Toxicological impact on environmental matrices by trace elements from gold mining in the biogeographic Choco, Colombia.

Mining and technology industries are using trace elements throughout the world to manufacture new technologies and products for daily use which are released into the environmental until reaching biological and environmental compartiments. Other the anthropogenic factors, such as extraction of minera...

Full description

Autores:
Palacios Torres, Yuber
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2019
Institución:
Universidad de Cartagena
Repositorio:
Repositorio Universidad de Cartagena
Idioma:
spa
OAI Identifier:
oai:repositorio.unicartagena.edu.co:11227/16523
Acceso en línea:
https://hdl.handle.net/11227/16523
http://dx.doi.org/10.57799/11227/11857
Palabra clave:
Toxicológical chemistry
Toxicology
Chocó (Colombia: Departamento)
Rights
openAccess
License
Derechos Reservados - Universidad de Cartagena, 2019
id UCART2_694c6959a5d5ff97c021a84501ee4654
oai_identifier_str oai:repositorio.unicartagena.edu.co:11227/16523
network_acronym_str UCART2
network_name_str Repositorio Universidad de Cartagena
repository_id_str
dc.title.eng.fl_str_mv Toxicological impact on environmental matrices by trace elements from gold mining in the biogeographic Choco, Colombia.
title Toxicological impact on environmental matrices by trace elements from gold mining in the biogeographic Choco, Colombia.
spellingShingle Toxicological impact on environmental matrices by trace elements from gold mining in the biogeographic Choco, Colombia.
Toxicológical chemistry
Toxicology
Chocó (Colombia: Departamento)
title_short Toxicological impact on environmental matrices by trace elements from gold mining in the biogeographic Choco, Colombia.
title_full Toxicological impact on environmental matrices by trace elements from gold mining in the biogeographic Choco, Colombia.
title_fullStr Toxicological impact on environmental matrices by trace elements from gold mining in the biogeographic Choco, Colombia.
title_full_unstemmed Toxicological impact on environmental matrices by trace elements from gold mining in the biogeographic Choco, Colombia.
title_sort Toxicological impact on environmental matrices by trace elements from gold mining in the biogeographic Choco, Colombia.
dc.creator.fl_str_mv Palacios Torres, Yuber
dc.contributor.advisor.none.fl_str_mv Olivero Verbel, Jesús
dc.contributor.author.none.fl_str_mv Palacios Torres, Yuber
dc.subject.armarc.none.fl_str_mv Toxicológical chemistry
Toxicology
Chocó (Colombia: Departamento)
topic Toxicológical chemistry
Toxicology
Chocó (Colombia: Departamento)
description Mining and technology industries are using trace elements throughout the world to manufacture new technologies and products for daily use which are released into the environmental until reaching biological and environmental compartiments. Other the anthropogenic factors, such as extraction of minerals, wood an agriculture, modify the natutal levels of metals in earth´s crust. Among the trace elements, heavy metals are considered the main pollutants because they remain for long periods of time in the environment, they cannot metabolized, but if they bioaccumulate in the tissues of different organisms of terrestrial and aquatic ecosystems causing lesions such as, decrease in the production of sperm, nervous system, bones, kidneys, neurologicals, cancer, pulmonary diseases, motor and conigtive dysfunción, among others, are derivated from metals such as Pb, Cd, Hg, As, Ni, Cu, Rb, Cs, Ta, and some of the rare elements of the earth. In the Atrato basin, tropical rainforests house exceptional wildlife species, placing it among one of the richest sites in biodiversity on the planet, currently threatened by massive gold mining, one of the main sources of mercury pollution (Hg), it is a harmful pollutant released into the environment, it represents