Descelularización y caracterización in vitro de matrices de intestino delgado porcino para el tratamiento de heridas complejas

Introducción: las lesiones cutáneas complicadas se han convertido en un problema de salud mundial, siendo difíciles de tratar debido al limitado proceso de curación del cuerpo. Se han realizado estudios para mejorar los tratamientos tradicionales que tienen muchas desventajas. La investigación en ci...

Full description

Autores:
Ruíz Soto, Juan Pablo
Galvis Escobar, Sara María
Rego Londoño, Maria Antonia
Molina Sierra, Juan David
Pineda Molina, Catalina
Tipo de recurso:
Article of journal
Fecha de publicación:
2023
Institución:
Universidad de Cartagena
Repositorio:
Repositorio Universidad de Cartagena
Idioma:
eng
OAI Identifier:
oai:repositorio.unicartagena.edu.co:11227/17952
Acceso en línea:
https://hdl.handle.net/11227/17952
https://doi.org/10.32997/rcb-3023-4135
Palabra clave:
bioactive scaffold
decellularization
porcine small intestine
skin wound
tissue engineering
matriz bioactiva
descelularización
intestino delgado porcino
herida de piel
ingeniería de tejidos
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0
id UCART2_7abc74c1a8764b39191cc68dc9d1644c
oai_identifier_str oai:repositorio.unicartagena.edu.co:11227/17952
network_acronym_str UCART2
network_name_str Repositorio Universidad de Cartagena
repository_id_str
dc.title.spa.fl_str_mv Descelularización y caracterización in vitro de matrices de intestino delgado porcino para el tratamiento de heridas complejas
dc.title.translated.eng.fl_str_mv Decellularization and in vitro characterization of porcine small intestine scaffolds for complex wound treatments
title Descelularización y caracterización in vitro de matrices de intestino delgado porcino para el tratamiento de heridas complejas
spellingShingle Descelularización y caracterización in vitro de matrices de intestino delgado porcino para el tratamiento de heridas complejas
bioactive scaffold
decellularization
porcine small intestine
skin wound
tissue engineering
matriz bioactiva
descelularización
intestino delgado porcino
herida de piel
ingeniería de tejidos
title_short Descelularización y caracterización in vitro de matrices de intestino delgado porcino para el tratamiento de heridas complejas
title_full Descelularización y caracterización in vitro de matrices de intestino delgado porcino para el tratamiento de heridas complejas
title_fullStr Descelularización y caracterización in vitro de matrices de intestino delgado porcino para el tratamiento de heridas complejas
title_full_unstemmed Descelularización y caracterización in vitro de matrices de intestino delgado porcino para el tratamiento de heridas complejas
title_sort Descelularización y caracterización in vitro de matrices de intestino delgado porcino para el tratamiento de heridas complejas
dc.creator.fl_str_mv Ruíz Soto, Juan Pablo
Galvis Escobar, Sara María
Rego Londoño, Maria Antonia
Molina Sierra, Juan David
Pineda Molina, Catalina
dc.contributor.author.spa.fl_str_mv Ruíz Soto, Juan Pablo
Galvis Escobar, Sara María
Rego Londoño, Maria Antonia
Molina Sierra, Juan David
Pineda Molina, Catalina
dc.subject.eng.fl_str_mv bioactive scaffold
decellularization
porcine small intestine
skin wound
tissue engineering
topic bioactive scaffold
decellularization
porcine small intestine
skin wound
tissue engineering
matriz bioactiva
descelularización
intestino delgado porcino
herida de piel
ingeniería de tejidos
dc.subject.spa.fl_str_mv matriz bioactiva
descelularización
intestino delgado porcino
herida de piel
ingeniería de tejidos
description Introducción: las lesiones cutáneas complicadas se han convertido en un problema de salud mundial, siendo difíciles de tratar debido al limitado proceso de curación del cuerpo. Se han realizado estudios para mejorar los tratamientos tradicionales que tienen muchas desventajas. La investigación en cicatrización de heridas apunta a opciones con ingeniería de tejidos, como las matrices descelularizadas, con buenas propiedades de cicatrización y biocompatibilidad. Objetivo: obtener y caracterizar las propiedades de una matriz biológica descelularizada derivada del intestino delgado de animales. Métodos: el intestino delgado porcino se preparó y descelularizó utilizando cuatro métodos diferentes: Triton X-100 (TX-100), dodecil sulfato de sodio (SDS) y desoxicolato de sodio (SDC) para uno o dos ciclos de 6 horas o 24 horas, y ácido peracético para un ciclo de 2 horas. El ADN remanente se cuantificó con Nanodrop y electroforesis. Se realizaron tinciones histológicas y microscopía electrónica de barrido (SEM) para evaluar la estructura e integridad de la superficie. Se realizaron ensayos mecánicos para medir la resistencia de las matrices. Finalmente, se realizaron ensayos de degradabilidad con diferentes soluciones. Resultados: no se encontraron diferencias entre los protocolos de descelularización con respecto al ADN remanente, siendo más eficientes los protocolos de un ciclo de seis horas. Con el menor contenido de ADN remanente y una mejor preservación de la estructura, TX-100 podría considerarse como el mejor protocolo. No se encontraron diferencias estadísticas entre los protocolos y el tejido nativo durante el análisis mecánico. Los ensayos de biodegradabilidad mostraron las propiedades de degradabilidad esperadas de la matriz producida. Conclusión: se lograron resultados prometedores para obtener matrices biológicas descelularizadas que podrían servir como tratamiento para heridas cutáneas complicadas. Se deben realizar más estudios in vitro y moleculares a futuro para caracterizar aún más estas matrices.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-15T00:00:00Z
2024-09-05T20:34:53Z
dc.date.available.none.fl_str_mv 2023-07-15T00:00:00Z
2024-09-05T20:34:53Z
dc.date.issued.none.fl_str_mv 2023-07-15
dc.type.spa.fl_str_mv Artículo de revista
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.eng.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2215-7840
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11227/17952
dc.identifier.doi.none.fl_str_mv 10.32997/rcb-3023-4135
dc.identifier.eissn.none.fl_str_mv 2389-7252
dc.identifier.url.none.fl_str_mv https://doi.org/10.32997/rcb-3023-4135
identifier_str_mv 2215-7840
10.32997/rcb-3023-4135
2389-7252
url https://hdl.handle.net/11227/17952
https://doi.org/10.32997/rcb-3023-4135
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Revista Ciencias Biomédicas
dc.relation.bitstream.none.fl_str_mv https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/4135/3704
dc.relation.citationendpage.none.fl_str_mv 120
dc.relation.citationissue.spa.fl_str_mv 3
dc.relation.citationstartpage.none.fl_str_mv 102
dc.relation.citationvolume.spa.fl_str_mv 12
dc.relation.references.eng.fl_str_mv Karimkhani C, Dellavalle RP, Coffeng LE, Flohr C, Hay RJ, Langan SM, et al. Global Skin Disease Morbidity and Mortality: An Update From the Global Burden of Disease Study 2013. JAMA Dermatology. 2017 May 1;153(5):406–12.
