Toxic effects induced by nonylphenol (NP) and ethoxylated nonylphenol (NP-9) in Caenorhabditis elegans

Needs in the field of cleanliness and asepsis have evolved over time. Among the most widely used chemicals in the world today are emerging pollutants. One of these contaminants is nonylphenol ethoxylate (NP-9), also known as Tergitol, and its degradation product, nonylphenol (NP), active ingredients...

Full description

Autores:
De la Parra Guerra, Ana Cristina
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2020
Institución:
Universidad de Cartagena
Repositorio:
Repositorio Universidad de Cartagena
Idioma:
eng
OAI Identifier:
oai:repositorio.unicartagena.edu.co:11227/16525
Acceso en línea:
https://hdl.handle.net/11227/16525
http://dx.doi.org/10.57799/11227/11859
Palabra clave:
Toxicología ambiental
Contaminantes – Toxicología
Toxicology
Química toxicológica
Rights
openAccess
License
Derechos Reservados - Universidad de Cartagena, 2020
id UCART2_8eb8d9a01c69fd1da34c72ab6a6068db
oai_identifier_str oai:repositorio.unicartagena.edu.co:11227/16525
network_acronym_str UCART2
network_name_str Repositorio Universidad de Cartagena
repository_id_str
dc.title.eng.fl_str_mv Toxic effects induced by nonylphenol (NP) and ethoxylated nonylphenol (NP-9) in Caenorhabditis elegans
title Toxic effects induced by nonylphenol (NP) and ethoxylated nonylphenol (NP-9) in Caenorhabditis elegans
spellingShingle Toxic effects induced by nonylphenol (NP) and ethoxylated nonylphenol (NP-9) in Caenorhabditis elegans
Toxicología ambiental
Contaminantes – Toxicología
Toxicology
Química toxicológica
title_short Toxic effects induced by nonylphenol (NP) and ethoxylated nonylphenol (NP-9) in Caenorhabditis elegans
title_full Toxic effects induced by nonylphenol (NP) and ethoxylated nonylphenol (NP-9) in Caenorhabditis elegans
title_fullStr Toxic effects induced by nonylphenol (NP) and ethoxylated nonylphenol (NP-9) in Caenorhabditis elegans
title_full_unstemmed Toxic effects induced by nonylphenol (NP) and ethoxylated nonylphenol (NP-9) in Caenorhabditis elegans
title_sort Toxic effects induced by nonylphenol (NP) and ethoxylated nonylphenol (NP-9) in Caenorhabditis elegans
dc.creator.fl_str_mv De la Parra Guerra, Ana Cristina
dc.contributor.advisor.none.fl_str_mv Olivero Verbel, Jesús
dc.contributor.author.none.fl_str_mv De la Parra Guerra, Ana Cristina
dc.subject.armarc.none.fl_str_mv Toxicología ambiental
Contaminantes – Toxicología
Toxicology
Química toxicológica
topic Toxicología ambiental
Contaminantes – Toxicología
Toxicology
Química toxicológica
description Needs in the field of cleanliness and asepsis have evolved over time. Among the most widely used chemicals in the world today are emerging pollutants. One of these contaminants is nonylphenol ethoxylate (NP-9), also known as Tergitol, and its degradation product, nonylphenol (NP), active ingredients present in nonionic surfactants used as herbicides, cosmetics, paints, plastics, disinfectants and detergents. These chemicals and their metabolites are commonly found in environmental matrices. The objectives of this research work were: 1. To assess the toxicity of NP and NP-9 in C. elegans. 2. To determine the gene expression profile for different toxicity mechanisms in C. elegans. 3. To determine the intergenerational effects caused by exposure to NP-9 in C. elegans. 