Reprogramación celular y su aplicación en infertilidad por carencia de gametos femeninos

Autores:
Anaya Pico, Katy
Monterrosa Castro, Álvaro
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad de Cartagena
Repositorio:
Repositorio Universidad de Cartagena
Idioma:
spa
OAI Identifier:
oai:repositorio.unicartagena.edu.co:11227/13391
Acceso en línea:
https://hdl.handle.net/11227/13391
https://doi.org/10.32997/rcb-2012-3129
Palabra clave:
Células madre embrionarias
Células pluripotentes inducidas
Células humanas pluripotentes inducidas
Reprogramación celular
Infertilidad
Gametos
Falla ovárica temprana.
Rights
openAccess
License
Revista Ciencias Biomédicas - 2020
id UCART2_5dbe80263a5f95c5044c1065ca0ee044
oai_identifier_str oai:repositorio.unicartagena.edu.co:11227/13391
network_acronym_str UCART2
network_name_str Repositorio Universidad de Cartagena
repository_id_str
dc.title.spa.fl_str_mv Reprogramación celular y su aplicación en infertilidad por carencia de gametos femeninos
dc.title.translated.eng.fl_str_mv Reprogramación celular y su aplicación en infertilidad por carencia de gametos femeninos
title Reprogramación celular y su aplicación en infertilidad por carencia de gametos femeninos
spellingShingle Reprogramación celular y su aplicación en infertilidad por carencia de gametos femeninos
Células madre embrionarias
Células pluripotentes inducidas
Células humanas pluripotentes inducidas
Reprogramación celular
Infertilidad
Gametos
Falla ovárica temprana.
title_short Reprogramación celular y su aplicación en infertilidad por carencia de gametos femeninos
title_full Reprogramación celular y su aplicación en infertilidad por carencia de gametos femeninos
title_fullStr Reprogramación celular y su aplicación en infertilidad por carencia de gametos femeninos
title_full_unstemmed Reprogramación celular y su aplicación en infertilidad por carencia de gametos femeninos
title_sort Reprogramación celular y su aplicación en infertilidad por carencia de gametos femeninos
dc.creator.fl_str_mv Anaya Pico, Katy
Monterrosa Castro, Álvaro
dc.contributor.author.spa.fl_str_mv Anaya Pico, Katy
Monterrosa Castro, Álvaro
dc.subject.spa.fl_str_mv Células madre embrionarias
Células pluripotentes inducidas
Células humanas pluripotentes inducidas
Reprogramación celular
Infertilidad
Gametos
Falla ovárica temprana.
topic Células madre embrionarias
Células pluripotentes inducidas
Células humanas pluripotentes inducidas
Reprogramación celular
Infertilidad
Gametos
Falla ovárica temprana.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-12-23 00:00:00
dc.date.available.none.fl_str_mv 2020-12-23 00:00:00
dc.date.issued.none.fl_str_mv 2020-12-23
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2215-7840
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11227/13391
dc.identifier.doi.none.fl_str_mv 10.32997/rcb-2012-3129
dc.identifier.eissn.none.fl_str_mv 2389-7252
dc.identifier.url.none.fl_str_mv https://doi.org/10.32997/rcb-2012-3129
identifier_str_mv 2215-7840
10.32997/rcb-2012-3129
2389-7252
url https://hdl.handle.net/11227/13391
https://doi.org/10.32997/rcb-2012-3129
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofjournal.spa.fl_str_mv Revista Ciencias Biomédicas
dc.relation.bitstream.none.fl_str_mv https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/3129/2657
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2012
dc.relation.citationendpage.none.fl_str_mv 326
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 317
dc.relation.citationvolume.spa.fl_str_mv 3
dc.relation.references.spa.fl_str_mv Hayashi Y, Saitou M, Yamanaka S. Germline development from human pluripotent stem cells toward disease modeling of infertility. Fertil Steril. 2012;97(6):1250-1259.
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-676.
De Miguel MP, Arnalich F, Lopez P, Blazquez A, Nistal M. Epiblast-derived stem cells in embryonic and adult issues. Int J Dev Biol. 2009;53(8-10):1529-1540.
Gurdon JB, Wilmut I. Nuclear Transfer to eggs and oocytes. Cold Spring Harb Perspect Biol. 2011;3(6):1-14.
Takahashi k, Tanabe k, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861- 872.
Pietronave S, Prat M. Advances and applications of induced pluripotent stem cells Can J Physiol Pharmacol. 2012;90(5):317-325.
Briggs R, King T, Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci. 1952;38(5):455-463.
Bruce D. Polly, Dolly, Megan, and Morag: a view from Edinburgh on cloning and genetic engineering. Phil & Tech. 1997;3(2):82-91.