Hay RJ, Johns NE, Williams HC, Bolliger IW, Dellavalle RP, Margolis DJ, et al. The Global Burden of Skin Disease in 2010: An Analysis of the Prevalence and Impact of Skin Conditions. Journal of Investigative Dermatology. 2014 Jun 1;134(6):1527–34.
Lo ZJ, Lim X, Eng D, Car J, Hong Q, Yong E, et al. Clinical and economic burden of wound care in the tropics: a 5-year institutional population health review. International Wound Journal. 2020;17(3):790–803.
World Health Organization, editor. The injury chart book: a graphical overview of the global burden of injuries. Geneva: Dept. of Injuries and Violence Prevention, Noncommunicable Diseases and Mental Health Cluster, World Health Organization; 2002. 75 p.
González Consuegra RV, Roa Lizcano KT, López Zuluaga WJ. Estudio de prevalencia de lesiones por presión en un Hospital Universitario, Bogotá-Colombia. Rev cienc cuidad. 2018 Jun 30;15(2):91–100.
Rowan MP, Cancio LC, Elster EA, Burmeister DM, Rose LF, Natesan S, et al. Burn wound healing and treatment: review and advancements. Crit Care [Internet]. 2015 [cited 2021 Jun 11];19. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464872/
Salamone JC, Salamone AB, Swindle-Reilly K, Leung KXC, McMahon RE. Grand challenge in Biomaterials-wound healing. Regenerative Biomaterials. 2016 Jun 1;3(2):127–8.
Sarkar K, Xue Y, Sant S. Host Response to Synthetic Versus Natural Biomaterials. In: Corradetti B, editor. The Immune Response to Implanted Materials and Devices: The Impact of the Immune System on the Success of an Implant [Internet]. Cham: Springer International Publishing; 2017 [cited 2021 Jun 11]. p. 81–105. Available from: https://doi.org/10.1007/978-3-319-45433-7_5
Su Y, Zhang X, Ren G, Zhang Z, Liang Y, Wu S, et al. In situ implantable three-dimensional extracellular matrix bioactive composite scaffold for postoperative skin cancer therapy. Chemical Engineering Journal. 2020 Nov 15;400:125949.
Parmaksiz M, Dogan A, Odabas S, Elçin AE, Elçin YM. Clinical applications of decellularized extracellular matrices for tissue engineering and regenerative medicine. Biomed Mater. 2016 Mar;11(2):022003.
Tajima K, Kuroda K, Otaka Y, Kinoshita R, Kita M, Oyamada T, et al. Decellularization of canine kidney for three-dimensional organ regeneration. Vet World. 2020 Mar;13(3):452–7.
Oliveira AC, Garzón I, Ionescu AM, Carriel V, Cardona J de la C, González-Andrades M, et al. Evaluation of Small Intestine Grafts Decellularization Methods for Corneal Tissue Engineering. PLOS ONE. 2013 Jun 14;8(6):e66538.
Maghsoudlou P, Totonelli G, Loukogeorgakis SP, Eaton S, De Coppi P. A Decellularization Methodology for the Production of a Natural Acellular Intestinal Matrix. J Vis Exp. 2013 Oct 7;(80):50658.
Keane TJ, Londono R, Turner NJ, Badylak SF. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials. 2012 Feb;33(6):1771–81.
Gilbert TW, Freund JM, Badylak SF. Quantification of DNA in biologic scaffold materials. J Surg Res. 2009 Mar;152(1):135–9.
Lee PY, Costumbrado J, Hsu CY, Kim YH. Agarose Gel Electrophoresis for the Separation of DNA Fragments. J Vis Exp. 2012 Apr 20;(62):3923.
Freytes DO, Martin J, Velankar SS, Lee AS, Badylak SF. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials. 2008 Apr;29(11):1630–7.
Control of Scaffold Degradation in Tissue Engineering: A Review | Tissue Engineering Part B: Reviews [Internet]. [cited 2022 Aug 26]. Available from: https://www.liebertpub.com/doi/10.1089/ten.teb.2013.0452
Park SH, Gil ES, Shi H, Kim HJ, Lee K, Kaplan DL. Relationships Between Degradability of Silk Scaffolds and Osteogenesis. Biomaterials. 2010 Aug;31(24):6162–72.