a risk to human health and ecosystems. The first objective of this study was to evaluate the levels of total Hg (T-Hg) in human hair, fish, sediments and air; and determine the risks based on the consumption of fish by ingestion of T-Hg in the region of Choco biogeographical, a site of high global biodiversity located at the Colombian Pacific. Mercury concentrations in hair were measured in two places, Quibdo, the capital of the department, and Paimado, a riversine community. The median value of T-Hg in human hair in Quibdo was 1.26 µg/g (range: 0.02-116.40 µg/g), while in Paimado it was 0.67 µg/g (range: 0.07-6.47 µg/g). Mercury levels in locations examined were weakly associated with height (r=0.145, P=0.024). The levels of THg in the air in Quibdo were high inside gold shops, being up to 200.9 times higher than the reference site. Mercury concentrations in fish from Atrato River were above WHO limit (0.5 µg/g), with the highest levels in Pseudopimelodus schultzi, Ageneiosus pardalis, Sternopygus aequilabiatus, Rhamdia quelen and Hoplias malabaricus, while the lowest appeared in Cyphocharax magdalenae and Hemiancistrus wilsoni. Based on fish consumption, these last two species offer low risk to human health. Sediment samples from fifty different sites of the Atrato River showed low concentrations of T-Hg, with little variability between stations. However, contamination factors (CF) revealed moderate pollution in 44% of sampling sites along the river. In addition to Hg, other trace elements threaten this site of high biodiversity. To protect this natural resource, the Constitutional Court of Colombia declared that the river as a subject of legal rights. The objective of this study was to quantify trace elements in sediments and fish from the Atrato basin, assessing their environmental and human health risk. Forty-two trace elements were quantified using ICP-MS. Thirty-one elements increased their concentration downstream of the river. The CF suggests that the sediments were moderately polluted by Cr, Cu, Cd and heavily polluted by As. Most stations had higher Cr (98%) and Ni (78%) concentrations greater than the criterion of Probable Effect Concentration (PEC). Together, toxic elements generate a pollution Load Index (PLI) and a potential ecological risk index (RI) that categorized 54% of the sediments as polluted and 90% as moderate polluted, respectively. Hemiancistrus wilsoni, a low trophic guild fish species, had the greater average levels of Ni, Cu, As and Cd, among other elements. Rubidium and Cs showed a positive correlation with the fish trophic network, suggesting that these two metals are biomagnified according to the food chain. The Hazard Quotient (HQ) for As was greater than 1 for several species, indicating a potential risk to human health. In conclusion, pollution by Hg is widespread in the Biogeographic Choco, collectively, the data suggests that the extraction of gold carried out in this area of high biodiversity releases toxic elements that decline the quality of sediments in the Atrato River, incorporationing in the trophic chain which constitutes a great threat on the health of human and the environmental due to the consumption of fish, altering the chances of survival of species in impacted ecosystems, due to this urgent legal and civil actions should be implemented to stop massive deforestation driven by the mining, enforcing the right of the Atrato River, protecting of the populations and preserving this site of high biodiversity, government actions must be applied to anthropogenic activities.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2023-06-20T16:16:44Z
dc.date.available.none.fl_str_mv 2023-06-20T16:16:44Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11227/16523
http://dx.doi.org/10.57799/11227/11857
url https://hdl.handle.net/11227/16523
http://dx.doi.org/10.57799/11227/11857
