Caracterización de factores inmunológicos y microbiológicos asociados a la colonización e infección por Staphylococcus aureus
Staphylococcus aureus (S. aureus) es un colonizador y patógeno humano eficaz. Sin embargo, los mecanismos moleculares e inmunológicos involucrados en la interacción de S. aureus con el hospedero durante la colonización y la infección no se conocen por completo. No obstante, esto requiere una compren...
- Autores:
-
Montes Guevara, Oscar Alonso
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Cartagena
- Repositorio:
- Repositorio Universidad de Cartagena
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unicartagena.edu.co:11227/15960
- Acceso en línea:
- https://hdl.handle.net/11227/15960
http://dx.doi.org/10.57799/11227/96
- Palabra clave:
- Inmunología
Inmunología molecular
Descontaminación biológica
Estafilococos
- Rights
- openAccess
- License
- Derechos Reservados - Universidad de Cartagena, 2023
id |
UCART2_621f45c9df1cb7904be8ade2b96ce941 |
---|---|
oai_identifier_str |
oai:repositorio.unicartagena.edu.co:11227/15960 |
network_acronym_str |
UCART2 |
network_name_str |
Repositorio Universidad de Cartagena |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Caracterización de factores inmunológicos y microbiológicos asociados a la colonización e infección por Staphylococcus aureus |
title |
Caracterización de factores inmunológicos y microbiológicos asociados a la colonización e infección por Staphylococcus aureus |
spellingShingle |
Caracterización de factores inmunológicos y microbiológicos asociados a la colonización e infección por Staphylococcus aureus Inmunología Inmunología molecular Descontaminación biológica Estafilococos |
title_short |
Caracterización de factores inmunológicos y microbiológicos asociados a la colonización e infección por Staphylococcus aureus |
title_full |
Caracterización de factores inmunológicos y microbiológicos asociados a la colonización e infección por Staphylococcus aureus |
title_fullStr |
Caracterización de factores inmunológicos y microbiológicos asociados a la colonización e infección por Staphylococcus aureus |
title_full_unstemmed |
Caracterización de factores inmunológicos y microbiológicos asociados a la colonización e infección por Staphylococcus aureus |
title_sort |
Caracterización de factores inmunológicos y microbiológicos asociados a la colonización e infección por Staphylococcus aureus |
dc.creator.fl_str_mv |
Montes Guevara, Oscar Alonso |
dc.contributor.advisor.none.fl_str_mv |
Reyes Ramos, Niradiz |
dc.contributor.author.none.fl_str_mv |
Montes Guevara, Oscar Alonso |
dc.subject.armarc.none.fl_str_mv |
Inmunología Inmunología molecular Descontaminación biológica Estafilococos |
topic |
Inmunología Inmunología molecular Descontaminación biológica Estafilococos |
description |
Staphylococcus aureus (S. aureus) es un colonizador y patógeno humano eficaz. Sin embargo, los mecanismos moleculares e inmunológicos involucrados en la interacción de S. aureus con el hospedero durante la colonización y la infección no se conocen por completo. No obstante, esto requiere una comprensión adecuada de los determinantes involucrados en la colonización e infección de su hospedero. Esta tesis tuvo como objetivo central realizar la caracterización de varios factores inmunológicos y microbiológicos que han sido previamente asociados a la colonización e infección por S. aureus, en una población de pacientes con diagnóstico confirmado de infección por esta bacteria e individuos controles sanos de la ciudad de Cartagena de Indias y áreas geográficas circunvecinas. Parte de los resultados derivados de este trabajo han sido publicados en tres artículos en revistas indexadas internacionalmente. En el artículo 1 (publicado), el análisis del microbioma nasal de individuos sanos reveló que la diversidad bacteriana y fúngica es más abundante en las personas colonizadas por S. aureus que en los no portadores, asimismo se corroboró que muchas especies micóticas están conviviendo dentro del vestíbulo nasal sano en una biomasa y riqueza sustanciales. En el artículo 2 (publicado), se detalla la primera representación de la distribución poblacional de SARM y SASM responsables de infecciones atendidas en el hospital pediátrico participante, donde se identificaron los clones epidémicos más prevalentes en la población en estudio, ST8-SARM-IVc, ST923-SARM-IVa y ST8-SARM-IVa. En el artículo 3 (manuscrito en preparación), en pacientes con celulitis comparados con portadores y no-portadores sanos de S. aureus, se detectaron niveles séricos de tres quimiocinas proinflamatorias, IL-8, RANTES, y MDC, significativamente elevadas en estos pacientes. Estos hallazgos aportan información nueva sobre la participación potencial de algunas quimiocinas proinflamatorias en los procesos de colonización e infección por S. aureus. En el artículo 4 (manuscrito en preparación), la producción de biopelículas por aislados clínicos SARM y SASM fue significativamente mayor en comparación con la producida por aislamientos colonizantes. El análisis de la relación entre la capacidad de formación de biopelículas y el perfil de varios genes previamente asociados al proceso de producción de biopelículas, permitió detectar diferencias significativas entre los dos grupos de aislamientos, encontrándose una mayor frecuencia del gen ica A en el grupo de aislamientos clínicos. En el artículo 5 (publicado), en el análisis del genoma secuenciado del aislamiento COL52-A5 obtenido de un individuo sano colonizado persistentemente, se encontró numerosos factores de virulencia y resistencia. El esclarecimiento de cuáles son las características genómicas de esta bacteria que favorecen el transporte persistente en individuos sanos requiere que se realice un análisis comparativo detallado de los genomas secuenciados de un número adecuado de cepas persistentes e intermitentes. En el artículo 6 (manuscrito en preparación), las evidencias de este trabajo sugieren que HLADRB1*07:01:01 pudiera estar implicado en la susceptibilidad al transporte nasal de S. aureus en individuos sanos colonizados con esta bacteria. Se requieren estudios adicionales con un tamaño muestral mayor para verificar los hallazgos encontrados. En consecuencia, los resultados alcanzados en la elaboración de esta tesis destacan las complejidades de los mecanismos involucrados en la interacción de la bacteria S. aureus con el hospedero humano. Se requieren estudios adicionales para lograr un mayor esclarecimiento de los factores involucrados en los procesos de colonización e infección llevados a cabo por esta bacteria en las poblaciones humanas. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-02-15T14:56:29Z |
dc.date.available.none.fl_str_mv |
2023-02-15T14:56:29Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11227/15960 http://dx.doi.org/10.57799/11227/96 |
url |
https://hdl.handle.net/11227/15960 http://dx.doi.org/10.57799/11227/96 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad de Cartagena, 2023 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad de Cartagena, 2023 https://creativecommons.org/licenses/by-nc/4.0/ Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de Cartagena |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Medicina |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.publisher.program.spa.fl_str_mv |
Doctorado en Ciencias Biomédicas |
institution |
Universidad de Cartagena |
bitstream.url.fl_str_mv |
https://dspace7-unicartagena.metabuscador.org/bitstreams/b73a78e0-e060-4f85-ad0e-4b9036329888/download https://dspace7-unicartagena.metabuscador.org/bitstreams/8bb32e7e-adb9-40fd-b448-c208802279ac/download https://dspace7-unicartagena.metabuscador.org/bitstreams/cc55a412-bd00-4d91-875a-7a8e1b7f2870/download https://dspace7-unicartagena.metabuscador.org/bitstreams/7e76a442-0ae1-4026-bc88-3c84a7db4bf7/download https://dspace7-unicartagena.metabuscador.org/bitstreams/2954322e-7171-4d3e-b20b-1de0a9964cec/download https://dspace7-unicartagena.metabuscador.org/bitstreams/3b94ce2e-66fd-4a9d-a623-18c3e7225241/download https://dspace7-unicartagena.metabuscador.org/bitstreams/c81f934a-789a-4bb1-a706-fec734be8341/download |
bitstream.checksum.fl_str_mv |
e99db441105ab86d94ed0a9eea25107f b2c6eca8025855cf4c12f0f7d8b7eb2c 7b38fcee9ba3bc8639fa56f350c81be3 979baf1a776585a6cccf51356b95126d e1c06d85ae7b8b032bef47e42e4c08f9 efc4282fbced16421ff5051a79367db7 bb41fb7a4c4d99eb33bbd0f2f82edcb2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital Universidad de Cartagena |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1818153204647460864 |
spelling |
Reyes Ramos, NiradizMontes Guevara, Oscar Alonso2023-02-15T14:56:29Z2023-02-15T14:56:29Z2023https://hdl.handle.net/11227/15960http://dx.doi.org/10.57799/11227/96Staphylococcus aureus (S. aureus) es un colonizador y patógeno humano eficaz. Sin embargo, los mecanismos moleculares e inmunológicos involucrados en la interacción de S. aureus con el hospedero durante la colonización y la infección no se conocen por completo. No obstante, esto requiere una comprensión adecuada de los determinantes involucrados en la colonización e infección de su hospedero. Esta tesis tuvo como objetivo central realizar la caracterización de varios factores inmunológicos y microbiológicos que han sido previamente asociados a la colonización e infección por S. aureus, en una población de pacientes con diagnóstico confirmado de infección por esta bacteria e individuos controles sanos de la ciudad de Cartagena de Indias y áreas geográficas circunvecinas. Parte de los resultados derivados de este trabajo han sido publicados en tres artículos en revistas indexadas internacionalmente. En el artículo 1 (publicado), el análisis del microbioma nasal de individuos sanos reveló que la diversidad bacteriana y fúngica es más abundante en las personas colonizadas por S. aureus que en los no portadores, asimismo se corroboró que muchas especies micóticas están conviviendo dentro del vestíbulo nasal sano en una biomasa y riqueza sustanciales. En el artículo 2 (publicado), se detalla la primera representación de la distribución poblacional de SARM y SASM responsables de infecciones atendidas en el hospital pediátrico participante, donde se identificaron los clones epidémicos más prevalentes en la población en estudio, ST8-SARM-IVc, ST923-SARM-IVa y ST8-SARM-IVa. En el artículo 3 (manuscrito en preparación), en pacientes con celulitis comparados con portadores y no-portadores sanos de S. aureus, se detectaron niveles séricos de tres quimiocinas proinflamatorias, IL-8, RANTES, y MDC, significativamente elevadas en estos pacientes. Estos hallazgos aportan información nueva sobre la participación potencial de algunas quimiocinas proinflamatorias en los procesos de colonización e infección por S. aureus. En el artículo 4 (manuscrito en preparación), la producción de biopelículas por aislados clínicos SARM y SASM fue significativamente mayor en comparación con la producida por aislamientos colonizantes. El análisis de la relación entre la capacidad de formación de biopelículas y el perfil de varios genes previamente asociados al proceso de producción de biopelículas, permitió detectar diferencias significativas entre los dos grupos de aislamientos, encontrándose