Sasikumar Y, Solomon MM, Olasunkanmi LO, Ebenso EE. Effect of surface treatment on the bioactivity and electrochemical behavior of magnesium alloys in simulated body fluid: Effect of surface treatment on the bioactivity. Materials and Corrosion. 2017 Jul;68(7):776–90.
Barbeck M, Serra T, Booms P, Stojanovic S, Najman S, Engel E, et al. Analysis of the in vitro degradation and the in vivo tissue response to bi-layered 3D-printed scaffolds combining PLA and biphasic PLA/bioglass components – Guidance of the inflammatory response as basis for osteochondral regeneration. Bioact Mater. 2017 Jun 23;2(4):208–23.
Zhao S, Gu L, Hammel JM, Lang H. Mechanical Characterization of the Decellularized Porcine Small Intestinal Submucosa Extracellular Matrix. In: Volume 3A: Biomedical and Biotechnology Engineering [Internet]. San Diego, California, USA: American Society of Mechanical Engineers; 2013 [cited 2021 Dec 14]. p. V03AT03A082. Available from: https://asmedigitalcollection.asme.org/IMECE/proceedings/IMECE2013/56215/San%20Diego,%20California,%20USA/261133
Dearth CL, Keane TJ, Carruthers CA, Reing JE, Huleihel L, Ranallo CA, et al. The effect of terminal sterilization on the material properties and in vivo remodeling of a porcine dermal biologic scaffold. Acta Biomaterialia. 2016 Mar;33:78–87.
Dąbrowska AK, Spano F, Derler S, Adlhart C, Spencer ND, Rossi RM. The relationship between skin function, barrier properties, and body-dependent factors. Skin Res Technol. 2018 May;24(2):165–74.
Information NC for B, Pike USNL of M 8600 R, MD B, Usa 20894. How does skin work? [Internet]. InformedHealth.org [Internet]. Institute for Quality and Efficiency in Health Care (IQWiG); 2019 [cited 2021 Jun 11]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279255/
Khavkin J, Ellis DAF. Aging skin: histology, physiology, and pathology. Facial Plast Surg Clin North Am. 2011 May;19(2):229–34.
Rayner R, Carville K, Leslie G, Roberts P. A review of patient and skin characteristics associated with skin tears. J Wound Care. 2015 Sep;24(9):406–14.
Lazarus GS, Cooper DM, Knighton DR, Margolis DJ, Pecoraro RE, Rodeheaver G, et al. Definitions and guidelines for assessment of wounds and evaluation of healing. Arch Dermatol. 1994 Apr;130(4):489–93.
Singh S, Young A, McNaught CE. The physiology of wound healing. Surgery (Oxford). 2017 Sep 1;35(9):473–7.
Duscher D, Barrera J, Wong VW, Maan ZN, Whittam AJ, Januszyk M, et al. Stem Cells in Wound Healing: The Future of Regenerative Medicine? A Mini-Review. GER. 2016;62(2):216–25.
Gonzalez AC de O, Costa TF, Andrade Z de A, Medrado ARAP. Wound healing - A literature review*. An Bras Dermatol. 2016 Oct;91:614–20.
Guo S, DiPietro LA. Factors Affecting Wound Healing. J Dent Res. 2010 Mar;89(3):219–29.
Wernick B, Nahirniak P, Stawicki SP. Impaired Wound Healing. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 [cited 2022 Aug 26]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK482254/
Ha DH, Chae S, Lee JY, Kim JY, Yoon J, Sen T, et al. Therapeutic effect of decellularized extracellular matrix-based hydrogel for radiation esophagitis by 3D printed esophageal stent. Biomaterials. 2021 Jan 1;266:120477.
Wang S, Zhu C, Zhang B, Hu J, Xu J, Xue C, et al. BMSC-derived extracellular matrix better optimizes the microenvironment to support nerve regeneration. Biomaterials. 2022 Jan 1;280:121251.
Hussey GS, Dziki JL, Badylak SF. Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater. 2018 Jul;3(7):159–73.
Ventura RD, Padalhin AR, Park CM, Lee BT. Enhanced decellularization technique of porcine dermal ECM for tissue engineering applications. Materials Science and Engineering: C. 2019 Nov 1;104:109841.
Lee SJ, Lee JH, Park J, Kim WD, Park SA. Fabrication of 3D Printing Scaffold with Porcine Skin Decellularized Bio-Ink for Soft Tissue Engineering. Materials. 2020 Jan;13(16):3522.
Kim BS, Kwon YW, Kong JS, Park GT, Gao G, Han W, et al. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering. Biomaterials. 2018 Jun 1;168:38–53.
Hussey GS, Dziki JL, Badylak SF. Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater. 2018 Jul;3(7):159–73.
Xu J, Fang H, Zheng S, Li L, Jiao Z, Wang H, et al. A biological functional hybrid scaffold based on decellularized extracellular matrix/gelatin/chitosan with high biocompatibility and antibacterial activity for skin tissue engineering. International Journal of Biological Macromolecules. 2021 Sep 30;187:840–9.
Sarmin AM, El Moussaid N, Suntornnond R, Tyler EJ, Kim YH, Di Cio S, et al. Multi-Scale Analysis of the Composition, Structure, and Function of Decellularized Extracellular Matrix for Human Skin and Wound Healing Models. Biomolecules. 2022 Jun;12(6):837.
Liu Y, Huang CC, Wang Y, Xu J, Wang G, Bai X. Biological evaluations of decellularized extracellular matrix collagen microparticles prepared based on plant enzymes and aqueous two-phase method. Regenerative Biomaterials. 2021 Mar 1;8(2):rbab002.
Chou PR, Lin YN, Wu SH, Lin SD, Srinivasan P, Hsieh DJ, et al. Supercritical Carbon Dioxide-decellularized Porcine Acellular Dermal Matrix combined with Autologous Adipose-derived Stem Cells: Its Role in Accelerated Diabetic Wound Healing. Int J Med Sci. 2020 Feb 4;17(3):354–67.