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad de Cartagena, 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad de Cartagena, 2019
https://creativecommons.org/licenses/by-nc/4.0/
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Cartagena
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Farmacéuticas
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.program.spa.fl_str_mv Doctorado en Toxicología Ambiental
institution Universidad de Cartagena
bitstream.url.fl_str_mv https://dspace7-unicartagena.metabuscador.org/bitstreams/09549de8-e7fc-44c3-976a-76a21db4c7c1/download
https://dspace7-unicartagena.metabuscador.org/bitstreams/e2a6779e-5a51-4667-bc4f-db5c8aaaa50b/download
https://dspace7-unicartagena.metabuscador.org/bitstreams/f852aa88-055e-4598-8102-a55cf7ac1f05/download
https://dspace7-unicartagena.metabuscador.org/bitstreams/9f195d56-6cac-42b9-9126-bbfb0c92afbf/download
https://dspace7-unicartagena.metabuscador.org/bitstreams/a257f43b-3c1a-4d7e-aba3-b112de5a5ec9/download
https://dspace7-unicartagena.metabuscador.org/bitstreams/125a9e12-d38f-4873-878b-cbfcd5a479f7/download
https://dspace7-unicartagena.metabuscador.org/bitstreams/18e49e09-3358-4cee-9b1d-794b2e5645df/download
bitstream.checksum.fl_str_mv 520bdd60fe3edef478fd8829fcbc30ce
b748b846087d8a78d7176eba4f34f071
7b38fcee9ba3bc8639fa56f350c81be3
6315cf175aa95ac979e767f873d4e1ac
68b329da9893e34099c7d8ad5cb9c940
6f907d1b494502772990e8553385722a
47e576e55529e93f29296ec10115dc18
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital Universidad de Cartagena
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814214150152257536
spelling Olivero Verbel, JesúsPalacios Torres, Yuber2023-06-20T16:16:44Z2023-06-20T16:16:44Z2019https://hdl.handle.net/11227/16523http://dx.doi.org/10.57799/11227/11857Mining and technology industries are using trace elements throughout the world to manufacture new technologies and products for daily use which are released into the environmental until reaching biological and environmental compartiments. Other the anthropogenic factors, such as extraction of minerals, wood an agriculture, modify the natutal levels of metals in earth´s crust. Among the trace elements, heavy metals are considered the main pollutants because they remain for long periods of time in the environment, they cannot metabolized, but if they bioaccumulate in the tissues of different organisms of terrestrial and aquatic ecosystems causing lesions such as, decrease in the production of sperm, nervous system, bones, kidneys, neurologicals, cancer, pulmonary diseases, motor and conigtive dysfunción, among others, are derivated from metals such as Pb, Cd, Hg, As, Ni, Cu, Rb, Cs, Ta, and some of the rare elements of the earth. In the Atrato basin, tropical rainforests house exceptional wildlife species, placing it among one of the richest sites in biodiversity on the planet, currently threatened by massive gold mining, one of the main sources of mercury pollution (Hg), it is a harmful pollutant released into the environment, it represents a risk to human health and ecosystems. The first objective of this study was to evaluate the levels of total Hg (T-Hg) in human hair, fish, sediments and air; and determine the risks based on the consumption of fish by ingestion of T-Hg in the region of Choco biogeographical, a site of high global biodiversity located at the Colombian Pacific. Mercury concentrations in hair were measured in two places, Quibdo, the capital of the department, and Paimado, a riversine community. The median value of T-Hg in human hair in Quibdo was 1.26 µg/g (range: 0.02-116.40 µg/g), while in Paimado it was 0.67 µg/g (range: 0.07-6.47 µg/g). Mercury levels in locations examined were weakly associated with height (r=0.145, P=0.024). The levels of THg in the air in Quibdo were high inside gold shops, being up to 200.9 times higher than the reference site. Mercury