Toxicity mechanisms of voacangine isolated from Tabernaemontana cymosa Jacq., on Aedes aegypti L. mosquito larvae
The Aedes aegypti L. mosquito is considered the most important vector of arboviruses in the world. The phenomenon of resistance to insecticides is a difficult barrier to overcome for government health entities around the planet. This problem increases the concentrations of insecticides in the enviro...
- Autores:
-
Oliveros Díaz, Andrés Felipe
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2022
- Institución:
- Universidad de Cartagena
- Repositorio:
- Repositorio Universidad de Cartagena
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unicartagena.edu.co:11227/16526
- Acceso en línea:
- https://hdl.handle.net/11227/16526
http://dx.doi.org/10.57799/11227/11860
- Palabra clave:
- Insecticidas
Toxicología vegetal
Plantas - Efecto de los insecticidas
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc/4.0/
id |
UCART2_4854654f639cd095defb51f4b1588ae5 |
---|---|
oai_identifier_str |
oai:repositorio.unicartagena.edu.co:11227/16526 |
network_acronym_str |
UCART2 |
network_name_str |
Repositorio Universidad de Cartagena |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Toxicity mechanisms of voacangine isolated from Tabernaemontana cymosa Jacq., on Aedes aegypti L. mosquito larvae |
title |
Toxicity mechanisms of voacangine isolated from Tabernaemontana cymosa Jacq., on Aedes aegypti L. mosquito larvae |
spellingShingle |
Toxicity mechanisms of voacangine isolated from Tabernaemontana cymosa Jacq., on Aedes aegypti L. mosquito larvae Insecticidas Toxicología vegetal Plantas - Efecto de los insecticidas |
title_short |
Toxicity mechanisms of voacangine isolated from Tabernaemontana cymosa Jacq., on Aedes aegypti L. mosquito larvae |
title_full |
Toxicity mechanisms of voacangine isolated from Tabernaemontana cymosa Jacq., on Aedes aegypti L. mosquito larvae |
title_fullStr |
Toxicity mechanisms of voacangine isolated from Tabernaemontana cymosa Jacq., on Aedes aegypti L. mosquito larvae |
title_full_unstemmed |
Toxicity mechanisms of voacangine isolated from Tabernaemontana cymosa Jacq., on Aedes aegypti L. mosquito larvae |
title_sort |
Toxicity mechanisms of voacangine isolated from Tabernaemontana cymosa Jacq., on Aedes aegypti L. mosquito larvae |
dc.creator.fl_str_mv |
Oliveros Díaz, Andrés Felipe |
dc.contributor.advisor.none.fl_str_mv |
Díaz Castillo., Fredyc Olivero Verbel., Jesús |
dc.contributor.author.none.fl_str_mv |
Oliveros Díaz, Andrés Felipe |
dc.subject.armarc.none.fl_str_mv |
Insecticidas Toxicología vegetal Plantas - Efecto de los insecticidas |
topic |
Insecticidas Toxicología vegetal Plantas - Efecto de los insecticidas |
description |
The Aedes aegypti L. mosquito is considered the most important vector of arboviruses in the world. The phenomenon of resistance to insecticides is a difficult barrier to overcome for government health entities around the planet. This problem increases the concentrations of insecticides in the environment, causing environmental contamination and threats to human health. Plants have been used to combat pests for centuries and are an ecological source for searching for molecules with larvicidal activity. In this work, 65 ethanol-soluble extracts of 56 plants from the Colombian Caribbean region were evaluated as potential larvicides against the Aedes aegypti mosquito, as well as for their toxic effects on