, S., Schrankel, C.S., Stensvåg, K., 2010. Echinoderm immunity, in: Invertebtrate Inminity. Landes Biosceience and Springer Science, pp. 260–301.Soberón-Chavez, G., Lépine, F., Déziel, E., 2005. Production of rhamnolipids by Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 68, 718–725. https://doi.org/10.1007/s00253-005-0150-3Solh, A.A. El, Alhajhusain, A., 2009. Update on the treatment of Pseudomonas aeruginosa pneumonia. J. Antimicrob. Chemother. 64, 229–238. https://doi.org/10.1093/jac/dkp201Souza, R.C., Del Rosario Quispe Saji, G., Costa, M.O., Netto, D.S., Lima, N.C., Klein, C.C., Vasconcelos, A.T.R., Nicolás, M.F., 2012. AtlasT4SS: A curated database for type IV secretion systems. BMC Microbiol. 12, 1–11. https://doi.org/10.1186/1471- 2180-12-172Srikanth, L., Raghunandan, N., Srinivas, P., Reddy, G.A., 2010. Synthesis and Evaluation of Newer Quinoline Derivatives of Thiazolidinediones for their Antidiabetic Activity. Int. J. Pharma Bio Sci. 1, 120.Stewart, P.S., Costerton, J.W., 2001. Antibiotic resistance of bacteria in biofilms. Lancet 358, 135–8.Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Brinkman, F.S.L., Hufnagle, W.O., Kowalik, D.J., Lagrou, M., Garber, R.L., Goltry, L., Tolentino, E., Yuan, Y., Brody, L.L., Coulter, S.N., Folger, K.R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G.K., Wu, Z., Paulsen, I.T., Reizer, J., Saier, M.H., Hancock, R.E.W., Lory, S., Olson, M. V, 2000. Complete genome sequence of Pseudomonas aeruginosa PAO1 , an opportunistic pathogen. Nature 406, 959–964.Strateva, T., Yordanov, D., 2009. Pseudomonas aeruginosa: A phenomenon of bacterial resistance. J. Med. Microbiol. 58, 1133–1148. https://doi.org/10.1099/jmm.0.009142- 0Subedi, D., Vijay, A.K., Willcox, M., 2018. Overview of mechanisms of antibiotic resistance in Pseudomonas aeruginosa: an ocular perspective. Clin. Exp. Optom. 101, 162–171. https://doi.org/10.1111/cxo.12621Sun, E., Gill, E.E., Falsafi, R., Yeung, A., Liu, S., Hancock, R.E.W., 2018. Broad-spectrum adaptive antibiotic resistance associated with Pseudomonas aeruginosa mucindependent surfing motility. Antimicrob. Agents Chemother. 62, 1–12.Tacconelli, E., Magrini, N., Kahlmeter, G., Singh, N., 2017. Global priority list of antibioticresistant bacteria to guide research, discovery, and development of new antibiotics, World Health Organization. https://doi.org/10.1016/S1473-3099(09)70222-1Takase, H., Nitanai, H., Hoshino, K., Otani, T., 2000. Impact of siderophore production on Pseudomonas aeruginosa infections in immunosuppressed mice. Infect. Immun. 68, 1834–1839. https://doi.org/10.1128/IAI.68.4.1834-1839.2000Takaya, A., Tabuchi, F., Tsuchiya, H., Isogai, E., Yamamoto, T., 2008. Negative regulation of quorum-sensing systems in Pseudomonas aeruginosa by ATPdependent Lon protease. J. Bacteriol. 