La matriz extracelular: una red dinámica implicada en la regulación de las células madre

Autores:
Lambis Anaya, Lina
Suárez Causado, Amileth
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad de Cartagena
Repositorio:
Repositorio Universidad de Cartagena
Idioma:
spa
OAI Identifier:
oai:repositorio.unicartagena.edu.co:11227/13218
Acceso en línea:
https://hdl.handle.net/11227/13218
https://doi.org/10.32997/rcb-2015-2961
Palabra clave:
Matriz extracelular
Células madre
Nicho de células madre
Bioingeniería
Células madre hematopoyéticas.
Rights
openAccess
License
Revista Ciencias Biomédicas - 2020
id UCART2_700c9dc70a64d3cee5a535a62c4385fc
oai_identifier_str oai:repositorio.unicartagena.edu.co:11227/13218
network_acronym_str UCART2
network_name_str Repositorio Universidad de Cartagena
repository_id_str
dc.title.spa.fl_str_mv La matriz extracelular: una red dinámica implicada en la regulación de las células madre
dc.title.translated.eng.fl_str_mv La matriz extracelular: una red dinámica implicada en la regulación de las células madre
title La matriz extracelular: una red dinámica implicada en la regulación de las células madre
spellingShingle La matriz extracelular: una red dinámica implicada en la regulación de las células madre
Matriz extracelular
Células madre
Nicho de células madre
Bioingeniería
Células madre hematopoyéticas.
title_short La matriz extracelular: una red dinámica implicada en la regulación de las células madre
title_full La matriz extracelular: una red dinámica implicada en la regulación de las células madre
title_fullStr La matriz extracelular: una red dinámica implicada en la regulación de las células madre
title_full_unstemmed La matriz extracelular: una red dinámica implicada en la regulación de las células madre
title_sort La matriz extracelular: una red dinámica implicada en la regulación de las células madre
dc.creator.fl_str_mv Lambis Anaya, Lina
Suárez Causado, Amileth
dc.contributor.author.spa.fl_str_mv Lambis Anaya, Lina
Suárez Causado, Amileth
dc.subject.spa.fl_str_mv Matriz extracelular
Células madre
Nicho de células madre
Bioingeniería
Células madre hematopoyéticas.
topic Matriz extracelular
Células madre
Nicho de células madre
Bioingeniería
Células madre hematopoyéticas.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-11-24 00:00:00
dc.date.available.none.fl_str_mv 2020-11-24 00:00:00
dc.date.issued.none.fl_str_mv 2020-11-24
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2215-7840
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11227/13218
dc.identifier.doi.none.fl_str_mv 10.32997/rcb-2015-2961
dc.identifier.eissn.none.fl_str_mv 2389-7252
dc.identifier.url.none.fl_str_mv https://doi.org/10.32997/rcb-2015-2961
identifier_str_mv 2215-7840
10.32997/rcb-2015-2961
2389-7252
url https://hdl.handle.net/11227/13218
https://doi.org/10.32997/rcb-2015-2961
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofjournal.spa.fl_str_mv Revista Ciencias Biomédicas
dc.relation.bitstream.none.fl_str_mv https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/2961/2496
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2015
dc.relation.citationendpage.none.fl_str_mv 339
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 333
dc.relation.citationvolume.spa.fl_str_mv 6
dc.relation.references.spa.fl_str_mv Watt FM, Huck WT. Role of the extracellular matrix in regulating stem cell fate. Nature reviews Molecular cell biology.2013;14:467-73.
Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor perspectives in biology. 2011;3(12):25-9.
Chowdhury F, Na S, Li D, Poh Y-C, Tanaka TS, Wang F, et al. Cell material property dictates stress-induced spreading and differentiation in embryonic stem cells. Nature materials. 2010;9(1):82-8.
Cheung TH, Rando TA. Molecular regulation of stem cell quiescence. Nature reviews Molecular cell biology. 2013;14(6):329-40.
Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell. 2000;100(1):157-68.
Joddar B, Ito Y. Artificial niche substrates for embryonic and induced pluripotent stem cell cultures. Journal of biotechnology. 2013;168(2):218-28.
Wagers AJ. The stem cell niche in regenerative medicine. Cell stem cell. 2012;10(4):362-9.
Schlie-Wolter S, Ngezahayo A, Chichkov BN. The selective role of ECM components on cell adhesion, morphology, proliferation and communication in vitro. Experimental cell research. 2013;319(10):1553-61.
Radisky E, Radisky D. Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia. 2010;15(2):201-12.
Malik R, Lelkes PI, Cukierman E. Biomechanical and biochemical remodeling of stromal extracellular matrix in cancer. Trends in Biotechnology. 2015;33(4):230-6.