Worton RG, McCulloch EA, Till JE. Physical separation of hemopoietic stem cells differing in their capacity for self-renewal. J Exp Med.1969;130(1): 91-103.
Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature.2002;418(6893):41-49.
Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature.1997; 385 (6619):810-813.
Stadtfeld M, Hochedlinger K. Induced pluripotency: history, mechanisms, and applications. Genes Dev. 2010;24(20):2239-2263.
Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol. 2001;11(19):1553-1558.
Schneuwly S, Klemenz R, Gehring WJ. Redesigning the body plan of Drosophila by ectopic expression of the homoeotic gene Antennapedia. Nature 1987;325(6107): 816-818.
Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987 51(6):987-1000.
leda M, Fu J, Delgado-Olguin P, Vedantham V, Hayashi J, Bruneau B, Srivastava D. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142(3): 375-386.
Hwang WS, Ryu YJ, Park JH, Park ES, Lee EG, Koo JM, Jeon HY, Lee BC, Kang SK, Kim SJ, Ahn C, Hwang JH, Park KY, Cibelli JB, Moon SY. Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst. Science. 2004; 303(5664):1669-1674.
Kennedy D. Retraction of Hwang et Al. Science. 2006; 311(5729):335.
French AJ, Adams CA, Anderson LS, Kitchen JR, Hughes MR, Wood SH. Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts. Stem Cells. 2008;26(2):485-493.
Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infracted rat hearts. Nat Biotechnol. 2007;25(9):1015-1024.
Singer E. FDA Lets human embryonic stem cells trials resume. Tecnology review. 2010;6.
Vogel G. Breakthrough of the year. Reprogramming cells. Science.2008; 322 (5909):1766- 1767.
Kim H, Studer L. iPSCs put to the test. Nat Biotechnol. 2011;29: 233-235
Takahashik,Tanabek, OhnukiM,Narita M, IchisakaT, Tomoda K, Yamanaka S, Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861- 872.
Chaparro O, Beltrán O. Reprogramación nuclear y células pluripotentes inducidas. Rev. fac. Med. 2009;2(17):252-263.
Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448(7151):313-317.
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science.2007;318(5858):1917-1920.
Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell. 2007;1(1):55-70.
Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, TakizawaN,YamanakaS, Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008; 26(1):101-106.
Ananiev G, Williams EC, Li H, Chang Q. Isogenicpairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PLoS One. 2011;6(9):e252-255.
Priori SG. Induced pluripotent stem cell-derived cardiomyocytes and long QT syndrome: is personalized medicine ready for prime time? Circ Res.2011;109(8):822-824.
Chang T, Zheng W, Tsark W, Bates S, Huang H, Lin RJ, Yee JK. Brief report: phenotypic rescue of induced pluripotent stem cell-derived motoneurons of a spinal muscular atrophy patient. Stem Cells 2011;29(12):2090-2093.
Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ. Disease-specific induced pluripotent stem cells. Cell 2008;134(5):877-886.
Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 2008;321(5893):1218-1221.
Saha K, Jaenisch R. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell. 2009;5(6):584–595.
Chandra A, Martinez GM, Mosher WD, Abma JC, Jones J. Fertility, family planning, and reproductive health of U.S. women: Data from the 2002 National Survey of Family Growth. Vital Health Stat.
Joffe M. What has happened to human fertility? Human Reproduction, 2010;25(2)295-307.
Cooke HJ, Saunders PT. Mouse models of male infertility. Nat Rev Genet. 2002;3(10):790-801.
Ferlin A, Raicu F, Gatta V, Zuccarello D, Palka G, Foresta C. Male infertility: role of genetic background. Reprod Biomed Online. 2007;14(6):734-745.
Hwang K, Yatsenko AN, Jorgez CJ, Mukherjee S, Nalam RL, Matzuk MM, Lamb DJ. Mendelian genetics of male infertility. Ann N Y Acad Sci. 2010;12(14):e1-17.
Shelling AN. Premature ovarian failure. Reproduction. 2010;140(5):633-641.
Persani L, Rossetti R, Cacciatore C. Genes involved in human premature ovarian failure. J Mol Endocrinol. 2010;45(5):257-279.
Walsh TJ, Pera RR, Turek PJ. The genetics of male infertility. Semin Reprod Med. 2009;27(2):124- 136.
Betts DH, Kalionis B,Viable iPSC mice: a step closer to therapeutic applications in humans? Hum Reprod. 2010;16(2): 57-62.
Yamanaka S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell. 2007;1(1):39-49.
Edson MA, Nagaraja AK, Matzuk MM. The mammalia Novary from génesis to revelation. Endocrine Reviews. 2009;30(6):624–712.
Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S. Long-term proliferation in culture and germline transmission of mouse male germ line stem cells. Biol Reprod. 2003;69(2):612-616.
Virant-Klun I, Zech N, Rozman P, Vogler A, Cvjeticanin B, Klemenc P, Malicev E, Meden-Vrtovec H. Putative stem cells with anembryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation. 2008;76(8):843-856.
White YA, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med. 2012;18(3):413–421.
Hua J, Pan S, Yang C, Dong W, Dou Z, Sidhu KS. Derivation of male germ cell-like line age from human fetal bone marrow stem cells. Reprod Biomed Online. 2009;19(1):99-105.
Drusenheimer N, Wulf G, Nolte J, Lee JH, Dev A, Dressel R, Gromoll J, Schmidtke J, Engel W, Nayernia K. Putative human male germ cells from bone marrow stem cells. Soc Reprod Fertil Suppl. 2007;63:69-76.
dc.rights.spa.fl_str_mv Revista Ciencias Biomédicas - 2020
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Revista Ciencias Biomédicas - 2020
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Cartagena
dc.source.spa.fl_str_mv https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/3129
institution Universidad de Cartagena
bitstream.url.fl_str_mv https://repositorio.unicartagena.edu.co/bitstream/11227/13391/1/ORE.xml
bitstream.checksum.fl_str_mv 1df056ac0dc8058c182a0b2860b634f9
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Biblioteca Digital Universidad de Cartagena
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808418244576411648
spelling Anaya Pico, Katye8012d85ddd3d91810461f3cd17e00ca500Monterrosa Castro, Álvaro1771f7ebb171ca97a13fdd001735270b5002020-12-23 00:00:002020-12-23 00:00:002020-12-232215-7840https://hdl.handle.net/11227/1339110.32997/rcb-2012-31292389-7252https://doi.org/10.32997/rcb-2012-3129application/pdfspaUniversidad de CartagenaRevista Ciencias Biomédicashttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/3129/2657Núm. 2 , Año 201232623173Hayashi Y, Saitou M, Yamanaka S. Germline development from human pluripotent stem cells toward disease modeling of infertility. Fertil Steril. 2012;97(6):1250-1259.Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-676.De Miguel MP, Arnalich F, Lopez P, Blazquez A, Nistal M. Epiblast-derived stem cells in embryonic and adult issues. Int J Dev Biol. 2009;53(8-10):1529-1540.Gurdon JB, Wilmut I. Nuclear Transfer to eggs and oocytes. Cold Spring Harb Perspect Biol. 2011;3(6):1-14.Takahashi k, Tanabe k, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861- 872.Pietronave S, Prat M. Advances and applications of induced pluripotent stem cells Can J Physiol Pharmacol. 2012;90(5):317-325.Briggs R, King T, Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci. 1952;38(5):455-463.Bruce D. Polly, Dolly, Megan, and Morag: a view from Edinburgh on cloning and genetic engineering. Phil & Tech. 1997;3(2):82-91.Worton RG, McCulloch EA, Till JE. Physical separation of hemopoietic stem cells differing in their capacity for self-renewal. J Exp Med.1969;130(1): 91-103.Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature.2002;418(6893):41-49.Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature.1997; 385 (6619):810-813.Stadtfeld M, Hochedlinger K. Induced pluripotency: history, mechanisms, and applications. Genes Dev. 2010;24(20):2239-2263.Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol. 2001;11(19):1553-1558.Schneuwly S, Klemenz R, Gehring WJ. Redesigning the body plan of Drosophila by ectopic expression of the homoeotic gene Antennapedia. Nature 1987;325(6107): 816-818.Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987 51(6):987-1000.leda M, Fu J, Delgado-Olguin P, Vedantham V, Hayashi J, Bruneau B, Srivastava D. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142(3): 375-386.Hwang WS, Ryu YJ, Park JH, Park ES, Lee EG, Koo JM, Jeon HY, Lee BC, Kang SK, Kim SJ, Ahn C, Hwang JH, Park KY, Cibelli JB, Moon SY. Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst. Science. 2004; 303(5664):1669-1674.Kennedy D. Retraction of Hwang et Al. Science. 2006; 311(5729):335.French AJ, Adams CA, Anderson LS, Kitchen JR, Hughes MR, Wood SH. Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts. Stem Cells. 2008;26(2):485-493.Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infracted rat hearts. Nat Biotechnol. 2007;25(9):1015-1024.Singer E. FDA Lets human embryonic stem cells trials resume. Tecnology review. 2010;6.Vogel G. Breakthrough of the year. Reprogramming cells. Science.2008; 322 (5909):1766- 1767.Kim H, Studer L. iPSCs put to the test. Nat Biotechnol. 