una mayor frecuencia del gen ica A en el grupo de aislamientos clínicos. En el artículo 5 (publicado), en el análisis del genoma secuenciado del aislamiento COL52-A5 obtenido de un individuo sano colonizado persistentemente, se encontró numerosos factores de virulencia y resistencia. El esclarecimiento de cuáles son las características genómicas de esta bacteria que favorecen el transporte persistente en individuos sanos requiere que se realice un análisis comparativo detallado de los genomas secuenciados de un número adecuado de cepas persistentes e intermitentes. En el artículo 6 (manuscrito en preparación), las evidencias de este trabajo sugieren que HLADRB1*07:01:01 pudiera estar implicado en la susceptibilidad al transporte nasal de S. aureus en individuos sanos colonizados con esta bacteria. Se requieren estudios adicionales con un tamaño muestral mayor para verificar los hallazgos encontrados. En consecuencia, los resultados alcanzados en la elaboración de esta tesis destacan las complejidades de los mecanismos involucrados en la interacción de la bacteria S. aureus con el hospedero humano. Se requieren estudios adicionales para lograr un mayor esclarecimiento de los factores involucrados en los procesos de colonización e infección llevados a cabo por esta bacteria en las poblaciones humanas.DoctoradoDoctor(a) en Ciencias Biomédicasapplication/pdfspaUniversidad de CartagenaFacultad de MedicinaCartagena de IndiasDoctorado en Ciencias BiomédicasDerechos Reservados - Universidad de Cartagena, 2023https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)http://purl.org/coar/access_right/c_abf2Caracterización de factores inmunológicos y microbiológicos asociados a la colonización e infección por Staphylococcus aureusTrabajo de grado - Doctoradoinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06Textinfo:eu-repo/semantics/doctoralThesishttps://purl.org/redcol/resource_type/TDhttp://purl.org/coar/version/c_970fb48d4fbd8a85InmunologíaInmunología molecularDescontaminación biológicaEstafilococosCervantes-García E, García-González R, Salazar-Schettino PM. Características generales del Staphylococcus aureus. Revista Mexicana de Patología Clínica y Medicina de Laboratorio. 2014;61(1):28-40.de Souza Lemos A, de Souza ACMF, Karas B, Calixto CM, Meijerink CI, Nascimento FC, et al. Prevalence of Staphylococcus aureus and MRSA among Medical students: a literature review. Research, Society and Development. 2021;10(11):e347101119536-eKoneman EW, Allen SD, Janda W, Schreckenberger P, Winn W. Diagnostic microbiology. The nonfermentative gram-negative bacilli Philedelphia: Lippincott-Raven Publishers. 1997:253-320.Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, et al. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. The Lancet. 2001;357(9264):1225-40Liu L, Wang Y, Bojer MS, Andersen PS, Ingmer H. High persister cell formation by clinical Staphylococcus aureus strains belonging to clonal complex 30. Microbiology. 2020;166(7):654-8.van Belkum A. Staphylococcal colonization and infection: homeostasis versus disbalance of human (innate) immunity and bacterial virulence. Current opinion in infectious diseases. 2006;19(4):339-44van Belkum A. Staphylococcal colonization and infection: homeostasis versus disbalance of human (innate) immunity and bacterial virulence. Current opinion in infectious diseases. 2006;19(4):339-44Sakr A, Bregeon F, Mege JL, Rolain JM, Blin O. Staphylococcus aureus Nasal Colonization: An Update on Mechanisms, Epidemiology, Risk Factors, and Subsequent Infections. Front Microbiol. 2018;9:2419.Mulcahy ME, McLoughlin RM. Host-Bacterial Crosstalk Determines Staphylococcus aureus Nasal Colonization. Trends Microbiol. 2016;24(11):872-86.Modak R, Das Mitra S, Vasudevan M, Krishnamoorthy P, Kumar M, Bhat AV, et al. Epigenetic response in mice mastitis: Role of histone H3 acetylation and microRNA(s) in the regulation of host inflammatory gene expression during Staphylococcus aureus infection. Clin Epigenetics. 2014;6(1):12.Liu Q, Mazhar M, Miller LS. Immune and Inflammatory Reponses to Staphylococcus aureus Skin Infections. Curr Dermatol Rep. 2018;7(4):338-49.. Nair D, Memmi G, Hernandez D, Bard J, Beaume M, Gill S, et al. Whole-genome sequencing of Staphylococcus aureus strain RN4220, a key laboratory strain used in virulence research, identifies mutations that affect not only virulence factors but also the fitness of the strain. J Bacteriol. 2011;193(9):2332-5.Sakr A, Brégeon F, Mège J-L, Rolain J-M, Blin O. Staphylococcus aureus nasal colonization: an update on mechanisms, epidemiology, risk factors, and subsequent infections. Frontiers in microbiology. 2018;9:2419.Wertheim HF, Vos MC, Ott A, van Belkum A, Voss A, Kluytmans JA, et al. Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. Lancet. 2004;364(9435):703-5.Liu GY. Molecular pathogenesis of Staphylococcus aureus infection. Pediatr Res. 2009;65(5 Pt 2):71R7R.Álvarez A, Fernández L, Gutiérrez D, Iglesias B, Rodríguez A, García P. Methicillin-resistant Staphylococcus aureus in hospitals: Latest trends and treatments based on bacteriophages. Journal of Clinical Microbiology. 2019;57(12):e01006-19.Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate pointprevalence survey of health care–associated infections. New England Journal of Medicine. 2014;370(13):1198- 208.Jones MJ, Donegan NP, Mikheyeva IV, Cheung AL. Improving transformation of Staphylococcus aureus belonging to the CC1, CC5 and CC8 clonal complexes. PloS one. 2015;10(3).Choo EJ. Community-Associated Methicillin-Resistant Staphylococcus aureus in Nosocomial Infections. Infect Chemother. 2017;49(2):158-9Kateete DP, Bwanga F, Seni J, Mayanja R, Kigozi E, Mujuni B, et al. CA-MRSA and HA-MRSA coexist in community and hospital settings in Uganda. Antimicrobial Resistance & Infection Control. 2019;8(1):1-9.Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. Journal of clinical microbiology. 2000;38(3):1008-15.Grundmann H, Aanensen DM, van den Wijngaard CC, Spratt BG, Harmsen D, Friedrich AW. Geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecular-epidemiological analysis. PLoS Med. 2010;7(1):e1000215.Jian Y, Zhao L, Zhao N, Lv HY, Liu Y, He L, et al. Increasing prevalence of hypervirulent ST5 methicillin susceptible Staphylococcus aureus subtype poses a serious clinical threat. Emerg Microbes Infect. 2021;10(1):109-22.McCarthy H, Rudkin JK, Black NS, Gallagher L, O'Neill E, O'Gara JP. Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Front Cell Infect Microbiol. 2015;5:1.Vázquez Núñez JC. Eficacia inhibitoria entre el extracto metanólico de Plantago major (llantén) y clindamicina en colonias de Staphylococcus aureus (ATCC 25923) in vitro. 2018.Salgado BAB. Surface colonisation and survival of Staphylococcus aureus: The University of Liverpool (United Kingdom); 2019.Mulcahy ME, McLoughlin RM. Host–bacterial crosstalk determines Staphylococcus aureus nasal colonization. Trends in microbiology. 2016;24(11):872-86.Kluytmans J, Van Belkum A, Verbrugh H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clinical microbiology reviews. 1997;10(3):505-20.Nouwen JL, Ott A, Kluytmans-Vandenbergh MF, Boelens HA, Hofman A, Van Belkum A, et al. Predicting the Staphylococcus aureus nasal carrier state: derivation and validation of a “culture rule”. Clinical Infectious Diseases. 2004;39(6):806-11.Nouwen JL, Ott A, Kluytmans-Vandenbergh MF, Boelens HA, Hofman A, Van Belkum A, et al. Predicting the Staphylococcus aureus nasal carrier state: derivation and validation of a “culture rule”. Clinical Infectious Diseases. 2004;39(6):806-11.van Belkum A, Verkaik NJ, De Vogel CP, Boelens HA, Verveer J, Nouwen JL, et al. Reclassification of Staphylococcus aureus nasal carriage types. The Journal of infectious diseases. 2009;199(12):1820-6Flores R, Villarroel JL, Valenzuela F. Enfrentamiento de las infecciones de piel en el adulto. Revista Médica Clínica Las Condes. 2021;32(4):429-41.Lamaro-Cardoso J, de Lencastre H, Kipnis A, Pimenta FC, Oliveira LS, Oliveira RM, et al. Molecular epidemiology and risk factors for nasal carriage of Staphylococcus aureus and methicillin-resistant S. aureus in infants attending day care centers in Brazil. Journal of clinical microbiology. 2009;47(12):3991-7.Ellis MW, Griffith ME, Jorgensen JH, Hospenthal DR, Mende K, Patterson JE. Presence and molecular epidemiology of virulence factors in methicillin-resistant Staphylococcus aureus strains colonizing and infecting soldiers. Journal of clinical microbiology. 2009;47(4):940-5.Lear A, McCord G, Peiffer J, Watkins RR, Parikh A, Warrington S. Incidence of Staphylococcus aureus nasal colonization and soft tissue infection among high school football players. The Journal of the American Board of Family Medicine. 2011;24(4):429-35.Saxena S, Goyal R, Das S, Mathur M, Talwar V. Prevalence of methicillin-resistant Staphylococcus aureus colonization among healthcare workers and healthy community residents. Journal of Health, Population and Nutrition. 2002:279-80.Cohn LA, Middleton JR. A veterinary perspective on methicillin‐resistant staphylococci. Journal of veterinary emergency and critical care. 2010;20(1):31-45.Rivera Romero FJ. Portafolio de la experiencia durante el Internado Médico en el período junio 2021 a febrero 2022 en los establecimientos de salud: Hospital Nacional Dos de Mayo y Centro Materno Infantil Ollantay.Castillo Higgins MV. Prevalencia de bacteriemia y sus complicaciones por Staphylococcus aureus en pacientes atendidos en el Hospital Roberto Gilbert Elizalde en el período enero 2018-diciembre 2019. 2020.Sollid JUE, Furberg AS, Hanssen AM, Johannessen M. Staphylococcus aureus: determinants of human carriage. Infection, genetics and evolution. 2014;21:531-41.Graham III PL, Lin SX, Larson EL. A US population-based survey of Staphylococcus aureus colonization. Annals of internal medicine. 2006;144(5):318-25.Lebon A, Labout J, Verbrugh HA, Jaddoe V, Hofman A, van Wamel W, et al. Dynamics and determinants of Staphylococcus aureus carriage in infancy: the Generation R Study. Bacterial carriage in infancy Risk factors and consequences The Generation R study. 2010;46(10):43.Pastacaldi C, Lewis P, Howarth P. Staphylococci and staphylococcal superantigens in asthma and rhinitis: a systematic review and meta‐analysis. Allergy. 2011;66(4):549-55Crum-Cianflone NF, Shadyab AH, Weintrob A, Hospenthal DR, Lalani T, Collins G, et al. Association of methicillin-resistant Staphylococcus aureus (MRSA) colonization with high-risk sexual behaviors in persons infected with human immunodeficiency virus (HIV). Medicine. 2011;90(6):379-89.Ruimy R, Angebault C, Djossou F, Dupont C, Epelboin L, Jarraud S, et al. Are host genetics the predominant determinant of persistent nasal Staphylococcus aureus carriage in humans? The Journal of infectious diseases. 2010;202(6):924-34.Verkaik NJ, de Vogel CP, Boelens HA, Grumann D, Hoogenboezem T, Vink C, et al. Anti-staphylococcal humoral immune response in persistent nasal carriers and noncarriers of Staphylococcus aureus. The Journal of infectious diseases. 2009;199(5):625-32.Emonts M, Uitterlinden AG, Nouwen JL, Kardys I, Maat MPd, Melles DC, et al. Host polymorphisms in interleukin 4, complement factor H, and C-reactive protein associated with nasal carriage of Staphylococcus aureus and occurrence of boils. The Journal of infectious diseases. 