concentrations in fish from Atrato River were above WHO limit (0.5 µg/g), with the highest levels in Pseudopimelodus schultzi, Ageneiosus pardalis, Sternopygus aequilabiatus, Rhamdia quelen and Hoplias malabaricus, while the lowest appeared in Cyphocharax magdalenae and Hemiancistrus wilsoni. Based on fish consumption, these last two species offer low risk to human health. Sediment samples from fifty different sites of the Atrato River showed low concentrations of T-Hg, with little variability between stations. However, contamination factors (CF) revealed moderate pollution in 44% of sampling sites along the river. In addition to Hg, other trace elements threaten this site of high biodiversity. To protect this natural resource, the Constitutional Court of Colombia declared that the river as a subject of legal rights. The objective of this study was to quantify trace elements in sediments and fish from the Atrato basin, assessing their environmental and human health risk. Forty-two trace elements were quantified using ICP-MS. Thirty-one elements increased their concentration downstream of the river. The CF suggests that the sediments were moderately polluted by Cr, Cu, Cd and heavily polluted by As. Most stations had higher Cr (98%) and Ni (78%) concentrations greater than the criterion of Probable Effect Concentration (PEC). Together, toxic elements generate a pollution Load Index (PLI) and a potential ecological risk index (RI) that categorized 54% of the sediments as polluted and 90% as moderate polluted, respectively. Hemiancistrus wilsoni, a low trophic guild fish species, had the greater average levels of Ni, Cu, As and Cd, among other elements. Rubidium and Cs showed a positive correlation with the fish trophic network, suggesting that these two metals are biomagnified according to the food chain. The Hazard Quotient (HQ) for As was greater than 1 for several species, indicating a potential risk to human health. In conclusion, pollution by Hg is widespread in the Biogeographic Choco, collectively, the data suggests that the extraction of gold carried out in this area of high biodiversity releases toxic elements that decline the quality of sediments in the Atrato River, incorporationing in the trophic chain which constitutes a great threat on the health of human and the environmental due to the consumption of fish, altering the chances of survival of species in impacted ecosystems, due to this urgent legal and civil actions should be implemented to stop massive deforestation driven by the mining, enforcing the right of the Atrato River, protecting of the populations and preserving this site of high biodiversity, government actions must be applied to anthropogenic activities.DoctoradoDoctor(a) en Toxicología Ambientalapplication/pdfspaUniversidad de CartagenaFacultad de Ciencias FarmacéuticasCartagena de IndiasDoctorado en Toxicología AmbientalDerechos Reservados - Universidad de Cartagena, 2019https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)http://purl.org/coar/access_right/c_abf2Toxicological impact on environmental matrices by trace elements from gold mining in the biogeographic Choco, Colombia.Trabajo de grado - Doctoradoinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06Textinfo:eu-repo/semantics/doctoralThesishttps://purl.org/redcol/resource_type/TDhttp://purl.org/coar/version/c_970fb48d4fbd8a85Toxicológical chemistryToxicologyChocó (Colombia: Departamento)Andreani, G., Cannavacciuolo, A., Menotta, S., Spallucci, V., Fedrizzi, G., Carpenè, E., Isani, G. 2019. Environmental exposure to non-essential trace elements in two bat species from urbanised (Tadarida teniotis) and open land (Miniopterus schreibersii) areas in Italy. Environ. Pollut. 