Gratzer PF. Decellularized Extracellular Matrix. In: Narayan R, editor. Encyclopedia of Biomedical Engineering [Internet]. Oxford: Elsevier; 2019 [cited 2022 Jul 12]. p. 86–96. Available from: https://www.sciencedirect.com/science/article/pii/B9780128012383998702
Kim YS, Majid M, Melchiorri AJ, Mikos AG. Applications of decellularized extracellular matrix in bone and cartilage tissue engineering. Bioeng Transl Med. 2018 Oct 26;4(1):83–95.
Tan YH, Helms HR, Nakayama KH. Decellularization Strategies for Regenerating Cardiac and Skeletal Muscle Tissues. Frontiers in Bioengineering and Biotechnology [Internet]. 2022 [cited 2022 Jul 21];10. Available from: https://www.frontiersin.org/articles/10.3389/fbioe.2022.831300
Hrebikova H, Diaz D, Mokry J. Chemical decellularization: a promising approach for preparation of extracellular matrix. Biomedical Papers. 2015 Mar 9;159(1):012–7.
G-Biosciences. Detergents for Protein Extraction & Cell Lysis Guide [Internet]. 1st ed. United States; 2010 [cited 2021 May 9]. (1; vol. Protein Research). Available from: http://www.genotech.com/protein-research/detergent-accessories.html#:~:text=Detergents%20%7C%20Order%20Online-,ionic%20detergents,for%20separation%20during%20gel%20electrophoresis.
Zahmati AHA, Alipoor R, Shahmirzadi AR, Khori V, Abolhasani MM. Chemical Decellularization Methods and Its Effects on Extracellular Matrix. Internal Medicine and Medical Investigation Journal. 2017 Aug 4;2(3):76–83.
Gilpin A, Yang Y. Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. Biomed Res Int. 2017;2017:9831534.
Syed O, Walters NJ, Day RM, Kim HW, Knowles JC. Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. Acta Biomaterialia. 2014 Dec 1;10(12):5043–54.
Yamanaka H, Morimoto N, Yamaoka T. Decellularization of submillimeter-diameter vascular scaffolds using peracetic acid. J Artif Organs. 2020 Jun;23(2):156–62.
Wei F, Liu S, Chen M, Tian G, Zha K, Yang Z, et al. Host Response to Biomaterials for Cartilage Tissue Engineering: Key to Remodeling. Frontiers in Bioengineering and Biotechnology [Internet]. 2021 [cited 2022 Jul 21];9. Available from: https://www.frontiersin.org/articles/10.3389/fbioe.2021.664592
Fernández-Pérez J, Ahearne M. The impact of decellularization methods on extracellular matrix derived hydrogels. Sci Rep. 2019 Oct 17;9(1):14933.
Mendibil U, Ruiz-Hernandez R, Retegi-Carrion S, Garcia-Urquia N, Olalde-Graells B, Abarrategi A. Tissue-Specific Decellularization Methods: Rationale and Strategies to Achieve Regenerative Compounds. Int J Mol Sci. 2020 Jul 30;21(15):5447.
Tao M, Ao T, Mao X, Yan X, Javed R, Hou W, et al. Sterilization and disinfection methods for decellularized matrix materials: Review, consideration and proposal. Bioact Mater. 2021 Feb 27;6(9):2927–45.
White LJ, Taylor AJ, Faulk DM, Keane TJ, Saldin LT, Reing JE, et al. The impact of detergents on the tissue decellularization process: a ToF-SIMS study. Acta Biomater. 2017 Mar 1;50:207–19.
Moffat D, Ye K, Jin S. Decellularization for the retention of tissue niches. J Tissue Eng. 2022 May 21;13:20417314221101150.
Benichou G, Yamada Y, Yun SH, Lin C, Fray M, Tocco G. Immune recognition and rejection of allogeneic skin grafts. Immunotherapy. 2011 Jun;3(6):757–70.
Gilbert TW, Stewart-Akers AM, Badylak SF. A quantitative method for evaluating the degradation of biologic scaffold materials. Biomaterials. 2007 Jan 1;28(2):147–50.
Kasper JC, Friess W. The freezing step in lyophilization: Physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. European Journal of Pharmaceutics and Biopharmaceutics. 2011 Jun 1;78(2):248–63.
Zagorska J, Ciprovica I. Evaluation of Factors Affecting Freezing Point of Milk. 2013;7(2):6.
Keane TJ, Dziki J, Castelton A, Faulk DM, Messerschmidt V, Londono R, et al. Preparation and characterization of a biologic scaffold and hydrogel derived from colonic mucosa. J Biomed Mater Res B Appl Biomater. 2017 Feb;105(2):291–306.
Gilbert TW, Stewart-Akers AM, Simmons-Byrd A, Badylak SF. Degradation and Remodeling of Small Intestinal Submucosa in Canine Achilles Tendon Repair. JBJS. 2007 Mar;89(3):621–30.
Record RD, Hillegonds D, Simmons C, Tullius R, Rickey FA, Elmore D, et al. In vivo degradation of 14C-labeled small intestinal submucosa (SIS) when used for urinary bladder repair. Biomaterials. 2001 Oct 1;22(19):2653–9.
Shi L, Ronfard V. Biochemical and biomechanical characterization of porcine small intestinal submucosa (SIS): a mini review. Int J Burns Trauma. 2013 Nov 1;3(4):173–9.
Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011 Apr 1;32(12):3233–43.
Singh H, Purohit SD, Bhaskar R, Yadav I, Gupta MK, Mishra NC. Development of decellularization protocol for caprine small intestine submucosa as a biomaterial. Biomaterials and Biosystems. 2022 Mar 1;5:100035.