nontarget organisms. High larvicidal activity was found for 16 ethanol plant extracts; however, the most potent activity against larvae was obtained for five plant extracts, Annona squamosa, Annona cherimolia, Annona muricata, Tabernaemontana cymosa and Mammea americana, with LC50 (LCL – UCL) values of 58 (24 –142), 65 (33 – 127), 85 (42 – 170), 25 (23 – 27) and 39 (34 – 43) µg/mL, respectively. The T. cymosa seed extract was selected for bioguided fractionation due to its great larvicidal activity. Five indole alkaloids were isolated and characterized from the active fraction of T. cymosa using Liquid Chromatography and Nuclear Magnetic Resonance (NMR), respectively. Voacangine showed an LC50 of 5.1 µg/mL, indicating high larvicidal potency and low risk for non target organisms due to its selectivity (>40) against the model Caenorhabditis elegans. We also report the characterization of a new indole alkaloid from T. cymosa. Alkaloids are a group of secondary metabolites that have been extensively studied for the discovery of new drugs due to their properties on the central nervous system and their anti-inflammatory, antioxidant and anticancer activities. In the larvicidal fraction, 10 indole alkaloids were identified, and computational tools were used to evaluate their potential biological activities in humans. Consequently, molecular docking was performed using 951 human targets involved in different diseases. The results were analyzed through tools included in the KEGG and STRING databases, and relevant physiological functions associated with the alkaloids were found. Most of the alkaloids showed affinity for the same type of proteins, forming stable complexes with affinity energies of less than −8.0 kcal/mol. However, the 5-oxocoronaridine molecule proved to be the most active molecule binding human proteins (mean binding energy affinity = −9.2 kcal/mol). Gene ontology analysis of the interactions between the affected proteins pointed to the PI3K/Akt signaling pathway. /mTOR as the main target. On the other hand, all alkaloids showed good affinity for AChE from A. aegypti, but only voacangine had larvicidal potential. Moreover, the alkaloid voacangine caused a significant increase in lipid peroxidation in the larvae when compared to the control when tested at its diagnostic concentration. Our study demonstrated the potential of the Colombian Caribbean flora as a host for bioactive plants against the A. aegypti mosquito, with potential use in controlled environments. The data showed that the mechanism of action of voacangine involves oxidative stress and likely other biochemical processes linked to the central nervous system of the larva, causing the death of the insect without major adverse effects on human targets. Finally, 5-oxocoronaridine, voacangine-7- hydroxyndolenine and voacrisitine are potential ligands for key human proteins involved in cellular proliferation, making them promising leads for the development of new treatments against cancer pathologies. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-06-20T17:43:45Z |
dc.date.available.none.fl_str_mv |
2023-06-20T17:43:45Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11227/16526 http://dx.doi.org/10.57799/11227/11860 |
url |
https://hdl.handle.net/11227/16526 http://dx.doi.org/10.57799/11227/11860 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de Cartagena |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Farmacéuticas |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.publisher.program.spa.fl_str_mv |