254, 113034.Anandkumar, A., Nagarajan, R., Prabakaran, K., Bing, C. H., Rajaram, R., Li, J., Du, D. 2019. Bioaccumulation of trace metals in the coastal Borneo (Malaysia) and health risk assessment. Mar. Pollut. Bull. 145: 56-66.Arulkumar, A., Nigariga, P., Paramasivam, S., Rajaram, R. 2019. Metals accumulation in edible marine algae collected from Thondi coast of Palk Bay, Southeastern India. Chemosphere. 221: 856-862.El Mahmoud-Hamed, M. S., Montesdeoca-Esponda, S., Santana-Del Pino, A., Zamel, M. L., Brahim, M., T’feil, H., Santana-Rodiguez, J. J., Sidoumou, Z., Sidi’Ahmed-Kankou, M. 2019. Distribution and health risk assessment of cadmium, lead, and mercury in freshwater fish from the right bank of Senegal River in Mauritania. Environ. Monit. Assess. 191(8): 493.Jena, S., Perwez, A., Singh, G. 2019. Trace element characterization of fine particulate matter and assessment of associated health risk in mining area, transportation routes and institutional area of Dhanbad, India. Environ. Geochem. health. 1-17.Kumar, S. B., Padhi, R. K., Satpathy, K. K. 2019. Trace metal distribution in crab organs and human health risk assessment on consumption of crabs collected from coastal water of South East coast of India. Mar. Pollut. Bull. 141: 273-282.Mahaffey, K.R., 1999. Methylmercury: a new look at the risks. Public Health Rep. 114, 396.Maramba, N. P., Reyes, J. P., Francisco-Rivera, A. T., Panganiban, L. C. R., Dioquino, C., Dando, N., Timbang, R., Akagi, H., Castillo, M. T., Quitoriano, C., Afuang, M., Matsuyama, A., Eguchi, T., Fuchigami, Y. 2006. Environmental and human exposure assessment monitoring of communities near an abandoned mercury mine in the Philippines: A toxic legacy. J. Environ manage. 81(2): 135- 145.Mhlongo, S. E., Amponsah-Dacosta, F., Muzerengi, C., Gitari, W. M., Momoh, A. 2019. The impact of artisanal mining on rehabilitation efforts of abandoned mine shafts in Sutherland goldfield, South Africa. Jàmbá: Journal of Disaster Risk Studies, 11(2), 7.Langeland, A. L., Hardin, R. D., Neitzel, R. L. 2017. Mercury Levels in Human Hair and Farmed Fish near Artisanal and Small-Scale Gold Mining Communities in the Madre de Dios River Basin, Peru. Int. J. Environ. Res. Public Health. 14, 302.Liang-Ching, H., Ching-Yi, H., Yen-Hsun, C., Ho-Wen, C., YaTing, C., Heng, Y. T., Tsan-Yao, C., Chiung-Fen, C., Yu-Ting, L., Yu-Min, T. 2016. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries. Sci. Rep. 6.34250.Olivero-Verbel, J., Caballero-Gallardo, K., Negrete-Marrugo, J., 2011. Relationship between localization of gold mining areas and hair mercury levels in people from Bolivar, north of Colombia. Biol. Trace Elem. Res. 144, 118-132.Olivero-Verbel, J., Carranza-Lopez, L., Caballero-Gallardo, K., Ripoll-Arboleda, A., Muñoz-Sosa, D., 2016. Human exposure and risk assessment associated with mercury pollution in the Caqueta River, Colombian Amazon. Environ. Sci. Pollut. Res. 23, 20761-20771.Palacios-Torres, Y., Caballero-Gallardo, K., Olivero-Verbel, J., 2018. Mercury pollution by gold mining in a global biodiversity hotspot, the Choco biogeographic region, Colombia. Chemosphere. 193, 421-430.Palacios-Torres, Y., de la Rosa, J.D., Olivero-Verbel, J. 2019. Trace elements in sediments and fish from Atrato River: An ecosystem with legal rights impacted by gold mining at the Colombian Pacific. Environ. Pollut. 113290.Ribeiro, C., Couto, C., Ribeiro, A. R., Maia, A. S., Santos, M., Tiritan, M. E., Pinto, E., Almeida, A. A. 2018. Distribution and environmental assessment of trace elements contamination of water, sediments and flora from Douro River estuary, Portugal. Sci. Total Environ. 639, 1381-1393.Selin, N.E., 2009. Global biogeochemical cycling of mercury: a review. Annu. Rev. Environ. Resour. 34, 43-63.Al-Ayadhi, L. Y. 2005. Heavy metals and trace elements in hair samples of autistic children in central Saudi Arabia. Neurosciences (Riyadh, Saudi Arabia), 10(3), 213- 218.Armenteras, D., Rodriguez, N., Retana, J. 2009. Are conservation strategies effective in avoiding the deforestation of the Colombian Guyana Shield? Biol Conserv.; 142: 1411–1419.Atique Ullah, A. K. M., Maksud, M.A., Khan, S.R., Lutfa, L. N., Shamshad, B., Quraishi. 