Vavken P, Joshi S, Murray MM. TRITON-X Is Most Effective among Three Decellularization Agents for ACL Tissue Engineering. J Orthop Res. 2009 Dec;27(12):1612–8.
Faulk DM, Carruthers CA, Warner HJ, Kramer CR, Reing JE, Zhang L, et al. The Effect of Detergents on the Basement Membrane Complex of a Biologic Scaffold Material. Acta Biomater. 2014 Jan;10(1):10.1016/j.actbio.2013.09.006.
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.coar.eng.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Cartagena
dc.source.eng.fl_str_mv https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/4135
institution Universidad de Cartagena
bitstream.url.fl_str_mv https://repositorio.unicartagena.edu.co/bitstreams/20b8aec4-5eb1-4787-aced-a09bddc4fe26/download
bitstream.checksum.fl_str_mv 0aa6e758926bb2f0d54c029343e85994
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Biblioteca Digital Universidad de Cartagena
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1812210152194965504
spelling Ruíz Soto, Juan PabloGalvis Escobar, Sara MaríaRego Londoño, Maria AntoniaMolina Sierra, Juan DavidPineda Molina, Catalina2023-07-15T00:00:00Z2024-09-05T20:34:53Z2023-07-15T00:00:00Z2024-09-05T20:34:53Z2023-07-152215-7840https://hdl.handle.net/11227/1795210.32997/rcb-3023-41352389-7252https://doi.org/10.32997/rcb-3023-4135Introducción: las lesiones cutáneas complicadas se han convertido en un problema de salud mundial, siendo difíciles de tratar debido al limitado proceso de curación del cuerpo. Se han realizado estudios para mejorar los tratamientos tradicionales que tienen muchas desventajas. La investigación en cicatrización de heridas apunta a opciones con ingeniería de tejidos, como las matrices descelularizadas, con buenas propiedades de cicatrización y biocompatibilidad. Objetivo: obtener y caracterizar las propiedades de una matriz biológica descelularizada derivada del intestino delgado de animales. Métodos: el intestino delgado porcino se preparó y descelularizó utilizando cuatro métodos diferentes: Triton X-100 (TX-100), dodecil sulfato de sodio (SDS) y desoxicolato de sodio (SDC) para uno o dos ciclos de 6 horas o 24 horas, y ácido peracético para un ciclo de 2 horas. El ADN remanente se cuantificó con Nanodrop y electroforesis. Se realizaron tinciones histológicas y microscopía electrónica de barrido (SEM) para evaluar la estructura e integridad de la superficie. Se realizaron ensayos mecánicos para medir la resistencia de las matrices. Finalmente, se realizaron ensayos de degradabilidad con diferentes soluciones. Resultados: no se encontraron diferencias entre los protocolos de descelularización con respecto al ADN remanente, siendo más eficientes los protocolos de un ciclo de seis horas. Con el menor contenido de ADN remanente y una mejor preservación de la estructura, TX-100 podría considerarse como el mejor protocolo. No se encontraron diferencias estadísticas entre los protocolos y el tejido nativo durante el análisis mecánico. Los ensayos de biodegradabilidad mostraron las propiedades de degradabilidad esperadas de la matriz producida. Conclusión: se lograron resultados prometedores para obtener matrices biológicas descelularizadas que podrían servir como tratamiento para heridas cutáneas complicadas. Se deben realizar más estudios in vitro y moleculares a futuro para caracterizar aún más estas matrices.Introduction: complicated skin injuries have become a global health problem, being difficult to treat due to the body’s limited healing process. Many studies aim to enhance traditional treatments for skin injuries, which have many disadvantages. Therefore, wound healing research is aiming towards tissue engineering options, such as decellularized matrix, which have shown great healing and biocompatibility competencies. Objectives:  to obtain and characterize the properties of a decellularized biological matrix derived from the small intestine of animals. Methods: porcine small intestine was prepared and decellularized using four different methods: Triton X-100, sodium dodecyl sulfate (SDS) and sodium deoxycholate (SDC) for one or two cycles of 6 hours or 24 hours, and peracetic acid for one cycle of 2 hours. The remaining DNA was quantified with Nanodrop and electrophoresis characterization. Histology stains and Scanning Electron Microscopy (SEM) were performed to assess surface structure and integrity. Resistance assays were conducted to measure mechanical strength. Finally, degradability assays with different buffers were performed. Results: no differences between the decellularization protocols regarding remaining DNA were found, making protocols of one cycle of six hours more efficient. With the least remaining DNA content and better structure perseveration, TX-100 could be considered as the best protocol. No statistically difference between protocols and native tissue were found during the mechanical analysis. Biodegradability assays showed the expected degradability properties of the produced matrix. Conclusions: promising results were achieved to obtain decellularized biological matrices that could serve as a treatment for complicated skin wounds. More in vitro and molecular studies should be carried out in future studies to further characterize these scaffolds.application/pdfengUniversidad de CartagenaRevista Ciencias Biomédicashttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/4135/3704120310212Karimkhani C, Dellavalle RP, Coffeng LE, Flohr C, Hay RJ, Langan SM, et al. Global Skin Disease Morbidity and Mortality: An Update From the Global Burden of Disease Study 2013. JAMA Dermatology. 