Doctorado en Toxicología Ambiental |
institution |
Universidad de Cartagena |
bitstream.url.fl_str_mv |
https://dspace7-unicartagena.metabuscador.org/bitstreams/a2eb1f29-5b76-4fc5-91a2-876f2c708f8a/download https://dspace7-unicartagena.metabuscador.org/bitstreams/163a5f56-5791-40ce-9e29-7690a3d04f0e/download https://dspace7-unicartagena.metabuscador.org/bitstreams/ac09152e-787a-4f65-bbe1-74dc4424597e/download https://dspace7-unicartagena.metabuscador.org/bitstreams/8f273325-50ab-4e45-9b3b-67d03614f293/download https://dspace7-unicartagena.metabuscador.org/bitstreams/ab278bf9-603e-4872-b644-71863eb0dbaa/download https://dspace7-unicartagena.metabuscador.org/bitstreams/f6664ad9-86b4-495c-987f-678bda26de1d/download https://dspace7-unicartagena.metabuscador.org/bitstreams/28d7f2c4-3508-4456-a525-31789b678634/download |
bitstream.checksum.fl_str_mv |
6613e0930d1e14f0b77e4f6e7cfcf98d 90d33dd42e485f54211ef27c9f6b3b0e 7b38fcee9ba3bc8639fa56f350c81be3 8ec2dc1ffcd0628f9d5f6dda608a6660 b644658ab85c5012e3aa3156062e5cd6 f3a30a45e8774d85fea84a6c8747571b ffc3c1d5f74341d051863e59feba0f73 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital Universidad de Cartagena |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1818153020811116544 |
spelling |
Díaz Castillo., FredycOlivero Verbel., JesúsOliveros Díaz, Andrés Felipe2023-06-20T17:43:45Z2023-06-20T17:43:45Z2022https://hdl.handle.net/11227/16526http://dx.doi.org/10.57799/11227/11860The Aedes aegypti L. mosquito is considered the most important vector of arboviruses in the world. The phenomenon of resistance to insecticides is a difficult barrier to overcome for government health entities around the planet. This problem increases the concentrations of insecticides in the environment, causing environmental contamination and threats to human health. Plants have been used to combat pests for centuries and are an ecological source for searching for molecules with larvicidal activity. In this work, 65 ethanol-soluble extracts of 56 plants from the Colombian Caribbean region were evaluated as potential larvicides against the Aedes aegypti mosquito, as well as for their toxic effects on nontarget organisms. High larvicidal activity was found for 16 ethanol plant extracts; however, the most potent activity against larvae was obtained for five plant extracts, Annona squamosa, Annona cherimolia, Annona muricata, Tabernaemontana cymosa and Mammea americana, with LC50 (LCL – UCL) values of 58 (24 –142), 65 (33 – 127), 85 (42 – 170), 25 (23 – 27) and 39 (34 – 43) µg/mL, respectively. The T. cymosa seed extract was selected for bioguided fractionation due to its great larvicidal activity. Five indole alkaloids were isolated and characterized from the active fraction of T. cymosa using Liquid Chromatography and Nuclear Magnetic Resonance (NMR), respectively. Voacangine showed an LC50 of 5.1 µg/mL, indicating high larvicidal potency and low risk for non target organisms due to its selectivity (>40) against the model Caenorhabditis elegans. We also report the characterization of a new indole alkaloid from T. cymosa. Alkaloids are a group of secondary metabolites that have been extensively studied for the discovery of new drugs due to their properties on the central nervous system and their anti-inflammatory, antioxidant and anticancer