2008;197(9):1244-53.Nurjadi D, Herrmann E, Hinderberger I, Zanger P. Impaired β-defensin expression in human skin links DEFB1 promoter polymorphisms with persistent Staphylococcus aureus nasal carriage. The Journal of infectious diseases. 2013;207(4):666-74.Zanger P, Nurjadi D, Vath B, Kremsner PG. Persistent nasal carriage of Staphylococcus aureus is associated with deficient induction of human β-defensin 3 after sterile wounding of healthy skin in vivo. Infection and immunity. 2011;79(7):2658-62.Vuononvirta J, Toivonen L, Gröndahl-Yli-Hannuksela K, Barkoff A-M, Lindholm L, Mertsola J, et al. Nasopharyngeal bacterial colonization and gene polymorphisms of mannose-binding lectin and toll-like receptors 2 and 4 in infants. PLoS One. 2011;6(10):e26198.Messaritakis I, Samonis G, Dimopoulou D, Maraki S, Papadakis J, Daraki V, et al. Staphylococcus aureus nasal carriage might be associated with vitamin D receptor polymorphisms in type 2 diabetes. Clinical Microbiology and Infection. 2014;20(9):920-5.Krishna S, Miller LS, editors. Innate and adaptive immune responses against Staphylococcus aureus skin infections. Seminars in immunopathology; 2012: Springer.Kotpal R, Bhalla P, Dewan R, Kaur R. Incidence and risk factors of nasal carriage of Staphylococcus aureus in HIV-infected individuals in comparison to HIV-uninfected individuals: a case–control study. Journal of the International Association of Providers of AIDS Care (JIAPAC). 2016;15(2):141-7.Bassetti S, Wasmer S, Hasler P, Vogt T, Nogarth D, Frei R, et al. Staphylococcus aureus in patients with rheumatoid arthritis under conventional and anti-tumor necrosis factor-alpha treatment. The Journal of rheumatology. 2005;32(11):2125-9.Midorikawa K, Ouhara K, Komatsuzawa H, Kawai T, Yamada S, Fujiwara T, et al. Staphylococcus aureus susceptibility to innate antimicrobial peptides, β-defensins and CAP18, expressed by human keratinocytes. Infection and immunity. 2003;71(7):3730-9.Gröne A. Keratinocytes and cytokines. Veterinary immunology and immunopathology. 2002;88(1-2):1-12.Simanski M, Rademacher F, Schröder L, Schumacher HM, Gläser R, Harder J. IL-17A and IFN-γ synergistically induce RNase 7 expression via STAT3 in primary keratinocytes. PloS one. 2013;8(3):e59531.Lei J, Sun L, Huang S, Zhu C, Li P, He J, et al. The antimicrobial peptides and their potential clinical applications. American journal of translational research. 2019;11(7):3919.Iwamoto K, Moriwaki M, Miyake R, Hide M. Staphylococcus aureus in atopic dermatitis: Strain-specific cell wall proteins and skin immunity. Allergology International. 2019;68(3):309-15.Kisich KO, Howell MD, Boguniewicz M, Heizer HR, Watson NU, Leung DY. The constitutive capacity of human keratinocytes to kill Staphylococcus aureus is dependent on β-defensin 3. Journal of Investigative Dermatology. 2007;127(10):2368-80.Zanger P, Holzer J, Schleucher R, Scherbaum H, Schittek B, Gabrysch S. Severity of Staphylococcus aureus infection of the skin is associated with inducibility of human β-defensin 3 but not human β-defensin 2. Infection and immunity. 2010;78(7):3112-7Yamasaki K, Gallo RL. Antimicrobial peptides in human skin disease. European journal of dermatology. 2008;18(1):11-21.Noore J, Noore A, Li B. Cationic antimicrobial peptide LL-37 is effective against both extra-and intracellular Staphylococcus aureus. Antimicrobial agents and chemotherapy. 2013;57(3):1283-90.Mukherjee S, Karmakar S, Babu SPS. TLR2 and TLR4 mediated host immune responses in major infectious diseases: a review. Brazilian Journal of Infectious Diseases. 2016;20:193-204.Conti F, Spinelli FR, Alessandri C, Valesini G. Toll-like receptors and lupus nephritis. Clinical reviews in allergy & immunology. 2011;40(3):192-8.Zecconi A, Scali F. Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases. Immunology letters. 2013;150(1-2):12-22.Foster TJ. The MSCRAMM family of cell-wall-anchored surface proteins of gram-positive cocci. Trends in microbiology. 2019;27(11):927-41.Muñoz LC, Pinilla G, Navarrete J. Biopelícula en Staphylococcus spp.: estructura, genética y control. Enfermedades Infecciosas y Microbiología. 2019;37(1):18-29.Lacey KA, Geoghegan JA, McLoughlin RM. The role of Staphylococcus aureus virulence factors in skin infection and their potential as vaccine antigens. Pathogens. 2016;5(1):22.Rasheed NA, Hussein NR. Staphylococcus aureus: an overview of discovery, characteristics, epidemiology, virulence factors and antimicrobial sensitivity. European Journal of Molecular & Clinical Medicine. 2021;8(3):1160-83.Adhikari RP, Ajao AO, Aman MJ, Karauzum H, Sarwar J, Lydecker AD, et al. Lower antibody levels to Staphylococcus aureus exotoxins are associated with sepsis in hospitalized adults with invasive S. aureus infections. The Journal of infectious diseases. 2012;206(6):915-23.Gnanamani A, Hariharan P, Paul-Satyaseela M. Staphylococcus aureus: Overview of bacteriology, clinical diseases, epidemiology, antibiotic resistance and therapeutic approach. Frontiers in Staphylococcus aureus. 2017;4:28.Habeeb A, Hussein NR, Assafi MS, Al-Dabbagh SA. Methicillin resistant Staphylococcus aureus nasal colonization among secondary school students at Duhok City-Iraq. Journal of Microbiology and Infectious Diseases. 2014;4(02):59-63.Otto M. Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annual review of microbiology. 2010;64:143-62.Evangelista SdS, Oliveira ACd. Staphylococcus aureus meticilino resistente adquirido na comunidade: um problema mundial. Revista Brasileira de Enfermagem. 2015;68:136-43.Köck R, Becker K, Cookson B, van Gemert-Pijnen J, Harbarth S, Kluytmans J, et al. Methicillin-resistant Staphylococcus aureus (MRSA): burden of disease and control challenges in Europe. Eurosurveillance. 2010;15(41):19688.Bassetti M, Nicco E, Mikulska M. Why is community-associated MRSA spreading across the world and how will it change clinical practice? International journal of antimicrobial agents. 2009;34:S15-S9.Megevand C, Gervaix A, Heininger U, Berger C, Aebi C, Vaudaux B, et al. Molecular epidemiology of the nasal colonization by methicillin-susceptible Staphylococcus aureus in Swiss children. Clinical microbiology and infection. 2010;16(9):1414-20.Wu K, Conly J, McClure J-A, Kurwa HA, Zhang K. Arginine catabolic mobile element in evolution and pathogenicity of the community-associated methicillin-resistant Staphylococcus aureus strain USA300. Microorganisms. 2020;8(2):275.David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clinical microbiology reviews. 2010;23(3):616-87.Tenover FC, Tickler IA, Goering RV, Kreiswirth BN, Mediavilla JR, Persing DH, et al. Characterization of nasal and blood culture isolates of methicillin-resistant Staphylococcus aureus from patients in United States hospitals. Antimicrobial agents and chemotherapy. 2012;56(3):1324-30.del Rosario G, Marisol T. Epidemiología de infecciones por estafilococos aureus en pacientes ingresados en la Unidad de Cuidados Intensivos Pediátricos del Hospital del Niños Dr. Roberto Gilbert Elizalde periodo julio 2008 a junio 2010. 2015.Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler Jr VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical microbiology reviews. 2015;28(3):603-61.Lowy FD. Staphylococcus aureus infections. New England journal of medicine. 1998;339(8):520-32.Tam K, Torres VJ. Staphylococcus aureus secreted toxins and extracellular enzymes. Microbiology spectrum. 2019;7(2):7.2. 16.Seiti Yamada Yoshikawa F, Feitosa de Lima J, Notomi Sato M, Álefe Leuzzi Ramos Y, Aoki V, Leao Orfali R. Exploring the role of Staphylococcus aureus toxins in atopic dermatitis. Toxins. 2019;11(6):321.Ceccarelli F, Perricone C, Olivieri G, Cipriano E, Spinelli FR, Valesini G, et al. Staphylococcus aureus nasal carriage and autoimmune diseases: from pathogenic mechanisms to disease susceptibility and phenotype. International Journal of Molecular Sciences. 2019;20(22):5624.Kusch H, Engelmann S. Secrets of the secretome in Staphylococcus aureus. International Journal of Medical Microbiology. 2014;304(2):133-41.Spaulding AR, Salgado-Pabón W, Kohler PL, Horswill AR, Leung DY, Schlievert PM. Staphylococcal and streptococcal superantigen exotoxins. Clinical microbiology reviews. 2013;26(3):422-47.Costa AR, Batistão DW, Ribas RM, Sousa AM, Pereira MO, Botelho CM. Staphylococcus aureus virulence factors and disease. 2013Cui L, Morris A, Ghedin E. The human mycobiome in health and disease. Genome Med. BioMed. Central; 2013.Spuesens EB, Fraaij PL, Visser EG, Hoogenboezem T, Hop WC, van Adrichem LN, et al. Carriage of Mycoplasma pneumoniae in the upper respiratory tract of symptomatic and asymptomatic children: an observational study. PLoS medicine. 2013;10(5):e1001444.Xiomara M-C, Ayronis V-GA, Luisa N-BM, Carolina M-E. Estudio observacional de la microbiota intestinal aeróbica. Kasmera. 2020;48(2):e48231547Brown AF, Leech JM, Rogers TR, McLoughlin RM. Staphylococcus aureus colonization: modulation of host immune response and impact on human vaccine design. Frontiers in immunology. 2014;4:507.Wagner Mackenzie B, Chang K, Zoing M, Jain R, Hoggard M, Biswas K, et al. Longitudinal study of the bacterial and fungal microbiota in the human sinuses reveals seasonal and annual changes in diversity. Scientific reports. 2019;9(1):1-10.Laux C, Peschel A, Krismer B. Staphylococcus aureus colonization of the human nose and interaction with other microbiome members. Microbiology Spectrum. 2019;7(2):7.2. 34.Hardy BL, Merrell DS. Friend or foe: interbacterial competition in the nasal cavity. Journal of Bacteriology. 2021;203(5):e00480-20.Matthew F, Zinnia L, Gwendolyn S, Osher Ngo Yung L, Marianna I, Fonseca D, et al. Interactions of the bacteriome, virome and immune system in the nose. FEMS Microbes. 2022.Muthukrishnan G, Lamers RP, Ellis A, Paramanandam V, Persaud AB, Tafur S, et al. Longitudinal genetic analyses of Staphylococcus aureus nasal carriage dynamics in a diverse population. BMC infectious diseases. 2013;13(1):1-13.Kildow BJ, Conradie JP, Robson RL. Nostrils of healthy volunteers are independent with regard to Staphylococcus aureus carriage. Journal of clinical microbiology. 2012;50(11):3744-6.Nakatsuji T, Chen TH, Narala S, Chun KA, Two AM, Yun T, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Science translational medicine. 2017;9(378):eaah4680.Severn MM, Horswill AR. Staphylococcus epidermidis and its dual lifestyle in skin health and infection. Nature Reviews Microbiology. 2022:1-15.Simor AE. Staphylococcal decolonisation: an effective strategy for prevention of infection? The Lancet infectious diseases. 2011;11(12):952-62.Uehara Y, Nakama H, Agematsu K, Uchida M, Kawakami Y, Fattah AA, et al. Bacterial interference among nasal inhabitants: eradication of Staphylococcus aureus from nasal cavities by artificial implantation of Corynebacterium sp. Journal of Hospital Infection. 2000;44(2):127-33Glück U, Gebbers J-O. Ingested probiotics reduce nasal colonization with pathogenic bacteria (Staphylococcus aureus, Streptococcus pneumoniae, and β-hemolytic streptococci). The American journal of clinical nutrition. 