2017 May 1;153(5):406–12.Hay RJ, Johns NE, Williams HC, Bolliger IW, Dellavalle RP, Margolis DJ, et al. The Global Burden of Skin Disease in 2010: An Analysis of the Prevalence and Impact of Skin Conditions. Journal of Investigative Dermatology. 2014 Jun 1;134(6):1527–34.Lo ZJ, Lim X, Eng D, Car J, Hong Q, Yong E, et al. Clinical and economic burden of wound care in the tropics: a 5-year institutional population health review. International Wound Journal. 2020;17(3):790–803.World Health Organization, editor. The injury chart book: a graphical overview of the global burden of injuries. Geneva: Dept. of Injuries and Violence Prevention, Noncommunicable Diseases and Mental Health Cluster, World Health Organization; 2002. 75 p.González Consuegra RV, Roa Lizcano KT, López Zuluaga WJ. Estudio de prevalencia de lesiones por presión en un Hospital Universitario, Bogotá-Colombia. Rev cienc cuidad. 2018 Jun 30;15(2):91–100.Rowan MP, Cancio LC, Elster EA, Burmeister DM, Rose LF, Natesan S, et al. Burn wound healing and treatment: review and advancements. Crit Care [Internet]. 2015 [cited 2021 Jun 11];19. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464872/Salamone JC, Salamone AB, Swindle-Reilly K, Leung KXC, McMahon RE. Grand challenge in Biomaterials-wound healing. Regenerative Biomaterials. 2016 Jun 1;3(2):127–8.Sarkar K, Xue Y, Sant S. Host Response to Synthetic Versus Natural Biomaterials. In: Corradetti B, editor. The Immune Response to Implanted Materials and Devices: The Impact of the Immune System on the Success of an Implant [Internet]. Cham: Springer International Publishing; 2017 [cited 2021 Jun 11]. p. 81–105. Available from: https://doi.org/10.1007/978-3-319-45433-7_5Su Y, Zhang X, Ren G, Zhang Z, Liang Y, Wu S, et al. In situ implantable three-dimensional extracellular matrix bioactive composite scaffold for postoperative skin cancer therapy. Chemical Engineering Journal. 2020 Nov 15;400:125949.Parmaksiz M, Dogan A, Odabas S, Elçin AE, Elçin YM. Clinical applications of decellularized extracellular matrices for tissue engineering and regenerative medicine. Biomed Mater. 2016 Mar;11(2):022003.Tajima K, Kuroda K, Otaka Y, Kinoshita R, Kita M, Oyamada T, et al. Decellularization of canine kidney for three-dimensional organ regeneration. Vet World. 2020 Mar;13(3):452–7.Oliveira AC, Garzón I, Ionescu AM, Carriel V, Cardona J de la C, González-Andrades M, et al. Evaluation of Small Intestine Grafts Decellularization Methods for Corneal Tissue Engineering. PLOS ONE. 2013 Jun 14;8(6):e66538.Maghsoudlou P, Totonelli G, Loukogeorgakis SP, Eaton S, De Coppi P. A Decellularization Methodology for the Production of a Natural Acellular Intestinal Matrix. J Vis Exp. 2013 Oct 7;(80):50658.Keane TJ, Londono R, Turner NJ, Badylak SF. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials. 2012 Feb;33(6):1771–81.Gilbert TW, Freund JM, Badylak SF. Quantification of DNA in biologic scaffold materials. J Surg Res. 2009 Mar;152(1):135–9.Lee PY, Costumbrado J, Hsu CY, Kim YH. Agarose Gel Electrophoresis for the Separation of DNA Fragments. J Vis Exp. 2012 Apr 20;(62):3923.Freytes DO, Martin J, Velankar SS, Lee AS, Badylak SF. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials. 2008 Apr;29(11):1630–7.Control of Scaffold Degradation in Tissue Engineering: A Review | Tissue Engineering Part B: Reviews [Internet]. [cited 2022 Aug 26]. Available from: https://www.liebertpub.com/doi/10.1089/ten.teb.2013.0452Park SH, Gil ES, Shi H, Kim HJ, Lee K, Kaplan DL. Relationships Between Degradability of Silk Scaffolds and Osteogenesis. Biomaterials. 2010 Aug;31(24):6162–72.Sasikumar Y, Solomon MM, Olasunkanmi LO, Ebenso EE. Effect of surface treatment on the bioactivity and electrochemical behavior of magnesium alloys in simulated body fluid: Effect of surface treatment on the bioactivity. Materials and Corrosion. 2017 Jul;68(7):776–90.Barbeck M, Serra T, Booms P, Stojanovic S, Najman S, Engel E, et al. Analysis of the in vitro degradation and the in vivo tissue response to bi-layered 3D-printed scaffolds combining PLA and biphasic PLA/bioglass components – Guidance of the inflammatory response as basis for osteochondral regeneration. Bioact Mater. 2017 Jun 23;2(4):208–23.Zhao S, Gu L, Hammel JM, Lang H. Mechanical Characterization of the Decellularized Porcine Small Intestinal Submucosa Extracellular Matrix. In: Volume 3A: Biomedical and Biotechnology Engineering [Internet]. San Diego, California, USA: American Society of Mechanical Engineers; 2013 [cited 2021 Dec 14]. p. V03AT03A082. Available from: https://asmedigitalcollection.asme.org/IMECE/proceedings/IMECE2013/56215/San%20Diego,%20California,%20USA/261133Dearth CL, Keane TJ, Carruthers CA, Reing JE, Huleihel L, Ranallo CA, et al. The effect of terminal sterilization on the material properties and in vivo remodeling of a porcine dermal biologic scaffold. Acta Biomaterialia. 