4. To identify possible intergenerational neurotoxic effects from exposure to NP-9 in C. elegans. Wild-type L4 larvae were exposed to different concentrations of the surfactants to measure functional endpoints like; lethality, length, width, locomotion and lifespan. Transgenic green fluorescent protein (GFP) strains were employed to estimate changes in relative gene expression and promote the activation of toxicity signaling pathways related to mtl-2, gst-1, gpx-4, gpx-6, sod-4, hsp-70 and hsp-4. Additionally, stress response was also assessed using a daf-16::GFP transgenic strain. RT-qPCR was utilized to measure mRNA expression for neurotoxicity-related genes (unc-30, unc-25, dop-3, dat-1, mgl-1, and eat-4). In the results of the first aim, lethality was concentration dependent, with 24-h LC50 of 122 μM and 3215 μM for NP and NP-9, respectively. Both compounds inhibited nematode growth, although NP was more potent; and at non-lethal concentrations, nematode locomotion was reduced. The increase in the expression of tested genes was significant at 10 μM for NP-9 and 0.001 μM for NP, implying a likely role for the activation of oxidative and cellular stress, as well as metabolism pathways. Except for glutathione peroxidase, which has a bimodal concentration-response curve for NP, typical of endocrine disruption, the other curves for this xenobiotic in the strains evaluated were almost flat for most concentrations, until reaching 50–100 μM, where the effect peaked. NP and NP-9 induced the and nuclear translocation of DAF-16, suggesting that transcription of stress-response genes may be mediated by the insulin/IGF-1 signaling pathway. In contrast, NP-9 induced a concentrationdependent response for the sod-4 hsp-4 mutants, with higher fluorescence induction than NP at similar levels. For the second aim, data were obtained from parent worms (P0) and the first generation (F1). Lethality of the nematode was concentration-dependent, with 48 h-LC50 values of 3215 and 1983 μM in P0 and F1, respectively. Non-lethal concentrations of NP-9 reduced locomotion. Lifespan was also decreased by the xenobiotic, but the negative effect was greater in P0 than in F1. Non-monotonic concentrationresponse curves were observed for body length and width in both generations. The gene expression profile in P0 was different from that registered in F1, although the expression of sod-4, hsp-70, gpx-6 and mtl-2 increased with the surfactant concentration in both generations. None of the tested genes followed a classical concentration-neurotoxicity relationship. In P0, dopamine presented an Inverted-U curve, while GABA and glutamate displayed a bimodal type. However, in F1, inverted U-shaped curves were revealed for these genes. In short, NP and NP-9 affect the physiology of C. elegans and modulate gene expression related to reactive oxygen species (ROS) production, cellular stress and metabolism of xenobiotics. Additionally, the NP-9 isomer induced intergenerational responses in nematode through mechanisms involving ROS, and alterations of the GABA, glutamate, and dopamine pathways.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2023-06-20T16:56:38Z
dc.date.available.none.fl_str_mv 2023-06-20T16:56:38Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11227/16525
http://dx.doi.org/10.57799/11227/11859