activities. In the larvicidal fraction, 10 indole alkaloids were identified, and computational tools were used to evaluate their potential biological activities in humans. Consequently, molecular docking was performed using 951 human targets involved in different diseases. The results were analyzed through tools included in the KEGG and STRING databases, and relevant physiological functions associated with the alkaloids were found. Most of the alkaloids showed affinity for the same type of proteins, forming stable complexes with affinity energies of less than −8.0 kcal/mol. However, the 5-oxocoronaridine molecule proved to be the most active molecule binding human proteins (mean binding energy affinity = −9.2 kcal/mol). Gene ontology analysis of the interactions between the affected proteins pointed to the PI3K/Akt signaling pathway. /mTOR as the main target. On the other hand, all alkaloids showed good affinity for AChE from A. aegypti, but only voacangine had larvicidal potential. Moreover, the alkaloid voacangine caused a significant increase in lipid peroxidation in the larvae when compared to the control when tested at its diagnostic concentration. Our study demonstrated the potential of the Colombian Caribbean flora as a host for bioactive plants against the A. aegypti mosquito, with potential use in controlled environments. The data showed that the mechanism of action of voacangine involves oxidative stress and likely other biochemical processes linked to the central nervous system of the larva, causing the death of the insect without major adverse effects on human targets. Finally, 5-oxocoronaridine, voacangine-7- hydroxyndolenine and voacrisitine are potential ligands for key human proteins involved in cellular proliferation, making them promising leads for the development of new treatments against cancer pathologies.DoctoradoDoctor(a) en Toxicología Ambientalapplication/pdfengUniversidad de CartagenaFacultad de Ciencias FarmacéuticasCartagena de IndiasDoctorado en Toxicología Ambientalhttps://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)http://purl.org/coar/access_right/c_abf2Toxicity mechanisms of voacangine isolated from Tabernaemontana cymosa Jacq., on Aedes aegypti L. mosquito larvaeTrabajo de grado - Doctoradoinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06Textinfo:eu-repo/semantics/doctoralThesishttps://purl.org/redcol/resource_type/TDhttp://purl.org/coar/version/c_970fb48d4fbd8a85InsecticidasToxicología vegetalPlantas - Efecto de los insecticidasAbe, F. R., Machado, A. A., Coleone, A. C., da Cruz, C., & Machado-Neto, J. G. (2019). Toxicity of diflubenzuron and temephos on freshwater fishes: ecotoxicological assays with Oreochromis niloticus and Hyphessobrycon eques. Water, Air, & Soil Pollution, 230(3), 1-10.Abubakar, I. B., & Loh, H. S. (2016). A review on ethnobotany, pharmacology and phytochemistry of Tabernaemontana corymbosa. Journal of Pharmacy and Pharmacology, 68(4), 423-432.. Adedayo, B. C., Oyeleye, S. I., Okeke, B. M., & Oboh, G. (2021). Anti‐ cholinesterase and antioxidant properties of alkaloid and phenolic‐rich extracts from pawpaw (Carica papaya) leaf: A comparative study. Flavour and Fragrance Journal, 36(1), 47-54Aiub, C. A. F., Coelho, E. C. A., Sodré, E., Pinto, L. F. R., & Felzenszwalb, I. (2002). Genotoxic evaluation of the organophosphorus pesticide temephos. Genetics and Molecular Research, 1(2), 