2016 Mar;33:78–87.Dąbrowska AK, Spano F, Derler S, Adlhart C, Spencer ND, Rossi RM. The relationship between skin function, barrier properties, and body-dependent factors. Skin Res Technol. 2018 May;24(2):165–74.Information NC for B, Pike USNL of M 8600 R, MD B, Usa 20894. How does skin work? [Internet]. InformedHealth.org [Internet]. Institute for Quality and Efficiency in Health Care (IQWiG); 2019 [cited 2021 Jun 11]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279255/Khavkin J, Ellis DAF. Aging skin: histology, physiology, and pathology. Facial Plast Surg Clin North Am. 2011 May;19(2):229–34.Rayner R, Carville K, Leslie G, Roberts P. A review of patient and skin characteristics associated with skin tears. J Wound Care. 2015 Sep;24(9):406–14.Lazarus GS, Cooper DM, Knighton DR, Margolis DJ, Pecoraro RE, Rodeheaver G, et al. Definitions and guidelines for assessment of wounds and evaluation of healing. Arch Dermatol. 1994 Apr;130(4):489–93.Singh S, Young A, McNaught CE. The physiology of wound healing. Surgery (Oxford). 2017 Sep 1;35(9):473–7.Duscher D, Barrera J, Wong VW, Maan ZN, Whittam AJ, Januszyk M, et al. Stem Cells in Wound Healing: The Future of Regenerative Medicine? A Mini-Review. GER. 2016;62(2):216–25.Gonzalez AC de O, Costa TF, Andrade Z de A, Medrado ARAP. Wound healing - A literature review*. An Bras Dermatol. 2016 Oct;91:614–20.Guo S, DiPietro LA. Factors Affecting Wound Healing. J Dent Res. 2010 Mar;89(3):219–29.Wernick B, Nahirniak P, Stawicki SP. Impaired Wound Healing. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 [cited 2022 Aug 26]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK482254/Ha DH, Chae S, Lee JY, Kim JY, Yoon J, Sen T, et al. Therapeutic effect of decellularized extracellular matrix-based hydrogel for radiation esophagitis by 3D printed esophageal stent. Biomaterials. 2021 Jan 1;266:120477.Wang S, Zhu C, Zhang B, Hu J, Xu J, Xue C, et al. BMSC-derived extracellular matrix better optimizes the microenvironment to support nerve regeneration. Biomaterials. 2022 Jan 1;280:121251.Hussey GS, Dziki JL, Badylak SF. Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater. 2018 Jul;3(7):159–73.Ventura RD, Padalhin AR, Park CM, Lee BT. Enhanced decellularization technique of porcine dermal ECM for tissue engineering applications. Materials Science and Engineering: C. 2019 Nov 1;104:109841.Lee SJ, Lee JH, Park J, Kim WD, Park SA. Fabrication of 3D Printing Scaffold with Porcine Skin Decellularized Bio-Ink for Soft Tissue Engineering. Materials. 2020 Jan;13(16):3522.Kim BS, Kwon YW, Kong JS, Park GT, Gao G, Han W, et al. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering. Biomaterials. 2018 Jun 1;168:38–53.Hussey GS, Dziki JL, Badylak SF. Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater. 2018 Jul;3(7):159–73.Xu J, Fang H, Zheng S, Li L, Jiao Z, Wang H, et al. A biological functional hybrid scaffold based on decellularized extracellular matrix/gelatin/chitosan with high biocompatibility and antibacterial activity for skin tissue engineering. International Journal of Biological Macromolecules. 2021 Sep 30;187:840–9.Sarmin AM, El Moussaid N, Suntornnond R, Tyler EJ, Kim YH, Di Cio S, et al. Multi-Scale Analysis of the Composition, Structure, and Function of Decellularized Extracellular Matrix for Human Skin and Wound Healing Models. Biomolecules. 2022 Jun;12(6):837.Liu Y, Huang CC, Wang Y, Xu J, Wang G, Bai X. Biological evaluations of decellularized extracellular matrix collagen microparticles prepared based on plant enzymes and aqueous two-phase method. Regenerative Biomaterials. 2021 Mar 1;8(2):rbab002.Chou PR, Lin YN, Wu SH, Lin SD, Srinivasan P, Hsieh DJ, et al. Supercritical Carbon Dioxide-decellularized Porcine Acellular Dermal Matrix combined with Autologous Adipose-derived Stem Cells: Its Role in Accelerated Diabetic Wound Healing. Int J Med Sci. 2020 Feb 4;17(3):354–67.Gratzer PF. Decellularized Extracellular Matrix. In: Narayan R, editor. Encyclopedia of Biomedical Engineering [Internet]. Oxford: Elsevier; 2019 [cited 2022 Jul 12]. p. 86–96. Available from: https://www.sciencedirect.com/science/article/pii/B9780128012383998702Kim YS, Majid M, Melchiorri AJ, Mikos AG. Applications of decellularized extracellular matrix in bone and cartilage tissue engineering. Bioeng Transl Med. 2018 Oct 26;4(1):83–95.Tan YH, Helms HR, Nakayama KH. Decellularization Strategies for Regenerating Cardiac and Skeletal Muscle Tissues. Frontiers in Bioengineering and Biotechnology [Internet]. 2022 [cited 2022 Jul 21];10. Available from: https://www.frontiersin.org/articles/10.3389/fbioe.2022.831300Hrebikova H, Diaz D, Mokry J. Chemical decellularization: a promising approach for preparation of extracellular matrix. Biomedical Papers. 2015 Mar 9;159(1):012–7.G-Biosciences. Detergents for Protein Extraction & Cell Lysis Guide [Internet]. 1st ed. United States; 2010 [cited 2021 May 9]. (1; vol. Protein Research). Available from: http://www.genotech.com/protein-research/detergent-accessories.html#:~:text=Detergents%20%7C%20Order%20Online-,ionic%20detergents,for%20separation%20during%20gel%20electrophoresis.Zahmati AHA, Alipoor R, Shahmirzadi AR, Khori V, Abolhasani MM. Chemical Decellularization Methods and Its Effects on Extracellular Matrix. Internal Medicine and Medical Investigation Journal. 