url https://hdl.handle.net/11227/16525
http://dx.doi.org/10.57799/11227/11859
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad de Cartagena, 2020
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad de Cartagena, 2020
https://creativecommons.org/licenses/by-nc/4.0/
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Cartagena
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Farmacéuticas
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.program.spa.fl_str_mv Doctorado en Toxicología Ambiental
institution Universidad de Cartagena
bitstream.url.fl_str_mv https://dspace7-unicartagena.metabuscador.org/bitstreams/037194a1-477d-47df-bfbd-9ff3e5530ded/download
https://dspace7-unicartagena.metabuscador.org/bitstreams/07bf6893-6646-4469-84e0-112916e37226/download
https://dspace7-unicartagena.metabuscador.org/bitstreams/5215c1fa-9270-4ac5-8022-4120d43b3fab/download
https://dspace7-unicartagena.metabuscador.org/bitstreams/ed337729-d60e-475e-9f04-cead0eaedb13/download
https://dspace7-unicartagena.metabuscador.org/bitstreams/a801361e-3378-42fb-b182-9dfa4a9e6e3d/download
https://dspace7-unicartagena.metabuscador.org/bitstreams/d66c899c-9fd3-4ea6-8120-53380141610b/download
https://dspace7-unicartagena.metabuscador.org/bitstreams/3e1ea8a7-1e27-4cdd-9af3-a5b92353067a/download
bitstream.checksum.fl_str_mv c0dba6e9613e2ed31e472e242a8bf793
c41ea1d6465047cdcbe53074ceede677
7b38fcee9ba3bc8639fa56f350c81be3
aa7b55dbfcfc0fb4174fa821ab86243f
8feaa01932377d91e0d28247fdc04a72
d3f8199ded252633219d9975cebdd76f
b900e292fa967407321ce7dd317bd860
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital Universidad de Cartagena
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1818153083034664960
spelling Olivero Verbel, JesúsDe la Parra Guerra, Ana Cristina2023-06-20T16:56:38Z2023-06-20T16:56:38Z2020https://hdl.handle.net/11227/16525http://dx.doi.org/10.57799/11227/11859Needs in the field of cleanliness and asepsis have evolved over time. Among the most widely used chemicals in the world today are emerging pollutants. One of these contaminants is nonylphenol ethoxylate (NP-9), also known as Tergitol, and its degradation product, nonylphenol (NP), active ingredients present in nonionic surfactants used as herbicides, cosmetics, paints, plastics, disinfectants and detergents. These chemicals and their metabolites are commonly found in environmental matrices. The objectives of this research work were: 1. To assess the toxicity of NP and NP-9 in C. elegans. 2. To determine the gene expression profile for different toxicity mechanisms in C. elegans. 3. To determine the intergenerational effects caused by exposure to NP-9 in C. elegans. 4. To identify possible intergenerational neurotoxic effects from exposure to NP-9 in C. elegans. Wild-type L4 larvae were exposed to different concentrations of the surfactants to measure functional endpoints like; lethality, length, width, locomotion and lifespan. Transgenic green fluorescent protein (GFP) strains were employed to estimate changes in relative gene expression and promote the activation of toxicity signaling pathways related to mtl-2, gst-1, gpx-4, gpx-6, sod-4, hsp-70 and hsp-4. Additionally, stress response was also assessed using a daf-16::GFP transgenic strain. RT-qPCR was utilized to measure mRNA expression for neurotoxicity-related genes (unc-30, unc-25, dop-3, dat-1, mgl-1, and