2003;77(2):517-20.Broeker BM, Holtfreter S, Bekeredjian-Ding I. Immune control of Staphylococcus aureus–regulation and counter-regulation of the adaptive immune response. International journal of medical microbiology. 2014;304(2):204-14.Harrison LM, Morris JA, Lauder RM, Telford DR. Staphylococcal pyrogenic toxins in infant urine samples: a possible marker of transient bacteraemia. Journal of clinical pathology. 2009;62(8):735-8.Burian M, Grumann D, Holtfreter S, Wolz C, Goerke C, Bröker B. Expression of staphylococcal superantigens during nasal colonization is not sufficient to induce a systemic neutralizing antibody response in humans. European journal of clinical microbiology & infectious diseases. 2012;31(3):251-6.Buchan KD, Foster SJ, Renshaw SA. Staphylococcus aureus: setting its sights on the human innate immune system. Microbiology. 2019;165(4):367-85.Verkaik NJ, Lebon A, de Vogel CP, Hooijkaas H, Verbrugh HA, Jaddoe VW, et al. Induction of antibodies by Staphylococcus aureus nasal colonization in young children. Clinical microbiology and infection. 2010;16(8):1312-7.Prevaes SM, van Wamel WJ, de Vogel CP, Veenhoven RH, van Gils EJ, van Belkum A, et al. Nasopharyngeal colonization elicits antibody responses to staphylococcal and pneumococcal proteins that are not associated with a reduced risk of subsequent carriage. Infection and immunity. 2012;80(6):2186-93.Colque-Navarro P, Jacobsson G, Andersson R, Flock J-I, Möllby R. Levels of antibody against 11 Staphylococcus aureus antigens in a healthy population. Clinical and Vaccine Immunology. 2010;17(7):1117- 23.Archer NK, Harro JM, Shirtliff ME. Clearance of Staphylococcus aureus nasal carriage is T cell dependent and mediated through interleukin-17A expression and neutrophil influx. Infection and immunity. 2013;81(6):2070-5Desai R, Pannaraj PS, Agopian J, Sugar CA, Liu GY, Miller LG. Survival and transmission of communityassociated methicillin-resistant Staphylococcus aureus from fomites. American journal of infection control. 2011;39(3):219-25.Von Eiff C, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a source of Staphylococcus aureus bacteremia. New England Journal of Medicine. 2001;344(1):11-6.Senn L, Clerc O, Zanetti G, Basset P, Prod’hom G, Gordon NC, et al. The stealthy superbug: the role of asymptomatic enteric carriage in maintaining a long-term hospital outbreak of ST228 methicillin-resistant Staphylococcus aureus. MBio. 2016;7(1):e02039-15.Davis KA, Stewart JJ, Crouch HK, Florez CE, Hospenthal DR. Methicillin-resistant Staphylococcus aureus (MRSA) nares colonization at hospital admission and its effect on subsequent MRSA infection. Clinical Infectious Diseases. 2004;39(6):776-82.O’Callaghan RJ. The pathogenesis of Staphylococcus aureus eye infections. Pathogens. 2018;7(1):9Stryjewski ME, Chambers HF. Skin and soft-tissue infections caused by community-acquired methicillinresistant Staphylococcus aureus. Clinical Infectious Diseases. 2008;46(Supplement_5):S368-S77.Inoshima I, Inoshima N, Wilke GA, Powers ME, Frank KM, Wang Y, et al. A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nature medicine. 2011;17(10):1310-4.Inoshima N, Wang Y, Wardenburg JB. Genetic requirement for ADAM10 in severe Staphylococcus aureus skin infection. The Journal of investigative dermatology. 2012;132(5):1513.Popov LM, Marceau CD, Starkl PM, Lumb JH, Shah J, Guerrera D, et al. The adherens junctions control susceptibility to Staphylococcus aureus α-toxin. Proceedings of the National Academy of Sciences. 2015;112(46):14337-42.Shah J, Rouaud F, Guerrera D, Vasileva E, Popov LM, Kelley WL, et al. A dock-and-lock mechanism clusters ADAM10 at cell-cell junctions to promote α-toxin cytotoxicity. Cell reports. 2018;25(8):2132-47. e7.Cheung GY, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence. 2021;12(1):547-69.Otto M. Staphylococcal biofilms. Microbiology spectrum. 2018;6(4):6.4. 27.Schlievert PM, Davis CC. Device-associated menstrual toxic shock syndrome. Clinical microbiology reviews. 2020;33(3):e00032-19.Fisher EL, Otto M, Cheung GY. Basis of virulence in enterotoxin-mediated staphylococcal food poisoning. Frontiers in microbiology. 2018;9:436.Ono HK, Hirose S, Narita K, Sugiyama M, Asano K, Hu D-L, et al. Histamine release from intestinal mast cells induced by staphylococcal enterotoxin A (SEA) evokes vomiting reflex in common marmoset. PLoS pathogens. 2019;15(5):e1007803.McCullers JA. The co-pathogenesis of influenza viruses with bacteria in the lung. Nature Reviews Microbiology. 2014;12(4):252-62.Morens DM, Taubenberger JK, Fauci AS. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. The Journal of infectious diseases. 2008;198(7):962-70.Nakamura Y, Oscherwitz J, Cease KB, Chan SM, Muñoz-Planillo R, Hasegawa M, et al. Staphylococcus δ-toxin induces allergic skin disease by activating mast cells. Nature. 2013;503(7476):397-401.Liu H, Archer NK, Dillen CA, Wang Y, Ashbaugh AG, Ortines RV, et al. Staphylococcus aureus epicutaneous exposure drives skin inflammation via IL-36-mediated T cell responses. Cell host & microbe. 2017;22(5):653-66. e5Hodille E, Cuerq C, Badiou C, Bienvenu F, Steghens J-P, Cartier R, et al. Delta hemolysin and phenolsoluble modulins, but not alpha hemolysin or panton-valentine leukocidin, induce mast cell activation. Frontiers in cellular and infection microbiology. 2016;6:180.Khatoon Z, McTiernan CD, Suuronen EJ, Mah T-F, Alarcon EI. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon. 2018;4(12):e01067.Thomer L, Schneewind O, Missiakas D. Pathogenesis of Staphylococcus aureus bloodstream infections. Annual Review of Pathology: Mechanisms of Disease. 2016;11:343-64.Thammavongsa V, Kim HK, Missiakas D, Schneewind O. Staphylococcal manipulation of host immune responses. Nature Reviews Microbiology. 2015;13(9):529-43.Thomer L, Schneewind O, Missiakas D. Pathogenesis of Staphylococcus aureus bloodstream infections. Annual review of pathology. 2016;11:343.Tam K. Elucidating the Role of Staphylococcus aureus Leukocidins in Immune Evasion and Their Potential as Vaccine Antigens: New York University; 2020.Lekstrom-Himes JA, Gallin JI. Immunodeficiency diseases caused by defects in phagocytes. New England Journal of Medicine. 2000;343(23):1703-14.Pollitt EJ, Szkuta PT, Burns N, Foster SJ. Staphylococcus aureus infection dynamics. PLoS pathogens. 2018;14(6):e1007112.Surewaard BG, Deniset JF, Zemp FJ, Amrein M, Otto M, Conly J, et al. Identification and treatment of the Staphylococcus aureus reservoir in vivo. Journal of Experimental Medicine. 2016;213(7):1141-51Vélez Tobón GJ, Rocha Arrieta YC, Arias Sierra AA, López Quintero JÁ. Función del sistema NADPH oxidasa en la formación de trampas extracelulares de los neutrófilos (NETs). Revista Cubana de Hematología, Inmunología y Hemoterapia. 2016;32(1):43-56.De Jong NW, Van Kessel KP, Van Strijp JA. Immune evasion by Staphylococcus aureus. Microbiology spectrum. 2019;7(2):7.2. 20.Rigby KM, DeLeo FR, editors. Neutrophils in innate host defense against Staphylococcus aureus infections. Seminars in immunopathology; 2012: Springer.Klevens R. Active bacterial core surveillance (ABCs) MRSA investigators. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. Jama. 2007;298:1763-71.Boyle-Vavra S, Li X, Alam MT, Read TD, Sieth J, Cywes-Bentley C, et al. USA300 and USA500 clonal lineages of Staphylococcus aureus do not produce a capsular polysaccharide due to conserved mutations in the cap5 locus. MBio. 2015;6(2):e02585-14.Schaffer AC, Lee JC. Staphylococcal vaccines and immunotherapies. Infectious disease clinics of North America. 2009;23(1):153-71.Thakker M, Park J-S, Carey V, Lee JC. Staphylococcus aureus serotype 5 capsular polysaccharide is antiphagocytic and enhances bacterial virulence in a murine bacteremia model. Infection and immunity. 1998;66(11):5183-9.Cramton SE, Gerke C, Schnell NF, Nichols WW, Götz F. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infection and immunity. 1999;67(10):5427- 33.Vuong C, Kocianova S, Voyich JM, Yao Y, Fischer ER, DeLeo FR, et al. A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. Journal of Biological Chemistry. 2004;279(52):54881-6.Cerca N, Jefferson KK, Maira-Litrán T, Pier DB, Kelly-Quintos C, Goldmann DA, et al. Molecular basis for preferential protective efficacy of antibodies directed to the poorly acetylated form of staphylococcal polyN-acetyl-β-(1-6)-glucosamine. Infection and immunity. 2007;75(7):3406-13.Vuong C, Voyich JM, Fischer ER, Braughton KR, Whitney AR, DeLeo FR, et al. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cellular microbiology. 2004;6(3):269-75.Fitzpatrick F, Humphreys H, O'Gara JP. Evidence for icaADBC-independent biofilm development mechanism in methicillin-resistant Staphylococcus aureus clinical isolates. Journal of clinical microbiology. 2005;43(4):1973-6.Skurnik D, Cywes-Bentley C, Pier GB. The exceptionally broad-based potential of active and passive vaccination targeting the conserved microbial surface polysaccharide PNAG. Expert review of vaccines. 2016;15(8):1041-53.Crosby HA, Kwiecinski J, Horswill AR. Staphylococcus aureus aggregation and coagulation mechanisms, and their function in host–pathogen interactions. Advances in applied microbiology. 2016;96:1-41.Cheng AG, McAdow M, Kim HK, Bae T, Missiakas DM, Schneewind O. Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS pathogens. 2010;6(8):e1001036.Friedrich R, Panizzi P, Fuentes-Prior P, Richter K, Verhamme I, Anderson PJ, et al. Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature. 2003;425(6957):535-9.McAdow M, Kim HK, DeDent AC, Hendrickx AP, Schneewind O, Missiakas DM. Preventing Staphylococcus aureus sepsis through the inhibition of its agglutination in blood. PLoS pathogens. 2011;7(10):e1002307.Fitzgerald JR, Loughman A, Keane F, Brennan M, Knobel M, Higgins J, et al. Fibronectin‐binding proteins of Staphylococcus aureus mediate activation of human platelets via fibrinogen and fibronectin bridges to integrin GPIIb/IIIa and IgG binding to the FcγRIIa receptor. Molecular microbiology. 2006;59(1):212-30.Otto M. Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annual review of medicine. 2013;64:175-88.Le KY, Dastgheyb S, Ho TV, Otto M. Molecular determinants of staphylococcal biofilm dispersal and structuring. Frontiers in cellular and infection microbiology. 2014;4:167.Boles BR, Horswill AR. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS pathogens. 2008;4(4):e1000052.Periasamy S, Joo H-S, Duong AC, Bach T-HL, Tan VY, Chatterjee SS, et al. How Staphylococcus aureus biofilms develop their characteristic structure. Proceedings of the National Academy of Sciences. 2012;109(4):1281-6.Moormeier DE, Bayles KW. Staphylococcus aureus biofilm: a complex developmental organism. Molecular microbiology. 2017;104(3):365-76.Idrees M, Sawant S, Karodia N, Rahman A. Staphylococcus aureus biofilm: Morphology, genetics, pathogenesis and treatment strategies. International Journal of Environmental Research and Public Health. 2021;18(14):7602.Nourbakhsh F, Namvar AE. Detection of genes involved in biofilm formation in Staphylococcus aureus isolates. GMS Hygiene and infection control. 2016;11.Forsgren A, Sjöquist J. “Protein a” from S. aureus: I. Pseudo-immune reaction with human γ-globulin. The Journal of Immunology. 