159-166.Arias, H. R., Targowska-Duda, K. M., Feuerbach, D., & Jozwiak, K. (2015). Coronaridine congeners inhibit human α3β4 nicotinic acetylcholine receptors by interacting with luminal and non-luminal sites. The International Journal of Biochemistry & Cell Biology, 65, 81-90.Autran, E. S., Neves, I. A., Da Silva, C. S. B., Santos, G. K. N., Da Câmara, C. A. G., & Navarro, D. M. A. F. (2009). Chemical composition, oviposition deterrent and larvicidal activities against Aedes aegypti of essential oils from Piper marginatum Jacq. (Piperaceae). Bioresource Technology, 100(7), 2284-2288.Balalian, A. A., Liu, X., Herbstman, J. B., Daniel, S., Whyatt, R., Rauh, V., ... & Factor-Litvak, P. (2021). Prenatal exposure to organophosphate and pyrethroid insecticides and the herbicide 2, 4-dichlorophenoxyacetic acid and size at birth in urban pregnant women. Environmental Research, 201, 111539.Bao, M. F., Yan, J. M., Cheng, G. G., Li, X. Y., Liu, Y. P., Li, Y., ... & Luo, X. D. (2013). Cytotoxic indole alkaloids from Tabernaemontana divaricata. Journal of natural products, 76(8), 1406-1412.Bardach, A. E., García‐Perdomo, H. A., Alcaraz, A., Tapia Lopez, E., Gándara, R. A. R., Ruvinsky, S., & Ciapponi, A. (2019). Interventions for the control of Aedes aegypti in Latin America and the Caribbean: systematic review and meta‐analysis. Tropical Medicine & International Health, 24(5), 530-552.Beltrán Villanueva, C. E., Díaz Castillo, F., & Gómez Estrada, H. (2013). Tamizaje fitoquímico preliminar de especies de plantas promisorias de la costa atlántica colombiana. Revista Cubana de Plantas Medicinales, 18(4), 619-631.Abdel Haleem, D.R., El Tablawy, N.H., Ahmed Alkeridis, L., Sayed, S., Saad, A.M., El-Saadony, M.T., Farag, S.M., 2022. Screening and evaluation of different algal extracts and prospects for controlling the disease vector mosquito Culex pipiens L. Saudi J Biol Sci 29, 933–940. https://doi.org/10.1016/j.sjbs.2021.10.009Abubakar, I.B., Loh, H.-S., 2016. A review on ethnobotany, pharmacology and phytochemistry of Tabernaemontana corymbosa. J Pharm Pharmacol 68, 423–432. https://doi.org/10.1111/jphp.12523Achenbach, H., Benirschke, M., Torrenegra, R., 1997. Alkaloids and other compounds from seeds of Tabernaemontana cymosa. Phytochemistry 45, 325–335. https://doi.org/10.1016/S0031-9422(96)00645-0Adeoye-Isijola, M.O., Jonathan, S.G., Coopoosamy, R.M., Olajuyigbe, O.O., 2021. Molecular characterization, gas chromatography mass spectrometry analysis, phytochemical screening and insecticidal activities of ethanol extract of Lentinus squarrosulus against Aedes aegypti (Linnaeus). Mol Biol Rep 48, 41–55. https://doi.org/10.1007/s11033-020-06119-6Alsarar, A., Hussein, H., Abobakr, Y., Al-Zabib, A., Bazeyad, A., 2021. Mosquitocidal and repellent activities of essential oils against Culex pipiens L. Entomological Research 50, 182–188.Anogwih, J.A., Makanjuola, W.A., Chukwu, L.O., 2015. Potential for integrated control of Culex quinquefasciatus (Diptera: Culicidae) using larvicides and guppies. Biological Control 81, 31–36. https://doi.org/10.1016/j.biocontrol.2014.11.001Anoopkumar, A.N., E M, A., Sudhikumar, A., 2020. Exploring the mode of action of isolated bioactive compounds by induced reactive oxygen species generation in Aedes aegypti: a microbes based double-edged weapon to fight against Arboviral diseases. International Journal of Tropical Insect Science 40. https://doi.org/10.1007/s42690-020- 00104-zAnoopkumar, A.N., Aneesh, E.M., 2022. A critical assessment of mosquito control and the influence of climate change on mosquito-borne disease epidemics. Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development 24, 8900–8929.Arivoli, S., Tennyson, S., Raveen, R., Jayakumar, M., Senthilkumar, B., Govindarajan, M., Babujanarthanam, R., Vijayanand, S., 2016. Larvicidal activity of fractions of Sphaeranthus indicus Linnaeus (Asteraceae) ethyl acetate whole plant extract against Aedes aegypti Linnaeus 1762, Anopheles stephensi Liston 1901 and Culex quinquefasciatus Say 1823 (Diptera: Culicidae). Int. J. Mosq. Res. 3, 18–30.. Ayuda-Durán, B., González-Manzano, S., González-Paramás, A.M., SantosBuelga, C., 2020. Caenorhabditis elegans as a Model Organism to Evaluate the Antioxidant Effects of Phytochemicals. Molecules 25, 3194. https://doi.org/10.3390/molecules25143194Hamzah, S. N., Avicor, S. W., Alias, Z., Razak, S. A., Bakhori, S. K. M., Hsieh, T. C., ... & Farouk, S. A. (2022). In Vivo Glutathione S-Transferases Superfamily Proteome Analysis: An Insight into Aedes albopictus Mosquitoes upon Acute Xenobiotic Challenges. Insects, 13(11), 1028Shrinet, J., Bhavesh, N. S., & Sunil, S. (2018). Understanding oxidative stress in Aedes during chikungunya and dengue virus infections using integromics analysis. Viruses, 10(6), 314.Oliveira, J. H. M., Talyuli, O. A., Goncalves, R. L., Paiva-Silva, G. O., Sorgine, M. H. F., Alvarenga, P. H., & Oliveira, P. L. (2017). Catalase protects Aedes aegypti from oxidative stress and increases midgut infection prevalence of Dengue but not Zika. PLoS neglected tropical diseases, 11(4), e0005525Akbari, O. S., Antoshechkin, I., Amrhein, H., Williams, B., Diloreto, R., Sandler, J., & Hay, B. A. (2013). The developmental transcriptome of the mosquito Aedes aegypti, an invasive species and major arbovirus vector. G3: Genes, Genomes, Genetics, 3(9), 1493-1509.Arroyo-Salgado, B., Olivero-Verbel, J., & Guerrero-Castilla, A. (2016). Direct effect of p, p'-DDT on mice liver. Brazilian Journal of Pharmaceutical Sciences, 52(2), 287-298.Collins, E. L., Phelan, J. E., Hubner, M., Spadar, A., Campos, M., Ward, D., ... & Campino, S. (2022). A next generation targeted amplicon sequencing method to screen for insecticide resistance mutations in Aedes aegypti populations reveals a rdl mutation in mosquitoes from Cabo Verde. PLOS Neglected Tropical Diseases, 16(12), e0010935.Conde, M., Orjuela, L. I., Castellanos, C. A., Herrera-Varela, M., Licastro, S., & Quiñones, M. L. (2015). Evaluación de la sensibilidad a insecticidas en poblaciones de Aedes aegypti (Diptera: Culicidae) del departamento de Caldas, Colombia, en 2007 y 2011. Biomédica, 35(1).Costa, M. B. S., Simões, R. D. C., Silva, M. D. J. A. D., Oliveira, A. C. D., Acho, L. D. R., Lima, E. S., ... & Oliveira, C. M. D. (2022). Oxidative stress induction by crude extract of Xylaria sp. triggers lethality in the larvae of Aedes aegypti (Diptera: Culicidae). Revista da Sociedade Brasileira de Medicina Tropical, 55.Gómez-Calderón, C., Mesa-Castro, C., Robledo, S., Gómez, S., Bolivar-Avila, S., Diaz-Castillo, F., & Martínez-Gutierrez, M. (2017). Antiviral effect of compounds derived from the seeds of Mammea americana and Tabernaemontana cymosa on Dengue and Chikungunya virus infections. BMC complementary and alternative medicine, 17(1), 57.Gómez-Estrada, H., Díaz-Castillo, F., Franco-Ospina, L., MercadoCamargo, J., Guzmán-Ledezma, J., Medina, J. D., & Gaitán-Ibarra, R. (2011). Folk