eat-4). In the results of the first aim, lethality was concentration dependent, with 24-h LC50 of 122 μM and 3215 μM for NP and NP-9, respectively. Both compounds inhibited nematode growth, although NP was more potent; and at non-lethal concentrations, nematode locomotion was reduced. The increase in the expression of tested genes was significant at 10 μM for NP-9 and 0.001 μM for NP, implying a likely role for the activation of oxidative and cellular stress, as well as metabolism pathways. Except for glutathione peroxidase, which has a bimodal concentration-response curve for NP, typical of endocrine disruption, the other curves for this xenobiotic in the strains evaluated were almost flat for most concentrations, until reaching 50–100 μM, where the effect peaked. NP and NP-9 induced the and nuclear translocation of DAF-16, suggesting that transcription of stress-response genes may be mediated by the insulin/IGF-1 signaling pathway. In contrast, NP-9 induced a concentrationdependent response for the sod-4 hsp-4 mutants, with higher fluorescence induction than NP at similar levels. For the second aim, data were obtained from parent worms (P0) and the first generation (F1). Lethality of the nematode was concentration-dependent, with 48 h-LC50 values of 3215 and 1983 μM in P0 and F1, respectively. Non-lethal concentrations of NP-9 reduced locomotion. Lifespan was also decreased by the xenobiotic, but the negative effect was greater in P0 than in F1. Non-monotonic concentrationresponse curves were observed for body length and width in both generations. The gene expression profile in P0 was different from that registered in F1, although the expression of sod-4, hsp-70, gpx-6 and mtl-2 increased with the surfactant concentration in both generations. None of the tested genes followed a classical concentration-neurotoxicity relationship. In P0, dopamine presented an Inverted-U curve, while GABA and glutamate displayed a bimodal type. However, in F1, inverted U-shaped curves were revealed for these genes. In short, NP and NP-9 affect the physiology of C. elegans and modulate gene expression related to reactive oxygen species (ROS) production, cellular stress and metabolism of xenobiotics. Additionally, the NP-9 isomer induced intergenerational responses in nematode through mechanisms involving ROS, and alterations of the GABA, glutamate, and dopamine pathways.DoctoradoDoctor(a) en Toxicología Ambientalapplication/pdfengUniversidad de CartagenaFacultad de Ciencias FarmacéuticasCartagena de IndiasDoctorado en Toxicología AmbientalDerechos Reservados - Universidad de Cartagena, 2020https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)http://purl.org/coar/access_right/c_abf2Toxic effects induced by nonylphenol (NP) and ethoxylated nonylphenol (NP-9) in Caenorhabditis elegansTrabajo de grado - Doctoradoinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06Textinfo:eu-repo/semantics/doctoralThesishttps://purl.org/redcol/resource_type/TDhttp://purl.org/coar/version/c_970fb48d4fbd8a85Toxicología ambientalContaminantes – ToxicologíaToxicologyQuímica toxicológicaAcevedo, R., Sabater, C., Olivero-Verbel, J. (2018). Ecotoxicological assessment of perchlorate using in vitro and in vivo assays. Environmental Science and Pollution Research 25(14), 13697-13708. https://doi.org/10.1007/s11356- 