1966;97(6):822-7.Goodyear CS, Silverman GJ. Death by a B cell superantigen: in vivo VH-targeted apoptotic supraclonal B cell deletion by a staphylococcal toxin. The Journal of experimental medicine. 2003;197(9):1125-39.Pauli NT, Kim HK, Falugi F, Huang M, Dulac J, Henry Dunand C, et al. Staphylococcus aureus infection induces protein A–mediated immune evasion in humans. Journal of Experimental Medicine. 2014;211(12):2331-9.Atkins K, Burman J, Chamberlain E. van den Elsen JM. S Aureus IgG-binding Proteins SpA and Sbi: Host Specificity and Mechanisms of Immune Complex Formation Mol Immunol. 2008;45(6):1600-11.Zhang L, Jacobsson K, Vasi J, Lindberg M, Frykberg L. A second IgG-binding protein in Staphylococcus aureus. Microbiology. 1998;144(4):985-91Itoh S, Hamada E, Kamoshida G, Yokoyama R, Takii T, Onozaki K, et al. Staphylococcal superantigenlike protein 10 (SSL10) binds to human immunoglobulin G (IgG) and inhibits complement activation via the classical pathway. Molecular immunology. 2010;47(4):932-8.Lambris JD, Ricklin D, Geisbrecht BV. Complement evasion by human pathogens. Nature Reviews Microbiology. 2008;6(2):132- 42.von Köckritz-Blickwede M, Konrad S, Foster S, Gessner JE, Medina E. Protective role of complement C5a in an experimental model of Staphylococcus aureus bacteremia. Journal of innate immunity. 2010;2(1):87- 92.Rooijakkers SH, Ruyken M, Roos A, Daha MR, Presanis JS, Sim RB, et al. Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nature immunology. 2005;6(9):920-7.Jongerius I, Garcia BL, Geisbrecht BV, van Strijp JA, Rooijakkers SH. Convertase inhibitory properties of Staphylococcal extracellular complement-binding protein. Journal of Biological Chemistry. 2010;285(20):14973-9.Kang M, Ko Y-P, Liang X, Ross CL, Liu Q, Murray BE, et al. Collagen-binding microbial surface components recognizing adhesive matrix molecule (MSCRAMM) of Gram-positive bacteria inhibit complement activation via the classical athway. Journal of biological chemistry. 2013;288(28):20520-31.Sharp JA, Echague CG, Hair PS, Ward MD, Nyalwidhe JO, Geoghegan JA, et al. Staphylococcus aureus surface protein SdrE binds complement regulator factor H as an immune evasion tactic. PloS one. 2012;7(5):e38407.Zhang Y, Wu M, Hang T, Wang C, Yang Y, Pan W, et al. Staphylococcus aureus SdrE captures complement factor H's C-terminus via a novel ‘close, dock, lock and latch'mechanism for complement evasion. Biochemical Journal. 2017;474(10):1619-31.Woehl JL, Stapels DA, Garcia BL, Ramyar KX, Keightley A, Ruyken M, et al. The extracellular adherence protein from Staphylococcus aureus inhibits the classical and lectin pathways of complement by blocking formation of the C3 proconvertase. The journal of immunology. 2014;193(12):6161-71.Dubin G. Extracellular proteases of Staphylococcus spp. 2002.Laarman AJ, Ruyken M, Malone CL, van Strijp JA, Horswill AR, Rooijakkers SH. Staphylococcus aureus metalloprotease aureolysin cleaves complement C3 to mediate immune evasion. The Journal of Immunology. 2011;186(11):6445-53.Rousseaux J, Rousseaux-Prévost R, Bazin H, Biserte G. Proteolysis of rat IgG subclasses by Staphylococcus aureus V8 proteinase. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology. 1983;748(2):205-12.Bongers S, Hellebrekers P, Leenen LP, Koenderman L, Hietbrink F. Intracellular penetration and effects of antibiotics on Staphylococcus aureus inside human neutrophils: a comprehensive review. Antibiotics. 2019;8(2):54.Dickson KB, Zhou J. Role of reactive oxygen species and iron in host defense against infection. Frontiers in Bioscience-Landmark. 2020;25(8):1600-16.Gigon L, Yousefi S, Karaulov A, Simon H-U. Mechanisms of toxicity mediated by neutrophil and eosinophil granule proteins. Allergology international. 2021;70(1):30-8.Kobayashi SD, Malachowa N, DeLeo FR. Neutrophils and bacterial immune evasion. Journal of Innate Immunity. 2018;10(5-6):432-41.Vilchis-Landeros MM, Matuz-Mares D, Vázquez-Meza H. Regulation of metabolic processes by hydrogen peroxide generated by NADPH oxidases. Processes. 2020;8(11):1424.Klebanoff SJ, Kettle AJ, Rosen H, Winterbourn CC, Nauseef WM. Myeloperoxidase: a front‐line defender against phagocytosed microorganisms. Journal of leukocyte biology. 2013;93(2):185-98.Clauditz A, Resch A, Wieland K-P, Peschel A, Götz F. Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infection and immunity. 2006;74(8):4950- 3.Pelz A, Wieland K-P, Putzbach K, Hentschel P, Albert K, Götz F. Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. Journal of Biological Chemistry. 2005;280(37):32493-8.Mandell G. Catalase, superoxide dismutase, and virulence of Staphylococcus aureus. In vitro and in vivo studies with emphasis on staphylococcal--leukocyte interaction. The Journal of clinical investigation. 1975;55(3):561-6.Clements MO, Watson SP, Foster SJ. Characterization of the major superoxide dismutase of Staphylococcus aureus and its role in starvation survival, stress resistance, and pathogenicity. Journal of bacteriology. 1999;181(13):3898-903.Cosgrove K, Coutts G, Jonsson I-M, Tarkowski A, Kokai-Kun JF, Mond JJ, et al. Catalase (KatA) and alkyl hydroperoxide reductase (AhpC) have compensatory roles in peroxide stress resistance and are required for survival, persistence, and nasal colonization in Staphylococcus aureus. Journal of bacteriology. 2007;189(3):1025-35.Richardson AR, Libby SJ, Fang FC. A nitric oxide–inducible lactate dehydrogenase enables Staphylococcus aureus to resist innate immunity. Science. 2008;319(5870):1672-6.Joo H-S, Otto M. Mechanisms of resistance to antimicrobial peptides in staphylococci. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2015;1848(11):3055-61Bera A, Herbert S, Jakob A, Vollmer W, Götz F. Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O‐acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Molecular microbiology. 2005;55(3):778-87.Papayannopoulos V, Zychlinsky A. NETs: a new strategy for using old weapons. Trends in immunology. 2009;30(11):513-21.Jann NJ, Schmaler M, Kristian SA, Radek KA, Gallo RL, Nizet V, et al. Neutrophil antimicrobial defense against Staphylococcus aureus is mediated by phagolysosomal but not extracellular trap‐associated cathelicidin. Journal of leukocyte biology. 2009;86(5):1159-69.Berends ET, Horswill AR, Haste NM, Monestier M, Nizet V, von Köckritz-Blickwede M. Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. Journal of innate immunity. 2010;2(6):576-86.Thammavongsa V, Missiakas DM, Schneewind O. Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science. 2013;342(6160):863-6.Berube BJ, Bubeck Wardenburg J. Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins. 2013;5(6):1140-66.Alonzo III F, Torres VJ. The bicomponent pore-forming leucocidins of Staphylococcus aureus. Microbiology and Molecular Biology Reviews. 2014;78(2):199-230.Cheung GY, Joo H-S, Chatterjee SS, Otto M. Phenol-soluble modulins–critical determinants of staphylococcal virulence. FEMS microbiology reviews. 2014;38(4):698-719..Craven RR, Gao X, Allen IC, Gris D, Wardenburg JB, McElvania-TeKippe E, et al. Staphylococcus aureus α-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PloS one. 2009;4(10):e7446.Suttorp N, Habben E. Effect of staphylococcal alpha-toxin on intracellular Ca2+ in polymorphonuclear leukocytes. Infection and immunity. 1988;56(9):2228-34.Alonzo III F, Kozhaya L, Rawlings SA, Reyes-Robles T, DuMont AL, Myszka DG, et al. CCR5 is a receptor for Staphylococcus aureus leukotoxin ED. Nature. 2013;493(7430):51-5.Spaan AN, Henry T, Van Rooijen WJ, Perret M, Badiou C, Aerts PC, et al. The staphylococcal toxin Panton-Valentine Leukocidin targets human C5a receptors. Cell host & microbe. 2013;13(5):584-94.DuMont AL, Yoong P, Day CJ, Alonzo III F, McDonald WH, Jennings MP, et al. Staphylococcus aureus LukAB cytotoxin kills human neutrophils by targeting the CD11b subunit of the integrin Mac-1. Proceedings of the National Academy of Sciences. 2013;110(26):10794-9.Yamashita K, Kawai Y, Tanaka Y, Hirano N, Kaneko J, Tomita N, et al. Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two components. Proceedings of the National Academy of Sciences. 2011;108(42):17314-9.Vandenesch F, Naimi T, Enright MC, Lina G, Nimmo GR, Heffernan H, et al. Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerging infectious diseases. 2003;9(8):978.Spaan AN, Reyes-Robles T, Badiou C, Cochet S, Boguslawski KM, Yoong P, et al. Staphylococcus aureus targets the Duffy antigen receptor for chemokines (DARC) to lyse erythrocytes. Cell host & microbe. 2015;18(3):363-70.Wang R, Braughton KR, Kretschmer D, Bach T-HL, Queck SY, Li M, et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nature medicine. 2007;13(12):1510-4.Kretschmer D, Gleske A-K, Rautenberg M, Wang R, Köberle M, Bohn E, et al. Human formyl peptide receptor 2 senses highly pathogenic Staphylococcus aureus. Cell host & microbe. 2010;7(6):463-73.Nakagawa S, Matsumoto M, Katayama Y, Oguma R, Wakabayashi S, Nygaard T, et al. Staphylococcus aureus virulent PSMα peptides induce keratinocyte alarmin release to orchestrate IL-17-dependent skin inflammation. Cell host & microbe. 2017;22(5):667-77. e5.Berlon NR, Qi R, Sharma-Kuinkel BK, Joo H-S, Park LP, George D, et al. Clinical MRSA isolates from skin and soft tissue infections show increased in vitro production of phenol soluble modulins. Journal of Infection. 2015;71(4):447-57.Grosz M, Kolter J, Paprotka K, Winkler AC, Schäfer D, Chatterjee SS, et al. Cytoplasmic replication of S taphylococcus aureus upon phagosomal escape triggered by phenol‐soluble modulin α. Cellular microbiology. 2014;16(4):451-65.Münzenmayer L, Geiger T, Daiber E, Schulte B, Autenrieth SE, Fraunholz M, et al. Influence of Sae‐ regulated and Agr‐regulated factors on the escape of Staphylococcus aureus from human macrophages. Cellular microbiology. 2016;18(8):1172-83.Kobayashi SD, Malachowa N, Whitney AR, Braughton KR, Gardner DJ, Long D, et al. Comparative analysis of USA300 virulence determinants in a rabbit model of skin and soft tissue infection. Journal of Infectious Diseases. 2011;204(6):937-41.Li M, Cheung GY, Hu J, Wang D, Joo H-S, DeLeo FR, et al. Comparative analysis of virulence and toxin expression of global community-associated methicillin-resistant Staphylococcus aureus strains. Journal of Infectious Diseases. 2010;202(12):1866-76.Diep BA, Le VT, Badiou C, Le HN, Pinheiro MG, Duong AH, et al. IVIG-mediated protection against necrotizing pneumonia caused by MRSA. Science translational medicine. 2016;8(357):357ra124-357ra124.Williams MR, Costa SK, Zaramela LS, Khalil S, Todd DA, Winter HL, et al. Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis. Science translational medicine. 2019;11(490):eaat8329.Piewngam P, Zheng Y, Nguyen TH, Dickey SW, Joo H-S, Villaruz AE, et al. Pathogen elimination by probiotic Bacillus via signalling interference. Nature. 2018;562(7728):532-7.Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP, Carugati M, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nature Reviews Microbiology. 2019;17(4):203-18.Tenover FC, McDougal LK, Goering RV, Killgore G, Projan SJ, Patel JB, et al. Characterization of a Strain of Community-AssociatedMethicillin-Resistant Staphylococcus aureus WidelyDisseminated in the UnitedStates. Journal of clinical microbiology. 