190, 4181–4188. https://doi.org/10.1128/JB.01873-07Tasneem, U., Yasin, N., Nisa, I., Shah, F., Rasheed, U., Momin, F., Zaman, S., Qasim, M., 2018. Biofilm producing bacteria: A serious threat to public health in developing countries. J. Food Sci. Nutr. 01. https://doi.org/10.35841/food-science.1.2.25-31Teixeira, B., Rodulfo, H., Carreño, N., Guzmán, M., Salazar, E., Dedonato, M., 2016. Aminoglycoside resistance genes in Pseudomonas aeruginosa isolates from cumana, Venezuela. Rev. Inst. Med. Trop. Sao Paulo 58, 1–5. https://doi.org/10.1590/S1678-9946201658013Tenover, F.C., Arbeit, R.D., Goering, R. V, 2012. How to select and interpret molecular strain typing methods for epidemiological studies of bacterial infections: A review for healthcare epidemiologists. Infect. Control Hosp. Epidemiol. 18, 426–439.Terada, L.S., Johansen, K.A., Nowbar, S., Vasil, A.I., Vasil, M.L., 1999. Pseudomonas aeruginosa hemolytic phospholipase C suppresses neutrophil respiratory burst activity. Infect. Immun. 67, 2371–2376. https://doi.org/10.1128/iai.67.5.2371- 2376.1999Tlili, I., Caria, G., Ouddane, B., Ghorbel-Abid, I., Ternane, R., Trabelsi-Ayadi, M., Net, S., 2016. Simultaneous detection of antibiotics and other drug residues in the dissolved and particulate phases of water by an off-line SPE combined with on-line SPE-LCMS/MS: Method development and application. Sci. Total Environ. 563–564, 424– 433. https://doi.org/10.1016/j.scitotenv.2016.04.101Trastoy Pena, R., Blasco, L., Ambroa, A., González-Pedrajo, B., Fernández-García, L., López, M., Bleriot, I., Bou, G., García-Contreras, R., Wood, T.K., Tomás, M., 2019. Relationship between quorum sensing and secretion systems. Front. Microbiol. 10. https://doi.org/10.3389/fmicb.2019.01100Trautmann, M., Bauer, C., Schumann, C., Hahn, P., Höher, M., Haller, M., Lepper, P.M., 2006. Common RAPD pattern of Pseudomonas aeruginosa from patients and tap water in a medical intensive care unit. Int. J. Hyg. Environ. Health 209, 325–331. https://doi.org/10.1016/j.ijheh.2006.04.001Tseng, T.T., Tyler, B.M., Setubal, J.C., 2009. Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol. 9, 1–9. https://doi.org/10.1186/1471-2180-9-S1-S2Vaez, H., Faghri, J., Esfahani, B.N., Moghim, S., Fazeli, H., Sedighi, M., Safaei, H.G., 2015. Antibiotic resistance patterns and genetic diversity in clinical isolates of Pseudomonas aeruginosa isolated from patients of a referral hospital, Isfahan, Iran. Jundishapur J. Microbiol. 8, 1–6. https://doi.org/10.5812/jjm.20130v2Valle Molinares, R.H., Romero Pelaez, R.D., Quigua Orozco, R.M., Vallejo L, W.A., Diaz Uribe, C.E., Arboleda Valencia, J.W., 2015. Antimicrobial activity of metallo tetra (4- Carboxyphenil) Phthalocyanine useful in photodynamic therapy. PharmacologyOnline 2, 131–137.Van Acker, H., Coenye, T., 2016. The role of efflux and physiological adaptation in biofilm tolerance and resistence. J. Biol. Chem. 291, 12565–12572. https://doi.org/10.1074/jbc.R115.707257Van Melderen, L., Aertsen, A., 2009. Regulation and quality control by Lon-dependent proteolysis. Res. Microbiol. 