018-1565-6Acosta-Coley, I., Duran-Izquierdo, M., Rodriguez-Cavallo, E., Mercado-Camargo, J., Mendez-Cuadro, D., Olivero-Verbel, J. (2019). Quantification of microplastics along the Caribbean Coastline of Colombia: Pollution profile and biological effects on Caenorhabditis elegans. Marine Pollution Bulletin 146, 574-583. https://doi.org/10.1016/j.marpolbul.2019.06.084.Ademollo, N., Ferrara, F., Delise, M., Fabietti, F., Funari, E. (2008). Nonylphenol and octylphenol in human breast milk. Environment Internactional 34 (7), 984–987. https://doi.org/10.1016/j.envint.2008.03.001Amrit, F.R.G., Ratnappan, R., Keith, S.A., Ghazi, A. (2014). The C. elegans lifespan assay toolkit. Methods 68 (3), 465-475. https://doi.org/10.1016/j.ymeth.2014.04.002Anbalagan, C., Lafayette, I., Antoniou-Kourounioti, M., Gutierrez, C., Martin, J.R., Chowdhuri, D.K., De Pomerai, D.I. (2013) Use of transgenic GFP reporter strains of the nematode Caenorhabditis elegans to investigate the patterns of stress responses induced by pesticides and by organic extracts from agricultural soils. Ecotoxicology 22, 72–85. https://doi.org/10.1007/s10646-012-1004-2Anderson, G.L., Boyd, W.A., Williams, P. (2001). Assessment of sublethal endpoints for toxicity testing with the nematode Caenorhabditis elegans. Environmental Toxicology and Chemistry 20(4), 833-838. https://doi.org/10.1002/etc.5620200419Anderson, G.L., Cole, R.D., Williams, P.L. (2004). Assessing behavioral toxicity with Caenorhabditis elegans. Environmental Toxicology and Chemistry: An International Journal, 23(5), 1235-1240Andrade, A.L., Pacheco, A., Da cunha, C.L., Mendes, A.S. (2006). Disruptores endocrinos: potencial problema para la salud pública y medio ambiente. Biomédica 17(2), 146-150.Ali, S., Sharda Rajini, P. (2012). Elicitation of dopaminergic features of Parkinson's disease in C. elegans by monocrotophos, an organophosphorous insecticide. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 11(8), 993- 1000.Aly, H.A., Domènech, Ò., Banjar, Z.M. (2012). Effect of nonylphenol on male reproduction: analysis of rat epididymal biochemical markers and antioxidant defense enzymes. Toxicology and applied pharmacology, 261(2), 134-141.Araujo, F.G., Bauerfeldt, G.F., Cid, Y.P. (2018). Nonylphenol: Properties, legislation, toxicity and determination. Anais da Academia Brasileira de Ciências (AHEAD), 0-0. ISSN 1678-2690. http://dx.doi.org/10.1590/0001- 3765201720170023Aronzon, C.M. (2013). Evaluación de la toxicidad de los contaminantes Cobre, Nonilfenol y Diazinón sobre embriones y larvas de Rhinella (Bufo) arenarum. Doctoral disertación, Universidad de Buenos Aires. Argentina. Pág. 1-250.Arditsoglou, A., Voutsa, D. (2008). Determination of phenolic and steroid endocrine disrupting compounds in environmental matrices. Environmental science and pollution research 15(3, 228-236. https://doi.org/10.1065/espr2007.12.45Arnold, M.C., Badireddy, A.R., Wiesner, M.R., Di Giulio, R.T., Meyer, J.N. (2013). Cerium oxide nanoparticles are more toxic than equimolar bulk cerium oxide in Caenorhabditis elegans. Archives of Environmental Contamination and Toxicology 65(2), 224-233. https://doi.org/10.1007/s00244-013-9905-5Atienzar, F.A., Billinghurst, Z., Depledge, M.H. (2002). 