2006;44(1):108-18.Popovich KJ, Snitkin ES, Hota B, Green SJ, Pirani A, Aroutcheva A, et al. Genomic and epidemiological evidence for community origins of hospital-onset methicillin-resistant Staphylococcus aureus bloodstream infections. The Journal of infectious diseases. 2017;215(11):1640-7.Tenover FC, Goering RV. Methicillin-resistant Staphylococcus aureus strain USA300: origin and epidemiology. Journal of Antimicrobial Chemotherapy. 2009;64(3):441-6.Hageman JC, Uyeki TM, Francis JS, Jernigan DB, Wheeler JG, Bridges CB, et al. Severe communityacquired pneumonia due to Staphylococcus aureus, 2003–04 influenza season. Emerging infectious diseases. 2006;12(6):894Toleman MS, Reuter S, Coll F, Harrison EM, Blane B, Brown NM, et al. Systematic surveillance detects multiple silent introductions and household transmission of methicillin-resistant Staphylococcus aureus USA300 in the East of England. The Journal of infectious diseases. 2016;214(3):447-53.Glaser P, Martins-Simões P, Villain A, Barbier M, Tristan A, Bouchier C, et al. Demography and intercontinental spread of the USA300 community-acquired methicillin-resistant Staphylococcus aureus lineage. MBio. 2016;7(1):e02183-15.Van der Mee-Marquet N, Poisson D-M, Lavigne J-P, Francia T, Tristan A, Vandenesch F, et al. The incidence of Staphylococcus aureus ST8-USA300 among French pediatric inpatients is rising. European Journal of Clinical Microbiology & Infectious Diseases. 2015;34(5):935-42.Planet PJ, Diaz L, Kolokotronis S-O, Narechania A, Reyes J, Xing G, et al. Parallel epidemics of community-associated methicillin-resistant Staphylococcus aureus USA300 infection in North and South America. The Journal of infectious diseases. 2015;212(12):1874-82.Lindsay JA, Holden MT. Staphylococcus aureus: superbug, super genome? Trends in microbiology. 2004;12(8):378-85.Malachowa N, DeLeo FR. Mobile genetic elements of Staphylococcus aureus. Cellular and molecular life sciences. 2010;67:3057-71.Planet PJ, Narechania A, Chen L, Mathema B, Boundy S, Archer G, et al. Architecture of a species: phylogenomics of Staphylococcus aureus. Trends in microbiology. 2017;25(2):153-66.Weterings V, Bosch T, Witteveen S, Landman F, Schouls L, Kluytmans J. Next-generation sequence analysis reveals transfer of methicillin resistance to a methicillin-susceptible Staphylococcus aureus strain that subsequently caused a methicillin-resistant Staphylococcus aureus outbreak: a descriptive study. Journal of clinical microbiology. 2017;55(9):2808-16.Sharma-Kuinkel BK, Rude TH, Fowler VG. Pulse field gel electrophoresis. The Genetic Manipulation of Staphylococci: Springer; 2014. p. 117-30.Blanc D, Francioli P, Hauser P. Poor value of pulsed-field gel electrophoresis to investigate long-term scale epidemiology of methicillin-resistant Staphylococcus aureus. Infection, Genetics and Evolution. 2002;2(2):145-8.Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. Journal of clinical microbiology. 2000;38(3):1008-15.O'Hara FP, Suaya JA, Ray GT, Baxter R, Brown ML, Mera RM, et al. spa typing and multilocus sequence typing show comparable performance in a macroepidemiologic study of Staphylococcus aureus in the United States. Microbial Drug Resistance. 2016;22(1):88-96.García-Álvarez L, Holden MT, Lindsay H, Webb CR, Brown DF, Curran MD, et al. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. The Lancet infectious diseases. 2011;11(8):595-603.Ross T, Merz W, Farkosh M, Carroll K. Comparison of an automated repetitive sequence-based PCR microbial typing system to pulsed-field gel electrophoresis for analysis of outbreaks of methicillin-resistant Staphylococcus aureus. Journal of clinical microbiology. 2005;43(11):5642-7.Salipante SJ, SenGupta DJ, Cummings LA, Land TA, Hoogestraat DR, Cookson BT. Application of whole-genome sequencing for bacterial strain typing in molecular epidemiology. Journal of clinical microbiology. 2015;53(4):1072-9.Quelle LS, Corso A, Galas M, Sordelli DO. STAR gene restriction profile analysis in epidemiological typing of methicillin-resistant Staphylococcus aureus: description of the new method and comparison with other polymerase chain reaction (PCR)-based methods. Diagnostic microbiology and infectious disease. 2003;47(3):455-64.Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG, et al. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. The Lancet. 2006;367(9512):731-9.Frank DN, Feazel LM, Bessesen MT, Price CS, Janoff EN, Pace NR. The human nasal microbiota and Staphylococcus aureus carriage. PloS one. 2010;5(5):e10598.Krismer B, Weidenmaier C, Zipperer A, Peschel A. The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nature reviews microbiology. 2017;15(11):675-87.Selva L, Viana D, Regev-Yochay G, Trzcinski K, Corpa JM, Lasa I, et al. Killing niche competitors by remote-control bacteriophage induction. Proceedings of the National Academy of Sciences. 2009;106(4):1234-8.Zipperer A, Konnerth MC, Laux C, Berscheid A, Janek D, Weidenmaier C, et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature. 2016;535(7613):511-6.Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature. 2010;465(7296):346-9.Sugimoto S, Iwamoto T, Takada K, Okuda K-i, Tajima A, Iwase T, et al. Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction. Journal of bacteriology. 2013;195(8):1645-55.Wollenberg MS, Claesen J, Escapa IF, Aldridge KL, Fischbach MA, Lemon KP. Propionibacteriumproduced coproporphyrin III induces Staphylococcus aureus aggregation and biofilm formation. MBio. 2014;5(4):e01286-14.Lina G, Boutite F, Tristan A, Bes M, Etienne J, Vandenesch F. Bacterial competition for human nasal cavity colonization: role of staphylococcal agr alleles. Applied and environmental microbiology. 2003;69(1):18-23Dall'Antonia M, Coen PG, Wilks M, Whiley A, Millar M. Competition between methicillin-sensitive andresistant Staphylococcus aureus in the anterior nares. Journal of Hospital Infection. 2005;61(1):62-7.Ghasemzadeh-Moghaddam H, Neela V, van Wamel W, Hamat RA, Nor Shamsudin M, Hussin NSC, et al. Nasal carriers are more likely to acquire exogenous Staphylococcus aureus strains than non-carriers. Clinical Microbiology and Infection. 2015;21(11):998. e1-. e7.De Jonge S, Atema J, Gans S, Boermeester M, Gomes S, Solomkin J, et al. Surgical site infections 1 New WHO recommendations on preoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis. 2016;16:e276-e87.Brégeon F, Rolain J-M. Le résistome pulmonaire. médecine/sciences. 2015;31(11):947-50.Modak R, Das Mitra S, Vasudevan M, Krishnamoorthy P, Kumar M, Bhat AV, et al. Epigenetic response in mice mastitis: role of histone H3 acetylation and microRNA (s) in the regulation of host inflammatory gene expression during Staphylococcus aureus infection. Clinical epigenetics. 2014;6(1):1-15.Kluytmans J, Wertheim H. Nasal carriage of Staphylococcus aureus and prevention of nosocomial infections. Infection. 2005;33(1):3-8.Uhlemann A-C, Knox J, Miller M, Hafer C, Vasquez G, Ryan M, et al. The environment as an unrecognized reservoir for community-associated methicillin resistant Staphylococcus aureus USA300: a casecontrol study. PLoS One. 2011;6(7):e22407.Chávez Vivas M, Escudero ÁM. Patógenos de importancia clínica-Prevalencia de Staphylococcus aureus aislado de estudiantes asintomáticos del Programa De Medicina de la Universidad Santiago de Cali. Universidad Santiago de cali; 2018.Carmona-Torre F, Torrellas B, Rua M, Yuste JR, Del Pozo JL. Staphylococcus aureus nasal carriage among medical students. The Lancet Infectious Diseases. 2017;17(5):477-8.de Steenhuijsen Piters WA, Sanders EA, Bogaert D. The role of the local microbial ecosystem in respiratory health and disease. Philosophical Transactions of the Royal Society B: Biological Sciences. 2015;370(1675):20140294.Pereira CAP. Microbiota intestinal humana y dieta. Ciencia y Tecnología. 2019;12(1):31-42.Brooks AW, Priya S, Blekhman R, Bordenstein SR. Gut microbiota diversity across ethnicities in the United States. PLoS biology. 2018;16(12):e2006842Kaplan RC, Wang Z, Usyk M, Sotres-Alvarez D, Daviglus ML, Schneiderman N, et al. Gut microbiome composition in the Hispanic Community Health Study/Study of Latinos is shaped by geographic relocation, environmental factors, and obesity. Genome biology. 2019;20(1):1-21.Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, et al. The NIH human microbiome project. Genome research. 2009;19(12):2317-23.Von Elm E, Altman DG, Egger M, Pocock SJ. G0tzsche PC, Vandenbroucke JP; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med. 2007;147(8):573-7.Bettin A, Causil C, Reyes N. Molecular identification and antimicrobial susceptibility of Staphylococcus aureus nasal isolates from medical students in Cartagena, Colombia. Brazilian Journal of Infectious Diseases. 2012;16:329-34Usyk M, Zolnik CP, Patel H, Levi MH, Burk RD. Novel ITS1 fungal primers for characterization of the mycobiome. MSphere. 2017;2(6):e00488-17.Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the national academy of sciences. 2011;108(supplement_1):4516-22.Wang Y, Qian P-Y. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PloS one. 2009;4(10):e7401.Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27(6):863-4.Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. PANDAseq: paired-end assembler for illumina sequences. BMC bioinformatics. 2012;13(1):1-7.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nature methods. 2010;7(5):335-6.Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460-1.DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimerachecked 16S rRNA gene database and workbench compatible with ARB. Applied and environmental microbiology. 2006;72(7):5069-72.Tang J, Iliev ID, Brown J, Underhill DM, Funari VA. Mycobiome: approaches to analysis of intestinal fungi. Journal of immunological methods. 2015;421:112-21.Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.Abarenkov K, Nilsson RH, Larsson K-H, Alexander IJ, Eberhardt U, Erland S, et al. The UNITE database for molecular identification of fungi–recent updates and future perspectives. The New Phytologist. 2010;186(2):281-5.Team RC. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www R-project org/. 2013.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS one. 2013;8(4):e61217.Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, et al. The vegan package. Community ecology package. 2007;10(631-637):719.Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, et al. The vegan package. Community ecology package. 2007;10(631-637):719.Batdorf C. Coin-package. US; 1903.Reyes N, Montes O, Figueroa S, Tiwari R, Sollecito CC, Emmerich R, et al. Staphylococcus aureus nasal carriage and microbiome composition among medical students from Colombia: a cross-sectional study. F1000Research. 2020;9.Wickham H, Chang W. An implementation of the Grammar of Graphics. R package version. R Foundation for Statistical Computing, Vienna, Austria. 2013.Lee JT, Frank DN, Ramakrishnan V. Microbiome of the paranasal sinuses: update and literature review. American journal of rhinology & allergy. 2016;30(1):3-16.Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, et al. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013;498(7454):367-70.Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, et al. The role of nasal carriage in Staphylococcus aureus infections. The Lancet infectious diseases. 2005;5(12):751-62.Wertheim HF, Vos MC, Ott A, van Belkum A, Voss A, Kluytmans JA, et al. Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. The Lancet. 2004;364(9435):703-5.Nouwen JL, Fieren MW, Snijders S, Verbrugh HA, Van Belkum A. Persistent (not intermittent) nasal carriage ofStaphylococcus aureus is the determinant of CPD-related infections. Kidney international. 2005;67(3):1084-92.Structure, function and diversity of the healthy human microbiome. nature. 2012;486(7402):207-14.Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. science. 2009;326(5960):1694-7.Sáez-Nieto J, Medina-Pascual M, Carrasco G, Garrido N, Fernandez-Torres M, Villalón P, et al. Paenibacillus spp. isolated from human and environmental samples in Spain: detection of 11 new species. New microbes and new infections. 2017;19:19-27.Pan H, Cui B, Huang Y, Yang J, Ba-Thein W. Nasal carriage of common bacterial pathogens among healthy kindergarten children in Chaoshan region, southern China: a cross-sectional study. BMC pediatrics. 2016;16(1):1-7.Huse SM, Ye Y, Zhou Y, Fodor AA. A core human microbiome as viewed through 16S rRNA sequence clusters. PloS one. 2012;7(6):e34242.Andersen PS, Pedersen JK, Fode P, Skov RL, Fowler Jr VG, Stegger M, et al. Influence of host genetics and environment on nasal carriage of Staphylococcus aureus in Danish middle-aged and elderly twins. The Journal of infectious diseases. 2012;206(8):1178-84.Liu CM, Price LB, Hungate BA, Abraham AG, Larsen LA, Christensen K, et al. Staphylococcus aureus and the ecology of the nasal microbiome. Science advances. 2015;1(5):e1400216.Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. science. 2005;308(5728):1635-8.Bogaert D, Keijser B, Huse S, Rossen J, Veenhoven R, Van Gils E, et al. Variability and diversity of nasopharyngeal microbiota in children: a metagenomic analysis. PloS one. 2011;6(2):e17035.Chowdhary A, Kathuria S, Agarwal K, Sachdeva N, Singh PK, Jain S, et al., editors. Voriconazoleresistant Penicillium oxalicum: an emerging pathogen in immunocompromised hosts. Open forum infectious diseases; 2014: Oxford University Press.Lawley TD, Walker AW. Intestinal colonization resistance. Immunology. 2013;138(1):1-11.Kim S, Covington A, Pamer EG. The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. Immunological reviews. 2017;279(1):90-105.Isles NS, Mu A, Kwong JC, Howden BP, Stinear TP. Gut microbiome signatures and host colonization with multidrug-resistant bacteria. Trends in Microbiology. 2022.Cremers AJ, Zomer AL, Gritzfeld JF, Ferwerda G, van Hijum SA, Ferreira DM, et al. The adult nasopharyngeal microbiome as a determinant of pneumococcal acquisition. Microbiome. 2014;2(1):1-10.Jones MJ, Donegan NP, Mikheyeva IV, Cheung AL. Improving transformation of Staphylococcus aureus belonging to the CC1, CC5 and CC8 clonal complexes. PLoS One. 2015;10(3):e0119487.Choo EJ. Community-associated methicillin-resistant Staphylococcus aureus in nosocomial infections. Infection & chemotherapy. 2017;49(2):158-9.Kouyos R, Klein E, Grenfell B. Hospital-community interactions foster coexistence between methicillinresistant strains of Staphylococcus aureus. PLoS pathogens. 2013;9(2):e1003134.Ding W, Webb GF. Optimal control applied to community-acquired methicillin-resistant Staphylococcus aureus in hospitals. Journal of Biological Dynamics. 2017;11(sup1):65-78.Ocampo AM, Vélez LA, Robledo J, Jiménez JN. Cambios a lo largo del tiempo en la distribución de los complejos de clones dominantes de Staphylococcus aureus resistente a la meticilina en Medellín, Colombia. Biomédica. 2014;34:34-40.Hudson LO, Murphy CR, Spratt BG, Enright MC, Elkins K, Nguyen C, et al. Diversity of methicillinresistant Staphylococcus aureus (MRSA) strains isolated from inpatients of 30 hospitals in Orange County, California. PLoS One. 2013;8(4):e62117Briscoe CC, Reich P, Fritz S, Coughlin CC. Staphylococcus aureus antibiotic susceptibility patterns in pediatric atopic dermatitis. Pediatric Dermatology. 2019;36(4):482-5.Crandall H, Kapusta A, Killpack J, Heyrend C, Nilsson K, Dickey M, et al. Clinical and molecular epidemiology of invasive Staphylococcus aureus infection in Utah children; continued dominance of MSSA over MRSA. Plos one. 2020;15(9):e0238991.Salazar-Ospina L, Jiménez JN. High frequency of methicillin-susceptible and methicillin-resistant Staphylococcus aureus in children under 1 year old with skin and soft tissue infections. Jornal de Pediatria. 2018;94(4):380-9.Deurenberg RH, Vink C, Kalenic S, Friedrich A, Bruggeman C, Stobberingh E. The molecular evolution of methicillin-resistant Staphylococcus aureus. Clinical Microbiology and Infection. 2007;13(3):222-35.. Cookson BD, Robinson DA, Monk AB, Murchan S, Deplano A, De Ryck R, et al. Evaluation of molecular typing methods in characterizing a European collection of epidemic methicillin-resistant Staphylococcus aureus strains: the HARMONY collection. Journal of clinical microbiology. 2007;45(6):1830-7.Escobar JA, Gómez IT, Murillo MJ, Castro BE, Chavarro B, Márquez RA, et al. Design of two molecular methodologies for the rapid identification of Colombian community-acquired methicillin-resistant Staphylococcus aureus isolates. Biomedica. 2012;32(2):214-23.Grundmann H, Aanensen DM, Van Den Wijngaard CC, Spratt BG, Harmsen D, Friedrich AW, et al. Geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecularepidemiological analysis. PLoS medicine. 2010;7(1):e1000215Cruz C, Moreno J, Renzoni A, Hidalgo M, Reyes J, Schrenzel J, et al. Tracking methicillin-resistant Staphylococcus aureus clones in Colombian hospitals over 7 years (1996–2003): emergence of a new dominant clone. International journal of antimicrobial agents. 2005;26(6):457-62.Reyes J, Rincón S, Díaz L, Panesso D, Contreras GA, Zurita J, et al. Dissemination of methicillin-resistant Staphylococcus aureus USA300 sequence type 8 lineage in Latin America. Clinical infectious diseases. 2009;49(12):1861-77Jimenez Quiceno JN, Ocampo Rios AM, Vanegas Munera JM, Rodriguez Tamayo EA, Mediavilla J, Chen L, et al. CC8 MRSA strains harboring SCCmec Type IVc are predominant in Colombian hospitals. 2012.Escobar-Perez J, Reyes N, Marquez-Ortiz RA, Rebollo J, Pinzón H, Tovar C, et al. Emergence and spread of a new community-genotype methicillin-resistant Staphylococcus aureus clone in Colombia. BMC infectious diseases. 2017;17(1):1-10.Enright MC, Robinson DA, Randle G, Feil EJ, Grundmann H, Spratt BG. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proceedings of the National Academy of Sciences. 2002;99(11):7687-92.Monecke S, Coombs G, Shore AC, Coleman DC, Akpaka P, Borg M, et al. A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PloS one. 2011;6(4):e17936.Oliveira DC, Lencastre Hnd. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrobial agents and chemotherapy. 2002;46(7):2155-61.Milheiriço C, Oliveira DC, de Lencastre H. Multiplex PCR strategy for subtyping the staphylococcal cassette chromosome mec type IV in methicillin-resistant Staphylococcus aureus:‘SCC mec IV multiplex’. Journal of antimicrobial chemotherapy. 2007;60(1):42-8.Shopsin B, Gomez M, Montgomery S, Smith D, Waddington M, Dodge D, et al. Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. Journal of clinical microbiology. 1999;37(11):3556-63.Harmsen D, Claus H, Witte W, Rothganger J, Claus H, Turnwald D, et al. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. Journal of clinical microbiology. 2003;41(12):5442-8.Wayne P. Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing. 2011.Reyes N, Rebollo J, Pinzón H, Tovar C, Moreno-Castañeda J, Corredor Rozo ZL, et al. Emergence and spread of a new community-genotype methicillin-resistant Staphylococcus aureus clone in Colombia. 2017.Escobar JA, Marquez-Ortiz RA, Alvarez-Olmos MI, Leal AL, Castro BE, Vanegas N, et al. Detection of a new community genotype methicillin-resistant Staphylococcus aureus clone that is unrelated to the USA300 clone and that causes pediatric infections in Colombia. Journal of clinical microbiology. 2013;51(2):661-4.Chambers HF, DeLeo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nature Reviews Microbiology. 2009;7(9):629-41.Melles DC, Gorkink RF, Boelens HA, Snijders SV, Peeters JK, Moorhouse MJ, et al. Natural population dynamics and expansion of pathogenic clones of Staphylococcus aureus. The Journal of clinical investigation. 2004;114(12):1732-40.Aires de Sousa M, Miragaia M, Santos Sanches I, Ávila S, Adamson I, Casagrande ST, et al. Three-year assessment of methicillin-resistant Staphylococcus aureus clones in Latin America from 1996 to 1998. Journal of clinical microbiology. 2001;39(6):2197-205.Akpaka PE, Kissoon S, Rutherford C, Swanston WH, Jayaratne P. Molecular epidemiology of methicillinresistant Staphylococcus aureus isolates from regional hospitals in Trinidad and Tobago. International journal of infectious diseases. 2007;11(6):544-8.Sola C, Gribaudo G, Vindel A, Patrito L, Bocco JL. Identification of a novel methicillin-resistant Staphylococcus aureus epidemic clone in Cordoba, Argentina, involved in nosocomial infections. Journal of clinical microbiology. 2002;40(4):1427-35.Velazquez-Meza M, Aires de Sousa M, Echaniz-Aviles G, Solorzano-Santos F, Miranda-Novales G, Silva-Sanchez J, et al. Surveillance of methicillin-resistant Staphylococcus aureus in a pediatric hospital in Mexico City during a 7-year period (1997 to 2003): clonal evolution and impact of infection control. Journal of clinical microbiology. 2004;42(8):3877-80.Jiménez JN, Ocampo AM, Vanegas JM, Rodriguez EA, Mediavilla JR, Chen L, et al. CC8 MRSA strains harboring SCC mec type IVc are predominant in Colombian hospitals. PLoS One. 2012;7(6):e38576.Márquez-Ortiz RA, Álvarez-Olmos MI, Pérez JAE, Leal AL, Castro BE, Mariño AC, et al. USA300- related methicillin-resistant Staphylococcus aureus clone is the predominant cause of community and hospital MRSA infections in Colombian children. International Journal of Infectious Diseases. 2014;25:88-93.Gelatti LC, Bonamigo RR, Inoue FM, Carmo MSd, Becker AP, Castrucci FMdS, et al. Communityacquired methicillin-resistant Staphylococcus aureus carrying SCCmec type IV in southern Brazil. Revista da Sociedade Brasileira de Medicina Tropical. 2013;46:34-8.Albrecht N, Jatzwauk L, Slickers P, Ehricht R, Monecke S. Clonal replacement of epidemic methicillinresistant Staphylococcus aureus strains in a German university hospital over a period of eleven years. PLoS One. 2011;6(11):e28189.Machuca MA, Sosa LM, Gonzalez CI. Molecular typing and virulence characteristic of methicillinresistant Staphylococcus aureus isolates from pediatric patients in Bucaramanga, Colombia. PloS one. 2013;8(8):e73434.Rasigade J-P, Laurent F, Lina G, Meugnier H, Bes M, Vandenesch F, et al. Global distribution and evolution of Panton-Valentine leukocidin-positive methicillin-susceptible Staphylococcus aureus, 1981–2007. The Journal of infectious diseases. 2010;201(10):1589-97.Nowakiewicz A, Ziółkowska G, Zięba P, Gnat S, Wojtanowicz-Markiewicz K, Trościańczyk A. Coagulase-positive Staphylococcus isolated from wildlife: Identification, molecular characterization and evaluation of resistance profiles with focus on a methicillin-resistant strain. Comparative Immunology, Microbiology and Infectious Diseases. 