160, 645–651. https://doi.org/10.1016/j.resmic.2009.08.021Van Ulsen, P., Rahman, S. ur, Jong, W.S.P., Daleke-Schermerhorn, M.H., Luirink, J., 2014. Type V secretion: From biogenesis to biotechnology. Biochim. Biophys. Acta - Mol. Cell Res. 1843, 1592–1611. https://doi.org/10.1016/j.bbamcr.2013.11.006Vaz-Moreira, I., Nunes, O.C., Manaia, C.M., 2012. Diversity and antibiotic resistance in Pseudomonas spp. from drinking water. Sci. Total Environ. 426, 366–374. https://doi.org/10.1016/j.scitotenv.2012.03.046Version, D., Tract, R., 2017. Host-pathogen interactions in Pseudomonas aeruginosa invasive and respiratory tract infection.Villalobos Rodríguez, A.P., Díaz Ortega, M.H., Barrero Garzón, L.I., Rivera Vargas, S.M., Henríquez Iguarán, D.E., Villegas Botero, M. virginia, Robledo Restrepo, C.G., Leal Castro, A.L., 2011. Tendencias de los fenotipos de resistencia bacteriana en hospitales públicos y privados de alta complejidad de Colombia Andrea. Rev. Panam. Salud Pública 30, 627–633.Waters, V., Zlosnik, J.E.A., Yau, Y.C.W., Speert, D.P., Aaron, S.D., Guttman, D.S., 2012. Comparison of three typing methods for Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Eur. J. Clin. Microbiol. Infect. Dis. 31, 3341–3350. https://doi.org/10.1007/s10096-012-1701-zWei, Q., Ma, L.Z., 2013. Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int. J. Mol. Sci. 14, 20983–21005. https://doi.org/10.3390/ijms141020983Weiner, L.M., Webb, A.K., Limbago, B., Dudeck, M.A., Patel, J., Kallen, A.J., Edwards, J.R., Sievert, D.M., 2016. Antimicrobial-resistant pathogens associated with healthcare-associated infections: Summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2011 – 2014. Infect. Control Hosp. Epidemiol. 1–14. https://doi.org/10.1017/ice.2016.174Welsh, J., Mcclelland, M., 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18, 7213–7218.Whiteley, M., Bangera, M.G., Bumgarner, R.E., Parsek, M.R., Teitzel, G.M., Lory, S., Greenberg, E.P., 2001. Gene expression in Pseudomonas aeruginosa biofilms. Nature 413, 860–864. https://doi.org/10.1038/35101627Whitfield, C., Williams, D.M., Kelly, S.D., 2020. Lipopolysaccharide O-antigens-bacterial glycans made to measure. J. Biol. Chem. 295, 10593–10609. https://doi.org/10.1074/jbc.REV120.009402WHO, 2014. Antimicrobial resistance: Global Report on Surveillance. GenevaWood, T.E., Howard, S.A., Förster, A., Nolan, L.M., Manoli, E., Bullen, N.P., Yau, H.C.L., Hachani, A., Hayward, R.D., Whitney, J.C., Vollmer, W., Freemont, P.S., Filloux, A., 2019. The Pseudomonas aeruginosa T6SS delivers a periplasmic toxin that disrupts bacterial cell morphology. Cell Rep. 29, 187-201.e7. https://doi.org/10.1016/j.celrep.2019.08.094Wu, H., Moser, C., Wang, H.Z., Høiby, N., Song, Z.J., 2015. Strategies for combating bacterial biofilm infections. Int. J. Oral Sci. 7, 1–7. https://doi.org/10.1038/ijos.2014.65Yadegar, A., Sattari, M., Mozafari, N.A., Goudarzi, G.R., 2009. Prevalence of the genes encoding aminoglycoside-modifying enzymes and methicillin resistance among clinical isolates of Staphylococcus aureus in Tehran, Iran. Microb. Drug Resist. 