4-nNonylphenol and 17-β estradiol may induce common DNA effects in developing barnacle larvae. Environmental pollution, 120(3), 735-738.Avila, D.S., Benedetto, A., Au, C., Bornhorst, J., Aschner, M. (2016). Involvement of heat shock proteins on Mn-induced toxicity in Caenorhabditis elegans. BMC. Pharmacology and Toxicology 17 (1), 54. 10.1186/s40360-016-0097-2Ayuda-Durán, B., González-Manzano, S., Miranda-Vizuete, A., Dueñas, M., Santos-Buelga, C., González-Paramás, A.M. (2019). Epicatechin modulates stress-resistance in C. elegans via insulin/IGF-1 signaling pathway. PLoS One 14(1), e0199483. Doi: 10.1371/journal.pone.0199483Back, P., Braeckman, B.P., Matthijssens, F. (2012). ROS in aging Caenorhabditis elegans: damage or signaling?. Oxidative Medicine and Cellular Longevity 2012. Doi:10.1155/2012/608478Bakke, D. (2003). Human and ecological risk assessment of nonylphenol polyethoxylate-based (NPE) surfactants in Forest Service herbicide applications. USDA Forest Service Pacific Southwest Region, Vallejo (USA)Bal, N., Kumar, A., Nugegoda, D. (2017). Assessing multigenerational effects of prednisolone to the freshwater snail, Physa acuta (Gastropoda: Physidae). J. Hazardous Materials 339, 281-291. https://doi.org/10.1016/j.jhazmat.2017.06.024Barceló, D. (2003). Trends in Analytical Chemistry, 22, xiv.Baraldo, G., Etemad, S., Weiss, A.K., Jansen-Dürr, P., Mack, H.I. (2019). Modulation of serotonin signaling by the putative oxaloacetate decarboxylase FAHD-1 in Caenorhabditis elegans. PloS One 14 (8), 10.1371/journal.pone.0220434Baumeister, R., Schaffitzel, E., Hertweck, M. (2006). Endocrine signaling in Caenorhabditis elegans controls stress response and longevity. Journal of Endocrinology 190(2), 191-202. https://doi.org/10.1677/joe.1.06856Bian, T., Zhu, X., Guo, J., Zhuang, Z., Cai, Z., Zhao, X. (2018). Toxic effect of the novel chiral insecticide IPP and its biodegradation intermediate in nematode Caenorhabditis elegans. Ecotoxicology and Environmental Safety 164, 604-610. https://doi.org/10.1016/j.ecoenv.2018.08.059PublicationORIGINAL2020_TESIS DE GRADO_ANA C. DE LA PARRA GUERRA.pdf2020_TESIS DE GRADO_ANA C. DE LA PARRA GUERRA.pdfapplication/pdf4219267https://dspace7-unicartagena.metabuscador.org/bitstreams/037194a1-477d-47df-bfbd-9ff3e5530ded/downloadc0dba6e9613e2ed31e472e242a8bf793MD51FORMATO CESION DE DERECHOS DE AUTOR_GRADO _Ana De la Parra Guerra.pdfFORMATO CESION DE DERECHOS DE AUTOR_GRADO _Ana De la Parra Guerra.pdfapplication/pdf115102https://dspace7-unicartagena.metabuscador.org/bitstreams/07bf6893-6646-4469-84e0-112916e37226/downloadc41ea1d6465047cdcbe53074ceede677MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81756https://dspace7-unicartagena.metabuscador.org/bitstreams/5215c1fa-9270-4ac5-8022-4120d43b3fab/download7b38fcee9ba3bc8639fa56f350c81be3MD53TEXT2020_TESIS DE GRADO_ANA C. DE LA PARRA GUERRA.pdf.txt2020_TESIS DE GRADO_ANA C. DE LA PARRA GUERRA.pdf.txtExtracted texttext/plain189018https://dspace7-unicartagena.metabuscador.org/bitstreams/ed337729-d60e-475e-9f04-cead0eaedb13/downloadaa7b55dbfcfc0fb4174fa821ab86243fMD54FORMATO CESION DE DERECHOS DE AUTOR_GRADO _Ana De la Parra Guerra.pdf.txtFORMATO CESION DE DERECHOS DE AUTOR_GRADO _Ana De la Parra Guerra.pdf.txtExtracted texttext/plain2831https://dspace7-unicartagena.metabuscador.org/bitstreams/a801361e-3378-42fb-b182-9dfa4a9e6e3d/download8feaa01932377d91e0d28247fdc04a72MD56THUMBNAIL2020_TESIS DE GRADO_ANA C. DE LA PARRA