2016;44:21-8.Asadollahi P, Farahani NN, Mirzaii M, Khoramrooz SS, Van Belkum A, Asadollahi K, et al. Distribution of the most prevalent spa types among clinical isolates of methicillin-resistant and-susceptible Staphylococcus aureus around the world: a review. Frontiers in microbiology. 2018;9:163.Becker A, Santos O, Castrucci F, Dias C, D'AZEVEDO PA. First report of methicillin-resistant Staphylococcus aureus Cordobes/Chilean clone involved in nosocomial infections in Brazil. Epidemiology & Infection. 2012;140(8):1372-5.Mayor L, Ortellado J, Menacho C, Lird G, Courtier C, Gardon C, et al. Molecular characterization of methicillin-resistant Staphylococcus aureus isolates collected in Asuncion, Paraguay. Journal of clinical microbiology. 2007;45(7):2298-300.Jian Y, Zhao L, Zhao N, Lv H-Y, Liu Y, He L, et al. Increasing prevalence of hypervirulent ST5 methicillin susceptible Staphylococcus aureus subtype poses a serious clinical threat. Emerging Microbes & Infections. 2021;10(1):109-22.. Gandra S, Braykov N, Laxminarayan R. Is methicillin-susceptible Staphylococcus aureus (MSSA) sequence type 398 confined to Northern Manhattan? Rising prevalence of erythromycin-and clindamycinresistant MSSA clinical isolates in the United States. Clinical infectious diseases. 2014;58(2):306-7.Sutter DE, Milburn E, Chukwuma U, Dzialowy N, Maranich AM, Hospenthal DR. Changing susceptibility of Staphylococcus aureus in a US pediatric population. Pediatrics. 2016;137(4).Yilmaz G, Aydin K, Iskender S, Caylan R, Koksal I. Detection and prevalence of inducible clindamycin resistance in staphylococci. Journal of medical microbiology. 2007;56(3):342-5.Malachowa N, Kobayashi SD, Braughton KR, Whitney AR, Parnell MJ, Gardner DJ, et al. Staphylococcus aureus leukotoxin GH promotes inflammation. J Infect Dis. 2012;206(8):1185-93.Pozzi C, Wilk K, Lee JC, Gening M, Nifantiev N, Pier GB. Opsonic and protective properties of antibodies raised to conjugate vaccines targeting six Staphylococcus aureus antigens. PLoS One. 2012;7(10):e46648.Liew YK, Awang Hamat R, van Belkum A, Chong PP, Neela V. Comparative Exoproteomics and Host Inflammatory Response in Staphylococcus aureus Skin and Soft Tissue Infections, Bacteremia, and Subclinical Colonization. Clinical and vaccine immunology : CVI. 2015;22(5):593-603.Klicznik MM, Szenes-Nagy AB, Campbell DJ, Gratz IK. Taking the lead - how keratinocytes orchestrate skin T cell immunity. Immunology letters. 2018;200:43-51.Ngo QV, Faass L, Sahr A, Hildebrand D, Eigenbrod T, Heeg K, et al. Inflammatory Response Against Staphylococcus aureus via Intracellular Sensing of Nucleic Acids in Keratinocytes. Frontiers in immunology. 2022;13:828626.Brauweiler AM, Goleva E, Leung DYM. Staphylococcus aureus Lipoteichoic Acid Damages the Skin Barrier through an IL-1-Mediated Pathway. J Invest Dermatol. 2019;139(8):1753-61 e4.Pham CT. Neutrophil serine proteases fine-tune the inflammatory response. The international journal of biochemistry & cell biology. 2008;40(6-7):1317-33.Minejima E, Bensman J, She RC, Mack WJ, Tuan Tran M, Ny P, et al. A Dysregulated Balance of Proinflammatory and Anti-Inflammatory Host Cytokine Response Early During Therapy Predicts Persistence and Mortality in Staphylococcus aureus Bacteremia. Critical care medicine. 2016;44(4):671-9.Martins JM, Longhi-Balbinot DT, Soares DM, Figueiredo MJ, Malvar Ddo C, de Melo MC, et al. Involvement of PGE2 and RANTES in Staphylococcus aureus-induced fever in rats. J Appl Physiol (1985). 2012;113(9):1456-65.Strindhall J, Lindgren PE, Lofgren S, Kihlstrom E. Clinical isolates of Staphylococcus aureus vary in ability to stimulate cytokine expression in human endothelial cells. Scandinavian journal of immunology. 2005;61(1):57-62McNicholas S, Talento AF, O'Gorman J, Hannan MM, Lynch M, Greene CM, et al. Cytokine responses to Staphylococcus aureus bloodstream infection differ between patient cohorts that have different clinical courses of infection. BMC Infect Dis. 2014;14:580.Yamashita U, Kuroda E. Regulation of macrophage-derived chemokine (MDC, CCL22) production. Critical reviews in immunology. 2002;22(2):105-14.Li Z, Levast B, Madrenas J. Staphylococcus aureus Downregulates IP-10 Production and Prevents Th1 Cell Recruitment. J Immunol. 2017;198(5):1865-74.Fournier B, Philpott DJ. Recognition of Staphylococcus aureus by the innate immune system. Clin Microbiol Rev. 2005;18(3):521-40.Nourshargh S, Alon R. Leukocyte migration into inflamed tissues. Immunity. 2014;41(5):694-707.Maruoka H, Inoue D, Takiuchi Y, Nagano S, Arima H, Tabata S, et al. IP-10/CXCL10 and MIG/CXCL9 as novel markers for the diagnosis of lymphoma-associated hemophagocytic syndrome. Annals of Hematology. 2014;93:393-401.Mohammadi A, Blesso CN, Barreto GE, Banach M, Majeed M, Sahebkar A. Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. The Journal of nutritional biochemistry. 2019;66:1-16.Meyer-Hoffert U, Lezcano-Meza D, Bartels J, Montes-Vizuet AR, Schröder J-M, Teran LM. Th2-and to a lesser extent Th1-type cytokines upregulate the production of both CXC (IL-8 and gro-alpha) and CC (RANTES, eotaxin, eotaxin-2, MCP-3 and MCP-4) chemokines in human airway epithelial cells. International archives of allergy and immunology. 2003;131(4):264-71.Dajotoy T, Andersson P, Bjartell A, Löfdahl CG, Tapper H, Egesten A. Human eosinophils produce the T cell‐attracting chemokines MIG and IP‐10 upon stimulation with IFN‐γ. Journal of leukocyte biology. 2004;76(3):685-91.Groom JR, Luster AD. CXCR3 in T cell function. Experimental cell research. 2011;317(5):620-31.Musini A, Chilumoju SP, Giri A. Biofilm Formation in Drug-Resistant Pathogen Staphylococcus aureus. Microbial Biofilms: CRC Press; 2022. p. 23-46.Cramton SE, Schnell NF, Götz F, Brückner R. Identification of a new repetitive element in Staphylococcus aureus. Infection and immunity. 2000;68(4):2344-8.Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream M-A, et al. Artemis: sequence visualization and annotation. Bioinformatics. 2000;16(10):944-5.Bhatta DR, Hamal D, Shrestha R, Parajuli R, Baral N, Subramanya SH, et al. Nasal and pharyngeal colonization by bacterial pathogens: a comparative study between preclinical and clinical sciences medical students. Canadian Journal of Infectious Diseases and Medical Microbiology. 2018;2018.Fettweis JM, Brooks JP, Serrano MG, Sheth NU, Girerd PH, Edwards DJ, et al. Differences in vaginal microbiome in African American women versus women of European ancestry. Microbiology. 2014;160(Pt 10):2272PublicationORIGINALTESIS DOCTORAL _ OSCAR ALONSO MONTES GUEVARA _ UNICARTAGENA _ 2023.pdfTESIS DOCTORAL _ OSCAR ALONSO MONTES GUEVARA _ UNICARTAGENA _ 2023.pdfapplication/pdf8341917https://dspace7-unicartagena.metabuscador.org/bitstreams/b73a78e0-e060-4f85-ad0e-4b9036329888/downloade99db441105ab86d94ed0a9eea25107fMD51Cesión de derechos Óscar Montes.pdfCesión de derechos Óscar Montes.pdfapplication/pdf226097https://dspace7-unicartagena.metabuscador.org/bitstreams/8bb32e7e-adb9-40fd-b448-c208802279ac/downloadb2c6eca8025855cf4c12f0f7d8b7eb2cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81756https://dspace7-unicartagena.metabuscador.org/bitstreams/cc55a412-bd00-4d91-875a-7a8e1b7f2870/download7b38fcee9ba3bc8639fa56f350c81be3MD53TEXTTESIS DOCTORAL _ OSCAR ALONSO MONTES GUEVARA _ UNICARTAGENA _ 2023.pdf.txtTESIS DOCTORAL _ OSCAR ALONSO MONTES GUEVARA _ UNICARTAGENA _ 2023.pdf.txtExtracted texttext/plain451354https://dspace7-unicartagena.metabuscador.org/bitstreams/7e76a442-0ae1-4026-bc88-3c84a7db4bf7/download979baf1a776585a6cccf51356b95126dMD54Cesión de derechos Óscar Montes.pdf.txtCesión de derechos Óscar Montes.pdf.txtExtracted texttext/plain2https://dspace7-unicartagena.metabuscador.org/bitstreams/2954322e-7171-4d3e-b20b-1de0a9964cec/downloade1c06d85ae7b8b032bef47e42e4c08f9MD56THUMBNAILTESIS DOCTORAL _ OSCAR ALONSO MONTES GUEVARA _ UNICARTAGENA _ 2023.pdf.jpgTESIS DOCTORAL _ OSCAR ALONSO MONTES GUEVARA _ UNICARTAGENA _ 2023.pdf.jpgGenerated Thumbnailimage/jpeg7728https://dspace7-unicartagena.metabuscador.org/bitstreams/3b94ce2e-66fd-4a9d-a623-18c3e7225241/downloadefc4282fbced16421ff5051a79367db7MD55Cesión de derechos Óscar Montes.pdf.jpgCesión de derechos Óscar Montes.pdf.jpgGenerated Thumbnailimage/jpeg10943https://dspace7-unicartagena.metabuscador.org/bitstreams/c81f934a-789a-4bb1-a706-fec734be8341/downloadbb41fb7a4c4d99eb33bbd0f2f82edcb2MD5711227/15960oai:dspace7-unicartagena.metabuscador.org:11227/159602024-08-28 17:37:40.507https://creativecommons.org/licenses/by-nc/4.0/Derechos Reservados - Universidad de Cartagena, 2023open.accesshttps://dspace7-unicartagena.metabuscador.orgBiblioteca Digital Universidad de Cartagenabdigital@metabiblioteca.comCkFsIGZpcm1hciB5IHByZXNlbnRhciBlc3RhIGxpY2VuY2lhLCB1c3RlZCAoQVVUT1IgTyBBVVRPUkVTKSAgbyBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGVsIHByb3BpZXRhcmlvKFMpIGdhcmFudGl6YSBhICBsYSBVTklWRVJTSURBRCBERSBDQVJUQUdFTkEgZWwgZGVyZWNobyBleGNsdXNpdm8gZGUgcmVwcm9kdWNpciwgdHJhZHVjaXIgKGNvbW8gc2UgZGVmaW5lIG3DoXMgYWRlbGFudGUpIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byAoaW5jbHV5ZW5kbyBlbCByZXN1bWVuKSBlbiB0b2RvIGVsIG11bmRvICBlbiBmb3JtYSBpbXByZXNhIHkgZW4gZm9ybWF0byBlbGVjdHLDs25pY28geSBlbiBjdWFscXVpZXIgbWVkaW8sIGluY2x1eWVuZG8gYXVkaW8gbyB2aWRlby4KClVzdGVkIGFjZXB0YSBxdWUgbGEgVU5JVkVSU0lEQUQgREUgQ0FSVEFHRU5BICBwdWVkZSwgc2luIGNhbWJpYXIgZWwgY29udGVuaWRvIGNvbnZlcnRpcmxvLCBwcmVzZW50YXJsbyAgYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgbG9zIGZpbmVzIGRlIGNvbnNlcnZhY2nDs24uCgpVc3RlZCB0YW1iacOpbiBhY2VwdGEgcXVlIGxhIFVOSVZFUlNJREFEIERFIENBUlRBR0VOQSAgIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byBwYXJhIGZpbmVzIGRlIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24uCgpVc3RlZCBkZWNsYXJhIHF1ZSBlbCBkb2N1bWVudG8gZXMgdW4gdHJhYmFqbyBvcmlnaW5hbCB5ICBxdWUgdGllbmUgZWwgZGVyZWNobyBkZSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuICBUYW1iacOpbiByZXByZXNlbnRhbiAgbG8gbWVqb3IgZGUgc3UgY29ub2NpbWllbnRvIHkgbm8gaW5mcmluZ2VuICBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbmFkaWUuCgpTaSBlbCBkb2N1bWVudG8gY29udGllbmUgbWF0ZXJpYWxlcyBkZSBsb3MgcXVlIG5vIHRpZW5lIGxvcyAgZGVyZWNob3MgZGUgYXV0b3IsIHVzdGVkIGRlY2xhcmEgcXVlIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gc2luIHJlc3RyaWNjacOzbiBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zLCBkYSBhIGNvbmNlZGVyICBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgeSBxdWUgY29tbyBtYXRlcmlhbCBwcm9waWVkYWQgIGRlIHRlcmNlcm9zICBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyB5IHJlY29ub2NpZG8gZGVudHJvIGRlbCB0ZXh0byBvIGVsIGNvbnRlbmlkbyBkZSBsYSBwcmVzZW50YWNpw7NuLgoKU2kgbGEgcHJlc2VudGFjacOzbiBzZSBiYXNhIGVuICB0cmFiYWpvcyBRVUUgU0UgSEEgcGF0cm9jaW5hZG8gbyBhcG95YWRvIFBPUiBVTkEgQUdFTkNJQSBVIE9SR0FOSVpBQ0nDk04gUVVFIE5PIFNFQSBMQSBVTklWRVJTSURBRCBERSBDQVJUQUdFTkEsIE1BTklGSUVTVEEgUVVFIFRJRU5FIFFVRSBDVU1QTElSIGRlcmVjaG9zIGEgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHF1ZSBleGlnZW4gZXN0ZSBDb250cmF0byBvIGFjdWVyZG8uCgpEaWNlIHF1ZSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgc3Ugbm9tYnJlIChzKSBjb21vIGVsIGF1dG9yIChzKSBvIHByb3BpZXRhcmlvIChhKSBkZSBsb3MgZG9jdW1lbnRvIHkgbm8gaGFyw6EgbmluZ3VuYSBhbHRlcmFjacOzbiwgZXhlbnRvIGxhcyBwZXJtaXRpZGFzIGVuIGVzdGEgbGljZW5jaWEgcGFyYSBzdSBwcmVzZW50YWNpw7NuLgoKCg== |