medicine in the northern coast of Colombia: an overview. Journal of ethnobiology and ethnomedicine, 7(1), 27.Achenbach, H., Benirschke, M., & Torrenegra, R. (1997). Alkaloids and other compounds from seeds of Tabernaemontana cymosa. Phytochemistry, 45(2), 325-335. https://doi.org/10.1016/S0031- 9422(96)00645-0Ambrose, P. G. (2017). Antibacterial drug development program successes and failures: A pharmacometric explanation. Current Opinion in Pharmacology, 36, 1-7. PubMed. https://doi.org/10.1016/j.coph.2017.06.002Anand, U., Jacobo-Herrera, N., Altemimi, A., & Lakhssassi, N. (2019). A comprehensive review on medicinal plants as antimicrobial therapeutics: potential avenues of biocompatible drug discovery. Metabolites, 9(11), 258.Arambewela, L. S. R., & Ranatunge, T. (1991). Indole alkaloids from Tabernaemontana divaricata. Phytochemistry, 30(5), 1740-1741. https://doi.org/10.1016/0031-9422(91)84254-PBaldridge, D., Wangler, M. F., Bowman, A. N., Yamamoto, S., Schedl, T., Pak, S. C., ... & Westerfield, M. (2021). Model organisms contribute to diagnosis and discovery in the undiagnosed diseases network: current state and a future vision. Orphanet Journal of Rare Diseases, 16(1), 1-17.Bernal, R., Gradstein, S., & Celis, M. (2016). Catálogo de plantas y líquenes de Colombia.Caballero, K., Pino-Benitez, N., Pajaro, N., Stashenko, E., & Olivero-Verbel, J. (2014). Plants cultivated in Choco, Colombia, as source of repellents against Tribolium castaneum (Herbst). Journal of Asia-Pacific Entomology, 17, 753-759. https://doi.org/10.1016/j.aspen.2014.06.011Cabarcas-Montalvo, M., Maldonado-Rojas, W., Montes-Grajales, D., Bertel-Sevilla, A., Wagner-Döbler, I., Sztajer, H., Reck, M., Flechas-Alarcon, M., Ocazionez, R., & Olivero-Verbel, J. (2016). Discovery of antiviral molecules for dengue: In silico search and biological evaluation. European Journal of Medicinal Chemistry, 110, 87-97. https://doi.org/10.1016/j.ejmech.2015.12.030Cava, M. P., Tjoa, S. S., Ahmed, Q. A., & Da Rocha, A. I. (1968). The alkaloids of Tabernaemontana riedelii and T. rigida. The Journal of Organic Chemistry, 33(3), 1055-1059. https://doi.org/10.1021/jo01267a023Chakraborty, P. (2018). Herbal genomics as tools for dissecting new metabolic pathways of unexplored medicinal plants and drug discovery. Biochimie Open, 6. https://doi.org/10.1016/j.biopen.2017.12.003PublicationORIGINAL2023_TESIS DE GRADO ANDRES FELIPE OLIVEROS DIAZ.pdf2023_TESIS DE GRADO ANDRES FELIPE OLIVEROS DIAZ.pdfapplication/pdf4426333https://dspace7-unicartagena.metabuscador.org/bitstreams/a2eb1f29-5b76-4fc5-91a2-876f2c708f8a/download6613e0930d1e14f0b77e4f6e7cfcf98dMD51FORMATO CESION DE DERECHOS DE AUTOR_GRADO AFOD (1).pdfFORMATO CESION DE DERECHOS DE AUTOR_GRADO AFOD (1).pdfapplication/pdf52683https://dspace7-unicartagena.metabuscador.org/bitstreams/163a5f56-5791-40ce-9e29-7690a3d04f0e/download90d33dd42e485f54211ef27c9f6b3b0eMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81756https://dspace7-unicartagena.metabuscador.org/bitstreams/ac09152e-787a-4f65-bbe1-74dc4424597e/download7b38fcee9ba3bc8639fa56f350c81be3MD53TEXT2023_TESIS DE GRADO ANDRES FELIPE OLIVEROS DIAZ.pdf.txt2023_TESIS DE GRADO ANDRES FELIPE OLIVEROS DIAZ.pdf.txtExtracted texttext/plain280661https://dspace7-unicartagena.metabuscador.org/bitstreams/8f273325-50ab-4e45-9b3b-67d03614f293/download8ec2dc1ffcd0628f9d5f6dda608a6660MD54FORMATO