2017. Dietary intake of heavy metals from eight highly consumed species of cultured fish and possible human health risk implications in Bangladesh. Toxicology Reports 4:574–579.Burns, D. A., Riva-Murray, K., Bradley, P. M., Aiken, G. R., Brigham, M. E. 2012. Landscape controls on total and methyl Hg in the upper Hudson River basin, New York, USA. J Geophys Res Biogeosci 117:G01034.Davis, J. A., Ross, J. R. M., Bezalel, S., Sim, L., Bonnema, A., Ichikawa, G., Ackerman, J. T. 2016. Hg concentrations in fish from coastal waters of California and Western North America. Science of The Total Environment. (2016).Drenner R. W., Chumchal, M. M., Jones, C. M., Lehmann, C. M. B., Gay, D. A., Donato, D. I. 2013. Effects of mercury deposition and coniferous forests on the mercury contamination of fish in the South-Central United States. Environ Sci Technol 47:1274–1279.Fagua, J. C., Ramsey, R. D. 2019. Geospatial modeling of land cover changes in the Choco´-Darien global ecoregion of South America; One of most biodiverse and rainy areas in the world. PLoS ONE. 14(2): e0211324.Fall, C., Hinojosa-Peña, A., Carreño-de-León, M. C. 2007. Design of a monitoring network and assessment of the pollution on the Lerma River and its tributaries by wastewaters disposal. Sci. Total Environ. 373, 208–219.Amat-García, G.D., Blanco-Vargas, E., Reyes-Castillo, P., 2004. Lista de especies de los escarabajos pasálidos (Coleoptera: Passalidae) de Colombia. Rev. Biota Colombiana. 5, 173-182.Aschner, M., Aschner, J.L., 1990. Mercury neurotoxicity: mechanisms of blood-brain barrier transport. Neurosci. Biobehav. Rev. 14, 169-176.Bernhoft, R.A. 2012. Mercury toxicity and treatment: a review of the literature. J. Environ. Public Health. 2012, 460508.Castaño, O., G. Cárdenas, E. Hernández y F. Castro. 2004. Reptiles en el Chocó biogeográfico. In: Rangel-Ch., (ed.). Diversidad biótica. Tomo IV. Bogotá: Editorial Guadalupe Ltda. p. 277-324.Castellanos, A., Chaparro-Narváez, P., Morales-Plaza, C.D., Alzate, A., Padilla, J., Arévalo, M., Herrera, S. 2016. Malaria in gold-mining areas in Colombia. Mem. Inst. Oswaldo Cruz. 111, 59-66.Castilhos, Z., Bidone, E., Lacerda, L., 1998. Increase of the background human exposure to mercury through fish consumption due to gold mining at the Tapajós River region, Pará State, Amazon. Bull. Environ. Contam. Toxicol. 61, 202-209.Copat, C., Arena, G., Fiore, M., Ledda, C., Fallico, R., Sciacca, S., Ferrante, M., 2013a. Heavy metals concentrations in fish and shellfish from eastern Mediterranean Sea: consumption advisories. Food Chem. Toxicol. 53, 33-37.Copat, C., Conti, G.O., Signorelli, C., Marmiroli, S., Sciacca, S., Vinceti, M., Ferrante, M., 2013b. Risk assessment for metals and PAHs by mediterranean seafood. Food Nut. Sci. 4, 10.Cordy, P., Veiga, M.M., Salih, I., Al-Saadi, S., Console, S., Garcia, O., Mesa, L.A., Velásquez-López, P.C., Roeser, M., 2011. Mercury contamination from artisanal gold mining in Antioquia, Colombia: The world's highest per capita mercury pollution. Sci. Total Environ. 410-411, 154-160.PublicationORIGINAL2019_TESIS DE GRADO_YUBER PALACIOS TORRES.pdf2019_TESIS DE GRADO_YUBER PALACIOS TORRES.pdfapplication/pdf5509825https://dspace7-unicartagena.metabuscador.org/bitstreams/09549de8-e7fc-44c3-976a-76a21db4c7c1/download520bdd60fe3edef478fd8829fcbc30ceMD51Formato Biblioteca_Yuber Palacios Torres .pdfFormato Biblioteca_Yuber Palacios Torres .pdfapplication/pdf453323https://dspace7-unicartagena.metabuscador.org/bitstreams/e2a6779e-5a51-4667-bc4f-db5c8aaaa50b/downloadb748b846087d8a78d7176eba4f34f071MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81756https://dspace7-unicartagena.metabuscador.org/bitstreams/f852aa88-055e-4598-8102-a55cf7ac1f05/download7b38fcee9ba3bc8639fa56f350c81be3MD53TEXT2019_TESIS