2011;29: 233-235Takahashik,Tanabek, OhnukiM,Narita M, IchisakaT, Tomoda K, Yamanaka S, Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861- 872.Chaparro O, Beltrán O. Reprogramación nuclear y células pluripotentes inducidas. Rev. fac. Med. 2009;2(17):252-263.Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448(7151):313-317.Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science.2007;318(5858):1917-1920.Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell. 2007;1(1):55-70.Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, TakizawaN,YamanakaS, Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008; 26(1):101-106.Ananiev G, Williams EC, Li H, Chang Q. Isogenicpairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PLoS One. 2011;6(9):e252-255.Priori SG. Induced pluripotent stem cell-derived cardiomyocytes and long QT syndrome: is personalized medicine ready for prime time? Circ Res.2011;109(8):822-824.Chang T, Zheng W, Tsark W, Bates S, Huang H, Lin RJ, Yee JK. Brief report: phenotypic rescue of induced pluripotent stem cell-derived motoneurons of a spinal muscular atrophy patient. Stem Cells 2011;29(12):2090-2093.Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ. Disease-specific induced pluripotent stem cells. Cell 2008;134(5):877-886.Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 2008;321(5893):1218-1221.Saha K, Jaenisch R. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell. 2009;5(6):584–595.Chandra A, Martinez GM, Mosher WD, Abma JC, Jones J. Fertility, family planning, and reproductive health of U.S. women: Data from the 2002 National Survey of Family Growth. Vital Health Stat.Joffe M. What has happened to human fertility? Human Reproduction, 2010;25(2)295-307.Cooke HJ, Saunders PT. Mouse models of male infertility. Nat Rev Genet. 2002;3(10):790-801.Ferlin A, Raicu F, Gatta V, Zuccarello D, Palka G, Foresta C. Male infertility: role of genetic background. Reprod Biomed Online. 2007;14(6):734-745.Hwang K, Yatsenko AN, Jorgez CJ, Mukherjee S, Nalam RL, Matzuk MM, Lamb DJ. Mendelian genetics of male infertility. Ann N Y Acad Sci. 2010;12(14):e1-17.Shelling AN. Premature ovarian failure. Reproduction. 2010;140(5):633-641.Persani L, Rossetti R, Cacciatore C. Genes involved in human premature ovarian failure. J Mol Endocrinol. 2010;45(5):257-279.Walsh TJ, Pera RR, Turek PJ. The genetics of male infertility. Semin Reprod Med. 2009;27(2):124- 136.Betts DH, Kalionis B,Viable iPSC mice: a step closer to therapeutic applications in humans? Hum Reprod. 2010;16(2): 57-62.Yamanaka S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell. 2007;1(1):39-49.Edson MA, Nagaraja AK, Matzuk MM. The mammalia Novary from génesis to revelation. Endocrine Reviews. 2009;30(6):624–712.Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S. Long-term proliferation in culture and germline transmission of mouse male germ line stem cells. Biol Reprod. 2003;69(2):612-616.Virant-Klun I, Zech N, Rozman P, Vogler A, Cvjeticanin B, Klemenc P, Malicev E, Meden-Vrtovec H. Putative stem cells with anembryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation. 2008;76(8):843-856.White YA, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med. 2012;18(3):413–421.Hua J, Pan S, Yang C, Dong W, Dou Z, Sidhu KS. Derivation of male germ cell-like line age from human fetal bone marrow stem cells. Reprod Biomed Online. 2009;19(1):99-105.Drusenheimer N, Wulf G, Nolte J, Lee JH, Dev A, Dressel R, Gromoll J, Schmidtke J, Engel W, Nayernia K. Putative human male germ cells from bone marrow stem cells. Soc Reprod Fertil Suppl. 2007;63:69-76.Revista Ciencias Biomédicas - 2020https://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccesshttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/3129Células madre embrionariasCélulas pluripotentes inducidasCélulas humanas pluripotentes inducidasReprogramación celularInfertilidadGametosFalla ovárica temprana.Reprogramación celular y su aplicación en infertilidad por carencia de gametos femeninosReprogramación celular y su aplicación en infertilidad por carencia de gametos femeninosArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articleOREORE.xmltext/xml2554https://repositorio.unicartagena.edu.co/bitstream/11227/13391/1/ORE.xml1df056ac0dc8058c182a0b2860b634f9MD51open access11227/13391oai:repositorio.unicartagena.edu.co:11227/133912023-06-13 15:59:55.81An error occurred on the license name.|||https://creativecommons.org/licenses/by-nc-sa/4.0/metadata only accessBiblioteca Digital Universidad de Cartagenabdigital@metabiblioteca.com