15, 109–113. https://doi.org/10.1089/mdr.2009.0897Yang, L., 2009. Pseudomonas aeruginosa quorum-sensing - A factor in biofilm development , and an antipathogenic drug target.Yeung, A.T.Y., Bains, M., Hancock, R.E.W., 2011. The sensor kinase CbrA is a global regulator That modulates metabolism, virulence, and antibiotic resistance in Pseudomonas aeruginosa. J. Bacteriol. 193, 918–931. https://doi.org/10.1128/JB.00911-10Yildirim, ibrahim, 2011. Molecular methods for bacterial genotyping and analyzed gene regions. J. Microbiol. Infect. Dis. 1, 42–46. https://doi.org/10.5799/ahinjs.02.2011.01.0011Zemtsova, M.N., Zimichev, A. V., Trakhtenberg, P.L., Klimochkin, Y.N., Leonova, M. V., Balakhnin, S.M., Bormotov, N.I., Serova, O.A., Belanov, E.F., 2011. Synthesis and antiviral activity of several quinoline derivatives. Pharm. Chem. J. 45, 267–269. https://doi.org/10.1007/s11094-011-0613-zZhang, S., McCormack, F.X., Levesque, R.C., O’Toole, G.A., Lau, G.W., 2007. The flagellum of Pseudomonas aeruginosa is required for resistance to clearance by surfactant protein A. PLoS One 2. https://doi.org/10.1371/journal.pone.0000564ORIGINALTESIS DE GRADO PhD ROGER VALLE.pdfTESIS DE GRADO PhD ROGER VALLE.pdfapplication/pdf2418090https://repositorio.unicartagena.edu.co/bitstream/11227/15503/1/TESIS%20DE%20GRADO%20PhD%20ROGER%20VALLE.pdf46240084d4879cdf865b00b399f74cc2MD51open accessFORMATO CESION DE DERECHOS DE AUTOR, ROGER VALLE.pdfFORMATO CESION DE DERECHOS DE AUTOR, ROGER VALLE.pdfapplication/pdf461538https://repositorio.unicartagena.edu.co/bitstream/11227/15503/2/FORMATO%20CESION%20DE%20DERECHOS%20DE%20AUTOR%2c%20ROGER%20VALLE.pdf11a53c135d18bdbddb4c722c439e54c4MD52metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81756https://repositorio.unicartagena.edu.co/bitstream/11227/15503/3/license.txt7b38fcee9ba3bc8639fa56f350c81be3MD53open accessTEXTTESIS DE GRADO PhD ROGER VALLE.pdf.txtTESIS DE GRADO PhD ROGER VALLE.pdf.txtExtracted texttext/plain233312https://repositorio.unicartagena.edu.co/bitstream/11227/15503/4/TESIS%20DE%20GRADO%20PhD%20ROGER%20VALLE.pdf.txt3459e7a566cf7b4e301a36b4935b8981MD54open accessFORMATO CESION DE DERECHOS DE AUTOR, ROGER VALLE.pdf.txtFORMATO CESION DE DERECHOS DE AUTOR, ROGER VALLE.pdf.txtExtracted texttext/plain2878https://repositorio.unicartagena.edu.co/bitstream/11227/15503/6/FORMATO%20CESION%20DE%20DERECHOS%20DE%20AUTOR%2c%20ROGER%20VALLE.pdf.txt36ac653bb504479753b541a8e4aaa016MD56metadata only accessTHUMBNAILTESIS DE GRADO PhD ROGER VALLE.pdf.jpgTESIS DE GRADO PhD ROGER VALLE.pdf.jpgGenerated Thumbnailimage/jpeg6058https://repositorio.unicartagena.edu.co/bitstream/11227/15503/5/TESIS%20DE%20GRADO%20PhD%20ROGER%20VALLE.pdf.jpg1b4af938accacc3f1058cda682f760b3MD55open accessFORMATO CESION DE DERECHOS DE AUTOR, ROGER VALLE.pdf.jpgFORMATO CESION DE DERECHOS DE AUTOR, ROGER VALLE.pdf.jpgGenerated Thumbnailimage/jpeg15324https://repositorio.unicartagena.edu.co/bitstream/11227/15503/7/FORMATO%20CESION%20DE%20DERECHOS%20DE%20AUTOR%2c%20ROGER%20VALLE.pdf.jpg77345ab6df38344a6e03f19a6cefb1dfMD57metadata only access11227/15503oai:repositorio.unicartagena.edu.co:11227/155032023-03-13 15:54:25.695An error occurred on the license name.