Blagoev KB. Organ aging and susceptibility to cancer may be related to the geometry of the stem cell niche. Proceedings of the National Academy of Sciences. 2011;108(48):19216-21.
Kurtz A, Oh SJ. Age related changes of the extracellular matrix and stem cell maintenance. Preventive medicine. 2012;54 Suppl:S50-6.
Dutra TF, French SW. Marrow stromal fibroblastic cell cultivation in vitro on decellularized bone marrow extracellular matrix. Experimental and molecular pathology. 2010;88(1):58- 66.
Song JJ, Ott HC. Organ engineering based on decellularized matrix scaffolds. Trends in molecular medicine. 2011;17(8):424-32.
Legate KR, Wickstrom SA, Fassler R. Genetic and cell biological analysis of integrin outsidein signaling. Genes & development. 2009;23(4):397-418.
Lv H, Li L, Sun M, Zhang Y, Chen L, Rong Y, et al. Mechanism of regulation of stem cell differentiation by matrix stiffness. Stem cell research & therapy. 2015;6(1):103.
Uberti B, Dentelli P, Rosso A, Defilippi P, Brizzi MF. Inhibition of beta1 integrin and IL-3Rbeta common subunit interaction hinders tumour angiogenesis. Oncogene. 2010;29(50):6581- 90.
Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. The Journal of cell biology. 2012;196(4):395-406.
Qian H, Tryggvason K, Jacobsen SE, Ekblom M. Contribution of alpha6 integrins to hematopoietic stem and progenitor cell homing to bone marrow and collaboration with alpha4 integrins. Blood. 2006;107(9):3503-10.
Umemoto T, Yamato M, Ishihara J, Shiratsuchi Y, Utsumi M, Morita Y, et al. Integrin-alphavbeta3 regulates thrombopoietin-mediated maintenance of hematopoietic stem cells. Blood. 2012;119(1):83-94.
Nakamura-Ishizu A, Okuno Y, Omatsu Y, Okabe K, Morimoto J, Uede T, et al. Extracellular matrix protein tenascin-C is required in the bone marrow microenvironment primed for hematopoietic regeneration. Blood. 2012;119(23):5429-37.
Schreiber TD, Steinl C, Essl M, Abele H, Geiger K, Muller CA, et al. The integrin alpha9beta1 on hematopoietic stem and progenitor cells: involvement in cell adhesion, proliferation and differentiation. Haematologica. 2009;94(11):1493-501.
Goto-Koshino Y, Fukuchi Y, Shibata F, Abe D, Kuroda K, Okamoto S, et al. Robo4 plays a role in bone marrow homing and mobilization, but is not essential in the long-term repopulating capacity of hematopoietic stem cells. PloS one. 2012;7(11):e50849.
Avigdor A, Goichberg P, Shivtiel S, Dar A, Peled A, Samira S, et al. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood. 2004;103(8):2981-9.
Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326(5957):1216-9.
Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang H-Y, Speicher DW, et al. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. Journal of cell science. 2008;121(Pt 22):3794-802.
Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, et al. Substrate Modulus Directs Neural Stem Cell Behavior. Biophysical Journal. 2008;95(9):4426-38.
Urciuolo A, Quarta M, Morbidoni V, Gattazzo F, Molon S, Grumati P, et al. Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nature communications. 2013;4:1964.
Halder G, Dupont S, Piccolo S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nature reviews Molecular cell biology. 2012;13(9):591-600.
Conway A, Schaffer DV. Biophysical regulation of stem cell behavior within the niche. Stem cell research & therapy. 2012;3(6):50.
Zhang H, Dai S, Bi J, Liu K-K. Biomimetic three-dimensional microenvironment for controlling stem cell fate. Interface Focus. 2011;1(5):792-803.
Peerani R, Zandstra PW. Enabling stem cell therapies through synthetic stem cell–niche engineering. The Journal of Clinical Investigation. 2010;120(1):60-70.
Martino MM, Mochizuki M, Rothenfluh DA, Rempel SA, Hubbell JA, Barker TH. Controlling integrin specificity and stem cell differentiation in 2-D and 3-D environments through regulation of fibronectin domain stability. Biomaterials. 2009;30(6):1089-97.
Seliktar D. Designing cell-compatible hydrogels for biomedical applications. Science. 2012;336(6085):1124-8.
Geckil H, Xu F, Zhang X, Moon S, Demirci U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine. 2010;5(3):469-84.
Biggs MJP, Richards RG, Gadegaard N, Wilkinson CDW, Oreffo ROC, Dalby MJ. The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells. Biomaterials. 2009;30(28):5094-103.
Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, et al. Emergent patterns of growth controlled by multicellular form and mechanics. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(33):11594-9.
Connelly JT, Gautrot JE, Trappmann B, Tan DW, Donati G, Huck WT, et al. Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nature cell biology. 2010;12(7):711-8.