2017 Aug 4;2(3):76–83.Gilpin A, Yang Y. Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. Biomed Res Int. 2017;2017:9831534.Syed O, Walters NJ, Day RM, Kim HW, Knowles JC. Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. Acta Biomaterialia. 2014 Dec 1;10(12):5043–54.Yamanaka H, Morimoto N, Yamaoka T. Decellularization of submillimeter-diameter vascular scaffolds using peracetic acid. J Artif Organs. 2020 Jun;23(2):156–62.Wei F, Liu S, Chen M, Tian G, Zha K, Yang Z, et al. Host Response to Biomaterials for Cartilage Tissue Engineering: Key to Remodeling. Frontiers in Bioengineering and Biotechnology [Internet]. 2021 [cited 2022 Jul 21];9. Available from: https://www.frontiersin.org/articles/10.3389/fbioe.2021.664592Fernández-Pérez J, Ahearne M. The impact of decellularization methods on extracellular matrix derived hydrogels. Sci Rep. 2019 Oct 17;9(1):14933.Mendibil U, Ruiz-Hernandez R, Retegi-Carrion S, Garcia-Urquia N, Olalde-Graells B, Abarrategi A. Tissue-Specific Decellularization Methods: Rationale and Strategies to Achieve Regenerative Compounds. Int J Mol Sci. 2020 Jul 30;21(15):5447.Tao M, Ao T, Mao X, Yan X, Javed R, Hou W, et al. Sterilization and disinfection methods for decellularized matrix materials: Review, consideration and proposal. Bioact Mater. 2021 Feb 27;6(9):2927–45.White LJ, Taylor AJ, Faulk DM, Keane TJ, Saldin LT, Reing JE, et al. The impact of detergents on the tissue decellularization process: a ToF-SIMS study. Acta Biomater. 2017 Mar 1;50:207–19.Moffat D, Ye K, Jin S. Decellularization for the retention of tissue niches. J Tissue Eng. 2022 May 21;13:20417314221101150.Benichou G, Yamada Y, Yun SH, Lin C, Fray M, Tocco G. Immune recognition and rejection of allogeneic skin grafts. Immunotherapy. 2011 Jun;3(6):757–70.Gilbert TW, Stewart-Akers AM, Badylak SF. A quantitative method for evaluating the degradation of biologic scaffold materials. Biomaterials. 2007 Jan 1;28(2):147–50.Kasper JC, Friess W. The freezing step in lyophilization: Physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. European Journal of Pharmaceutics and Biopharmaceutics. 2011 Jun 1;78(2):248–63.Zagorska J, Ciprovica I. Evaluation of Factors Affecting Freezing Point of Milk. 2013;7(2):6.Keane TJ, Dziki J, Castelton A, Faulk DM, Messerschmidt V, Londono R, et al. Preparation and characterization of a biologic scaffold and hydrogel derived from colonic mucosa. J Biomed Mater Res B Appl Biomater. 2017 Feb;105(2):291–306.Gilbert TW, Stewart-Akers AM, Simmons-Byrd A, Badylak SF. Degradation and Remodeling of Small Intestinal Submucosa in Canine Achilles Tendon Repair. JBJS. 2007 Mar;89(3):621–30.Record RD, Hillegonds D, Simmons C, Tullius R, Rickey FA, Elmore D, et al. In vivo degradation of 14C-labeled small intestinal submucosa (SIS) when used for urinary bladder repair. Biomaterials. 2001 Oct 1;22(19):2653–9.Shi L, Ronfard V. Biochemical and biomechanical characterization of porcine small intestinal submucosa (SIS): a mini review. Int J Burns Trauma. 2013 Nov 1;3(4):173–9.Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011 Apr 1;32(12):3233–43.Singh H, Purohit SD, Bhaskar R, Yadav I, Gupta MK, Mishra NC. Development of decellularization protocol for caprine small intestine submucosa as a biomaterial. Biomaterials and Biosystems. 2022 Mar 1;5:100035.Vavken P, Joshi S, Murray MM. TRITON-X Is Most Effective among Three Decellularization Agents for ACL Tissue Engineering. J Orthop Res. 2009 Dec;27(12):1612–8.Faulk DM, Carruthers CA, Warner HJ, Kramer CR, Reing JE, Zhang L, et al. The Effect of Detergents on the Basement Membrane Complex of a Biologic Scaffold Material. Acta Biomater. 2014 Jan;10(1):10.1016/j.actbio.2013.09.006.Juan Pablo Ruíz Soto, Sara María Galvis Escobar, Maria Antonia Rego Londoño, Juan David Molina Sierra, Catalina Pineda Molina - 2023https://creativecommons.org/licenses/by-nc-nd/4.0http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/4135bioactive scaffolddecellularizationporcine small intestineskin woundtissue engineeringmatriz bioactivadescelularizaciónintestino delgado porcinoherida de pielingeniería de tejidosDescelularización y caracterización in vitro de matrices de intestino delgado porcino para el tratamiento de heridas complejasDecellularization and in vitro characterization of porcine small intestine scaffolds for complex wound treatmentsArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTPublicationOREORE.xmltext/xml2866https://repositorio.unicartagena.edu.co/bitstreams/20b8aec4-5eb1-4787-aced-a09bddc4fe26/download0aa6e758926bb2f0d54c029343e85994MD5111227/17952oai:repositorio.unicartagena.edu.co:11227/179522024-09-05 15:34:53.669https://creativecommons.org/licenses/by-nc-nd/4.0Juan Pablo Ruíz Soto, Sara María Galvis Escobar, Maria Antonia Rego Londoño, Juan David Molina Sierra, Catalina Pineda Molina - 2023metadata.onlyhttps://repositorio.unicartagena.edu.coBiblioteca Digital Universidad de Cartagenabdigital@metabiblioteca.com