|||https://creativecommons.org/licenses/by-nc/4.0/open accessBiblioteca Digital Universidad de Cartagenabdigital@metabiblioteca.comCkFsIGZpcm1hciB5IHByZXNlbnRhciBlc3RhIGxpY2VuY2lhLCB1c3RlZCAoQVVUT1IgTyBBVVRPUkVTKSAgbyBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGVsIHByb3BpZXRhcmlvKFMpIGdhcmFudGl6YSBhICBsYSBVTklWRVJTSURBRCBERSBDQVJUQUdFTkEgZWwgZGVyZWNobyBleGNsdXNpdm8gZGUgcmVwcm9kdWNpciwgdHJhZHVjaXIgKGNvbW8gc2UgZGVmaW5lIG3DoXMgYWRlbGFudGUpIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byAoaW5jbHV5ZW5kbyBlbCByZXN1bWVuKSBlbiB0b2RvIGVsIG11bmRvICBlbiBmb3JtYSBpbXByZXNhIHkgZW4gZm9ybWF0byBlbGVjdHLDs25pY28geSBlbiBjdWFscXVpZXIgbWVkaW8sIGluY2x1eWVuZG8gYXVkaW8gbyB2aWRlby4KClVzdGVkIGFjZXB0YSBxdWUgbGEgVU5JVkVSU0lEQUQgREUgQ0FSVEFHRU5BICBwdWVkZSwgc2luIGNhbWJpYXIgZWwgY29udGVuaWRvIGNvbnZlcnRpcmxvLCBwcmVzZW50YXJsbyAgYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgbG9zIGZpbmVzIGRlIGNvbnNlcnZhY2nDs24uCgpVc3RlZCB0YW1iacOpbiBhY2VwdGEgcXVlIGxhIFVOSVZFUlNJREFEIERFIENBUlRBR0VOQSAgIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byBwYXJhIGZpbmVzIGRlIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24uCgpVc3RlZCBkZWNsYXJhIHF1ZSBlbCBkb2N1bWVudG8gZXMgdW4gdHJhYmFqbyBvcmlnaW5hbCB5ICBxdWUgdGllbmUgZWwgZGVyZWNobyBkZSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuICBUYW1iacOpbiByZXByZXNlbnRhbiAgbG8gbWVqb3IgZGUgc3UgY29ub2NpbWllbnRvIHkgbm8gaW5mcmluZ2VuICBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbmFkaWUuCgpTaSBlbCBkb2N1bWVudG8gY29udGllbmUgbWF0ZXJpYWxlcyBkZSBsb3MgcXVlIG5vIHRpZW5lIGxvcyAgZGVyZWNob3MgZGUgYXV0b3IsIHVzdGVkIGRlY2xhcmEgcXVlIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gc2luIHJlc3RyaWNjacOzbiBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zLCBkYSBhIGNvbmNlZGVyICBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgeSBxdWUgY29tbyBtYXRlcmlhbCBwcm9waWVkYWQgIGRlIHRlcmNlcm9zICBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyB5IHJlY29ub2NpZG8gZGVudHJvIGRlbCB0ZXh0byBvIGVsIGNvbnRlbmlkbyBkZSBsYSBwcmVzZW50YWNpw7NuLgoKU2kgbGEgcHJlc2VudGFjacOzbiBzZSBiYXNhIGVuICB0cmFiYWpvcyBRVUUgU0UgSEEgcGF0cm9jaW5hZG8gbyBhcG95YWRvIFBPUiBVTkEgQUdFTkNJQSBVIE9SR0FOSVpBQ0nDk04gUVVFIE5PIFNFQSBMQSBVTklWRVJTSURBRCBERSBDQVJUQUdFTkEsIE1BTklGSUVTVEEgUVVFIFRJRU5FIFFVRSBDVU1QTElSIGRlcmVjaG9zIGEgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHF1ZSBleGlnZW4gZXN0ZSBDb250cmF0byBvIGFjdWVyZG8uCgpEaWNlIHF1ZSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgc3Ugbm9tYnJlIChzKSBjb21vIGVsIGF1dG9yIChzKSBvIHByb3BpZXRhcmlvIChhKSBkZSBsb3MgZG9jdW1lbnRvIHkgbm8gaGFyw6EgbmluZ3VuYSBhbHRlcmFjacOzbiwgZXhlbnRvIGxhcyBwZXJtaXRpZGFzIGVuIGVzdGEgbGljZW5jaWEgcGFyYSBzdSBwcmVzZW50YWNpw7NuLgoKCg==