Arai F, Hosokawa K, Toyama H, Matsumoto Y, Suda T. Role of N-cadherin in the regulation of hematopoietic stem cells in the bone marrow niche. Annals of the New York Academy of Sciences. 2012;1266:72-7.
Xie Y, Yin T, Wiegraebe W, He XC, Miller D, Stark D, et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature. 2009;457(7225):97-101.
Weber JM, Calvi LM. Notch signaling and the bone marrow hematopoietic stem cell niche. Bone. 2010;46(2):281-5.
Li L, Clevers H. Coexistence of quiescent and active adult stem cells in mammals. Science. 2010;327(5965):542-5.
Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829-34.
Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481(7382):457-62.
dc.rights.spa.fl_str_mv Revista Ciencias Biomédicas - 2020
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Revista Ciencias Biomédicas - 2020
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Cartagena
dc.source.spa.fl_str_mv https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/2961
institution Universidad de Cartagena
bitstream.url.fl_str_mv https://repositorio.unicartagena.edu.co/bitstreams/17acc6e2-4f52-478e-b9e5-ade9d314bc8a/download
bitstream.checksum.fl_str_mv d013811583e6f4840e53ad3d52675514
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Biblioteca Digital Universidad de Cartagena
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1818153276728672256
spelling Lambis Anaya, LinaSuárez Causado, Amileth2020-11-24 00:00:002020-11-24 00:00:002020-11-242215-7840https://hdl.handle.net/11227/1321810.32997/rcb-2015-29612389-7252https://doi.org/10.32997/rcb-2015-2961application/pdfspaUniversidad de CartagenaRevista Ciencias Biomédicashttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/2961/2496Núm. 2 , Año 201533923336Watt FM, Huck WT. Role of the extracellular matrix in regulating stem cell fate. Nature reviews Molecular cell biology.2013;14:467-73.Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor perspectives in biology. 2011;3(12):25-9.Chowdhury F, Na S, Li D, Poh Y-C, Tanaka TS, Wang F, et al. Cell material property dictates stress-induced spreading and differentiation in embryonic stem cells. Nature materials. 2010;9(1):82-8.Cheung TH, Rando TA. Molecular regulation of stem cell quiescence. Nature reviews Molecular cell biology. 2013;14(6):329-40.Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell. 2000;100(1):157-68.Joddar B, Ito Y. Artificial niche substrates for embryonic and induced pluripotent stem cell cultures. Journal of biotechnology. 2013;168(2):218-28.Wagers AJ. The stem cell niche in regenerative medicine. Cell stem cell. 2012;10(4):362-9.Schlie-Wolter S, Ngezahayo A, Chichkov BN. The selective role of ECM components on cell adhesion, morphology, proliferation and communication in vitro. Experimental cell research. 2013;319(10):1553-61.Radisky E, Radisky D. Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia. 2010;15(2):201-12.Malik R, Lelkes PI, Cukierman E. Biomechanical and biochemical remodeling of stromal extracellular matrix in cancer. Trends in Biotechnology. 2015;33(4):230-6.Blagoev KB. Organ aging and susceptibility to cancer may be related to the geometry of the stem cell niche. Proceedings of the National Academy of Sciences. 2011;108(48):19216-21.Kurtz A, Oh SJ. Age related changes of the extracellular matrix and stem cell maintenance. Preventive medicine. 2012;54 Suppl:S50-6.Dutra TF, French SW. Marrow stromal fibroblastic cell cultivation in vitro on decellularized bone marrow extracellular matrix. Experimental and molecular pathology. 2010;88(1):58- 66.Song JJ, Ott HC. Organ engineering based on decellularized matrix scaffolds. Trends in molecular medicine. 2011;17(8):424-32.Legate KR, Wickstrom SA, Fassler R. Genetic and cell biological analysis of integrin outsidein signaling. Genes & development. 2009;23(4):397-418.Lv H, Li L, Sun M, Zhang Y, Chen L, Rong Y, et al. Mechanism of regulation of stem cell differentiation by matrix stiffness. Stem cell research & therapy. 2015;6(1):103.Uberti B, Dentelli P, Rosso A, Defilippi P, Brizzi MF. Inhibition of beta1 integrin and IL-3Rbeta common subunit interaction hinders tumour angiogenesis. Oncogene. 2010;29(50):6581- 90.Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. The Journal of cell biology. 2012;196(4):395-406.Qian H, Tryggvason K, Jacobsen SE, Ekblom M. Contribution of alpha6 integrins to hematopoietic stem and progenitor cell homing to bone marrow and collaboration with alpha4 integrins. Blood. 2006;107(9):3503-10.Umemoto T, Yamato M, Ishihara J, Shiratsuchi Y, Utsumi M, Morita Y, et al. Integrin-alphavbeta3 regulates thrombopoietin-mediated maintenance of hematopoietic stem cells. Blood. 