DE GRADO_YUBER PALACIOS TORRES.pdf.txt2019_TESIS DE GRADO_YUBER PALACIOS TORRES.pdf.txtExtracted texttext/plain207627https://dspace7-unicartagena.metabuscador.org/bitstreams/9f195d56-6cac-42b9-9126-bbfb0c92afbf/download6315cf175aa95ac979e767f873d4e1acMD54Formato Biblioteca_Yuber Palacios Torres .pdf.txtFormato Biblioteca_Yuber Palacios Torres .pdf.txtExtracted texttext/plain1https://dspace7-unicartagena.metabuscador.org/bitstreams/a257f43b-3c1a-4d7e-aba3-b112de5a5ec9/download68b329da9893e34099c7d8ad5cb9c940MD56THUMBNAIL2019_TESIS DE GRADO_YUBER PALACIOS TORRES.pdf.jpg2019_TESIS DE GRADO_YUBER PALACIOS TORRES.pdf.jpgGenerated Thumbnailimage/jpeg15355https://dspace7-unicartagena.metabuscador.org/bitstreams/125a9e12-d38f-4873-878b-cbfcd5a479f7/download6f907d1b494502772990e8553385722aMD55Formato Biblioteca_Yuber Palacios Torres .pdf.jpgFormato Biblioteca_Yuber Palacios Torres .pdf.jpgGenerated Thumbnailimage/jpeg17648https://dspace7-unicartagena.metabuscador.org/bitstreams/18e49e09-3358-4cee-9b1d-794b2e5645df/download47e576e55529e93f29296ec10115dc18MD5711227/16523oai:dspace7-unicartagena.metabuscador.org:11227/165232024-08-28 17:32:56.676https://creativecommons.org/licenses/by-nc/4.0/Derechos Reservados - Universidad de Cartagena, 2019open.accesshttps://dspace7-unicartagena.metabuscador.orgBiblioteca Digital Universidad de Cartagenabdigital@metabiblioteca.comCkFsIGZpcm1hciB5IHByZXNlbnRhciBlc3RhIGxpY2VuY2lhLCB1c3RlZCAoQVVUT1IgTyBBVVRPUkVTKSAgbyBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGVsIHByb3BpZXRhcmlvKFMpIGdhcmFudGl6YSBhICBsYSBVTklWRVJTSURBRCBERSBDQVJUQUdFTkEgZWwgZGVyZWNobyBleGNsdXNpdm8gZGUgcmVwcm9kdWNpciwgdHJhZHVjaXIgKGNvbW8gc2UgZGVmaW5lIG3DoXMgYWRlbGFudGUpIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byAoaW5jbHV5ZW5kbyBlbCByZXN1bWVuKSBlbiB0b2RvIGVsIG11bmRvICBlbiBmb3JtYSBpbXByZXNhIHkgZW4gZm9ybWF0byBlbGVjdHLDs25pY28geSBlbiBjdWFscXVpZXIgbWVkaW8sIGluY2x1eWVuZG8gYXVkaW8gbyB2aWRlby4KClVzdGVkIGFjZXB0YSBxdWUgbGEgVU5JVkVSU0lEQUQgREUgQ0FSVEFHRU5BICBwdWVkZSwgc2luIGNhbWJpYXIgZWwgY29udGVuaWRvIGNvbnZlcnRpcmxvLCBwcmVzZW50YXJsbyAgYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgbG9zIGZpbmVzIGRlIGNvbnNlcnZhY2nDs24uCgpVc3RlZCB0YW1iacOpbiBhY2VwdGEgcXVlIGxhIFVOSVZFUlNJREFEIERFIENBUlRBR0VOQSAgIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byBwYXJhIGZpbmVzIGRlIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24uCgpVc3RlZCBkZWNsYXJhIHF1ZSBlbCBkb2N1bWVudG8gZXMgdW4gdHJhYmFqbyBvcmlnaW5hbCB5ICBxdWUgdGllbmUgZWwgZGVyZWNobyBkZSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuICBUYW1iacOpbiByZXByZXNlbnRhbiAgbG8gbWVqb3IgZGUgc3UgY29ub2NpbWllbnRvIHkgbm8gaW5mcmluZ2VuICBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbmFkaWUuCgpTaSBlbCBkb2N1bWVudG8gY29udGllbmUgbWF0ZXJpYWxlcyBkZSBsb3MgcXVlIG5vIHRpZW5lIGxvcyAgZGVyZWNob3MgZGUgYXV0b3IsIHVzdGVkIGRlY2xhcmEgcXVlIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gc2luIHJlc3RyaWNjacOzbiBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zLCBkYSBhIGNvbmNlZGVyICBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgeSBxdWUgY29tbyBtYXRlcmlhbCBwcm9waWVkYWQgIGRlIHRlcmNlcm9zICBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyB5IHJlY29ub2NpZG8gZGVudHJvIGRlbCB0ZXh0byBvIGVsIGNvbnRlbmlkbyBkZSBsYSBwcmVzZW50YWNpw7NuLgoKU2kgbGEgcHJlc2VudGFjacOzbiBzZSBiYXNhIGVuICB0cmFiYWpvcyBRVUUgU0UgSEEgcGF0cm9jaW5hZG8gbyBhcG95YWRvIFBPUiBVTkEgQUdFTkNJQSBVIE9SR0FOSVpBQ0nDk04gUVVFIE5PIFNFQSBMQSBVTklWRVJTSURBRCBERSBDQVJUQUdFTkEsIE1BTklGSUVTVEEgUVVFIFRJRU5FIFFVRSBDVU1QTElSIGRlcmVjaG9zIGEgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHF1ZSBleGlnZW4gZXN0ZSBDb250cmF0byBvIGFjdWVyZG8uCgpEaWNlIHF1ZSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgc3Ugbm9tYnJlIChzKSBjb21vIGVsIGF1dG9yIChzKSBvIHByb3BpZXRhcmlvIChhKSBkZSBsb3MgZG9jdW1lbnRvIHkgbm8gaGFyw6EgbmluZ3VuYSBhbHRlcmFjacOzbiwgZXhlbnRvIGxhcyBwZXJtaXRpZGFzIGVuIGVzdGEgbGljZW5jaWEgcGFyYSBzdSBwcmVzZW50YWNpw7NuLgoKCg==