GUERRA.pdf.jpg2020_TESIS DE GRADO_ANA C. DE LA PARRA GUERRA.pdf.jpgGenerated Thumbnailimage/jpeg12939https://dspace7-unicartagena.metabuscador.org/bitstreams/d66c899c-9fd3-4ea6-8120-53380141610b/downloadd3f8199ded252633219d9975cebdd76fMD55FORMATO CESION DE DERECHOS DE AUTOR_GRADO _Ana De la Parra Guerra.pdf.jpgFORMATO CESION DE DERECHOS DE AUTOR_GRADO _Ana De la Parra Guerra.pdf.jpgGenerated Thumbnailimage/jpeg16022https://dspace7-unicartagena.metabuscador.org/bitstreams/3e1ea8a7-1e27-4cdd-9af3-a5b92353067a/downloadb900e292fa967407321ce7dd317bd860MD5711227/16525oai:dspace7-unicartagena.metabuscador.org:11227/165252024-08-28 17:07:30.519https://creativecommons.org/licenses/by-nc/4.0/Derechos Reservados - Universidad de Cartagena, 2020open.accesshttps://dspace7-unicartagena.metabuscador.orgBiblioteca Digital Universidad de Cartagenabdigital@metabiblioteca.comCkFsIGZpcm1hciB5IHByZXNlbnRhciBlc3RhIGxpY2VuY2lhLCB1c3RlZCAoQVVUT1IgTyBBVVRPUkVTKSAgbyBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGVsIHByb3BpZXRhcmlvKFMpIGdhcmFudGl6YSBhICBsYSBVTklWRVJTSURBRCBERSBDQVJUQUdFTkEgZWwgZGVyZWNobyBleGNsdXNpdm8gZGUgcmVwcm9kdWNpciwgdHJhZHVjaXIgKGNvbW8gc2UgZGVmaW5lIG3DoXMgYWRlbGFudGUpIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byAoaW5jbHV5ZW5kbyBlbCByZXN1bWVuKSBlbiB0b2RvIGVsIG11bmRvICBlbiBmb3JtYSBpbXByZXNhIHkgZW4gZm9ybWF0byBlbGVjdHLDs25pY28geSBlbiBjdWFscXVpZXIgbWVkaW8sIGluY2x1eWVuZG8gYXVkaW8gbyB2aWRlby4KClVzdGVkIGFjZXB0YSBxdWUgbGEgVU5JVkVSU0lEQUQgREUgQ0FSVEFHRU5BICBwdWVkZSwgc2luIGNhbWJpYXIgZWwgY29udGVuaWRvIGNvbnZlcnRpcmxvLCBwcmVzZW50YXJsbyAgYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgbG9zIGZpbmVzIGRlIGNvbnNlcnZhY2nDs24uCgpVc3RlZCB0YW1iacOpbiBhY2VwdGEgcXVlIGxhIFVOSVZFUlNJREFEIERFIENBUlRBR0VOQSAgIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byBwYXJhIGZpbmVzIGRlIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24uCgpVc3RlZCBkZWNsYXJhIHF1ZSBlbCBkb2N1bWVudG8gZXMgdW4gdHJhYmFqbyBvcmlnaW5hbCB5ICBxdWUgdGllbmUgZWwgZGVyZWNobyBkZSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuICBUYW1iacOpbiByZXByZXNlbnRhbiAgbG8gbWVqb3IgZGUgc3UgY29ub2NpbWllbnRvIHkgbm8gaW5mcmluZ2VuICBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbmFkaWUuCgpTaSBlbCBkb2N1bWVudG8gY29udGllbmUgbWF0ZXJpYWxlcyBkZSBsb3MgcXVlIG5vIHRpZW5lIGxvcyAgZGVyZWNob3MgZGUgYXV0b3IsIHVzdGVkIGRlY2xhcmEgcXVlIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gc2luIHJlc3RyaWNjacOzbiBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zLCBkYSBhIGNvbmNlZGVyICBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgeSBxdWUgY29tbyBtYXRlcmlhbCBwcm9waWVkYWQgIGRlIHRlcmNlcm9zICBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyB5IHJlY29ub2NpZG8gZGVudHJvIGRlbCB0ZXh0byBvIGVsIGNvbnRlbmlkbyBkZSBsYSBwcmVzZW50YWNpw7NuLgoKU2kgbGEgcHJlc2VudGFjacOzbiBzZSBiYXNhIGVuICB0cmFiYWpvcyBRVUUgU0UgSEEgcGF0cm9jaW5hZG8gbyBhcG95YWRvIFBPUiBVTkEgQUdFTkNJQSBVIE9SR0FOSVpBQ0nDk04gUVVFIE5PIFNFQSBMQSBVTklWRVJTSURBRCBERSBDQVJUQUdFTkEsIE1BTklGSUVTVEEgUVVFIFRJRU5FIFFVRSBDVU1QTElSIGRlcmVjaG9zIGEgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHF1ZSBleGlnZW4gZXN0ZSBDb250cmF0byBvIGFjdWVyZG8uCgpEaWNlIHF1ZSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgc3Ugbm9tYnJlIChzKSBjb21vIGVsIGF1dG9yIChzKSBvIHByb3BpZXRhcmlvIChhKSBkZSBsb3MgZG9jdW1lbnRvIHkgbm8gaGFyw6EgbmluZ3VuYSBhbHRlcmFjacOzbiwgZXhlbnRvIGxhcyBwZXJtaXRpZGFzIGVuIGVzdGEgbGljZW5jaWEgcGFyYSBzdSBwcmVzZW50YWNpw7NuLgoKCg==