2012;119(1):83-94.Nakamura-Ishizu A, Okuno Y, Omatsu Y, Okabe K, Morimoto J, Uede T, et al. Extracellular matrix protein tenascin-C is required in the bone marrow microenvironment primed for hematopoietic regeneration. Blood. 2012;119(23):5429-37.Schreiber TD, Steinl C, Essl M, Abele H, Geiger K, Muller CA, et al. The integrin alpha9beta1 on hematopoietic stem and progenitor cells: involvement in cell adhesion, proliferation and differentiation. Haematologica. 2009;94(11):1493-501.Goto-Koshino Y, Fukuchi Y, Shibata F, Abe D, Kuroda K, Okamoto S, et al. Robo4 plays a role in bone marrow homing and mobilization, but is not essential in the long-term repopulating capacity of hematopoietic stem cells. PloS one. 2012;7(11):e50849.Avigdor A, Goichberg P, Shivtiel S, Dar A, Peled A, Samira S, et al. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood. 2004;103(8):2981-9.Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326(5957):1216-9.Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang H-Y, Speicher DW, et al. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. Journal of cell science. 2008;121(Pt 22):3794-802.Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, et al. Substrate Modulus Directs Neural Stem Cell Behavior. Biophysical Journal. 2008;95(9):4426-38.Urciuolo A, Quarta M, Morbidoni V, Gattazzo F, Molon S, Grumati P, et al. Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nature communications. 2013;4:1964.Halder G, Dupont S, Piccolo S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nature reviews Molecular cell biology. 2012;13(9):591-600.Conway A, Schaffer DV. Biophysical regulation of stem cell behavior within the niche. Stem cell research & therapy. 2012;3(6):50.Zhang H, Dai S, Bi J, Liu K-K. Biomimetic three-dimensional microenvironment for controlling stem cell fate. Interface Focus. 2011;1(5):792-803.Peerani R, Zandstra PW. Enabling stem cell therapies through synthetic stem cell–niche engineering. The Journal of Clinical Investigation. 2010;120(1):60-70.Martino MM, Mochizuki M, Rothenfluh DA, Rempel SA, Hubbell JA, Barker TH. Controlling integrin specificity and stem cell differentiation in 2-D and 3-D environments through regulation of fibronectin domain stability. Biomaterials. 2009;30(6):1089-97.Seliktar D. Designing cell-compatible hydrogels for biomedical applications. Science. 2012;336(6085):1124-8.Geckil H, Xu F, Zhang X, Moon S, Demirci U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine. 2010;5(3):469-84.Biggs MJP, Richards RG, Gadegaard N, Wilkinson CDW, Oreffo ROC, Dalby MJ. The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells. Biomaterials. 2009;30(28):5094-103.Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, et al. Emergent patterns of growth controlled by multicellular form and mechanics. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(33):11594-9.Connelly JT, Gautrot JE, Trappmann B, Tan DW, Donati G, Huck WT, et al. Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nature cell biology. 2010;12(7):711-8.Arai F, Hosokawa K, Toyama H, Matsumoto Y, Suda T. Role of N-cadherin in the regulation of hematopoietic stem cells in the bone marrow niche. Annals of the New York Academy of Sciences. 2012;1266:72-7.Xie Y, Yin T, Wiegraebe W, He XC, Miller D, Stark D, et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature. 2009;457(7225):97-101.Weber JM, Calvi LM. Notch signaling and the bone marrow hematopoietic stem cell niche. Bone. 2010;46(2):281-5.Li L, Clevers H. Coexistence of quiescent and active adult stem cells in mammals. Science. 2010;327(5965):542-5.Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829-34.Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481(7382):457-62.Revista Ciencias Biomédicas - 2020https://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccesshttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/2961Matriz extracelularCélulas madreNicho de células madreBioingenieríaCélulas madre hematopoyéticas.La matriz extracelular: una red dinámica implicada en la regulación de las células madreLa matriz extracelular: una red dinámica implicada en la regulación de las células madreArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlePublicationOREORE.xmltext/xml2556https://repositorio.unicartagena.edu.co/bitstreams/17acc6e2-4f52-478e-b9e5-ade9d314bc8a/downloadd013811583e6f4840e53ad3d52675514MD5111227/13218oai:repositorio.unicartagena.edu.co:11227/132182024-09-05 15:30:47.923https://creativecommons.org/licenses/by-nc-sa/4.0/Revista Ciencias Biomédicas - 2020metadata.onlyhttps://repositorio.unicartagena.edu.coBiblioteca Digital Universidad de Cartagenabdigital@metabiblioteca.com