CESION DE DERECHOS DE AUTOR_GRADO AFOD (1).pdf.txtFORMATO CESION DE DERECHOS DE AUTOR_GRADO AFOD (1).pdf.txtExtracted texttext/plain2929https://dspace7-unicartagena.metabuscador.org/bitstreams/ab278bf9-603e-4872-b644-71863eb0dbaa/downloadb644658ab85c5012e3aa3156062e5cd6MD56THUMBNAIL2023_TESIS DE GRADO ANDRES FELIPE OLIVEROS DIAZ.pdf.jpg2023_TESIS DE GRADO ANDRES FELIPE OLIVEROS DIAZ.pdf.jpgGenerated Thumbnailimage/jpeg10400https://dspace7-unicartagena.metabuscador.org/bitstreams/f6664ad9-86b4-495c-987f-678bda26de1d/downloadf3a30a45e8774d85fea84a6c8747571bMD55FORMATO CESION DE DERECHOS DE AUTOR_GRADO AFOD (1).pdf.jpgFORMATO CESION DE DERECHOS DE AUTOR_GRADO AFOD (1).pdf.jpgGenerated Thumbnailimage/jpeg16302https://dspace7-unicartagena.metabuscador.org/bitstreams/28d7f2c4-3508-4456-a525-31789b678634/downloadffc3c1d5f74341d051863e59feba0f73MD5711227/16526oai:dspace7-unicartagena.metabuscador.org:11227/165262024-08-28 16:49:21.417https://creativecommons.org/licenses/by-nc/4.0/open.accesshttps://dspace7-unicartagena.metabuscador.orgBiblioteca Digital Universidad de Cartagenabdigital@metabiblioteca.comCkFsIGZpcm1hciB5IHByZXNlbnRhciBlc3RhIGxpY2VuY2lhLCB1c3RlZCAoQVVUT1IgTyBBVVRPUkVTKSAgbyBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGVsIHByb3BpZXRhcmlvKFMpIGdhcmFudGl6YSBhICBsYSBVTklWRVJTSURBRCBERSBDQVJUQUdFTkEgZWwgZGVyZWNobyBleGNsdXNpdm8gZGUgcmVwcm9kdWNpciwgdHJhZHVjaXIgKGNvbW8gc2UgZGVmaW5lIG3DoXMgYWRlbGFudGUpIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byAoaW5jbHV5ZW5kbyBlbCByZXN1bWVuKSBlbiB0b2RvIGVsIG11bmRvICBlbiBmb3JtYSBpbXByZXNhIHkgZW4gZm9ybWF0byBlbGVjdHLDs25pY28geSBlbiBjdWFscXVpZXIgbWVkaW8sIGluY2x1eWVuZG8gYXVkaW8gbyB2aWRlby4KClVzdGVkIGFjZXB0YSBxdWUgbGEgVU5JVkVSU0lEQUQgREUgQ0FSVEFHRU5BICBwdWVkZSwgc2luIGNhbWJpYXIgZWwgY29udGVuaWRvIGNvbnZlcnRpcmxvLCBwcmVzZW50YXJsbyAgYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgbG9zIGZpbmVzIGRlIGNvbnNlcnZhY2nDs24uCgpVc3RlZCB0YW1iacOpbiBhY2VwdGEgcXVlIGxhIFVOSVZFUlNJREFEIERFIENBUlRBR0VOQSAgIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byBwYXJhIGZpbmVzIGRlIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24uCgpVc3RlZCBkZWNsYXJhIHF1ZSBlbCBkb2N1bWVudG8gZXMgdW4gdHJhYmFqbyBvcmlnaW5hbCB5ICBxdWUgdGllbmUgZWwgZGVyZWNobyBkZSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuICBUYW1iacOpbiByZXByZXNlbnRhbiAgbG8gbWVqb3IgZGUgc3UgY29ub2NpbWllbnRvIHkgbm8gaW5mcmluZ2VuICBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbmFkaWUuCgpTaSBlbCBkb2N1bWVudG8gY29udGllbmUgbWF0ZXJpYWxlcyBkZSBsb3MgcXVlIG5vIHRpZW5lIGxvcyAgZGVyZWNob3MgZGUgYXV0b3IsIHVzdGVkIGRlY2xhcmEgcXVlIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gc2luIHJlc3RyaWNjacOzbiBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zLCBkYSBhIGNvbmNlZGVyICBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgeSBxdWUgY29tbyBtYXRlcmlhbCBwcm9waWVkYWQgIGRlIHRlcmNlcm9zICBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyB5IHJlY29ub2NpZG8gZGVudHJvIGRlbCB0ZXh0byBvIGVsIGNvbnRlbmlkbyBkZSBsYSBwcmVzZW50YWNpw7NuLgoKU2kgbGEgcHJlc2VudGFjacOzbiBzZSBiYXNhIGVuICB0cmFiYWpvcyBRVUUgU0UgSEEgcGF0cm9jaW5hZG8gbyBhcG95YWRvIFBPUiBVTkEgQUdFTkNJQSBVIE9SR0FOSVpBQ0nDk04gUVVFIE5PIFNFQSBMQSBVTklWRVJTSURBRCBERSBDQVJUQUdFTkEsIE1BTklGSUVTVEEgUVVFIFRJRU5FIFFVRSBDVU1QTElSIGRlcmVjaG9zIGEgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHF1ZSBleGlnZW4gZXN0ZSBDb250cmF0byBvIGFjdWVyZG8uCgpEaWNlIHF1ZSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgc3Ugbm9tYnJlIChzKSBjb21vIGVsIGF1dG9yIChzKSBvIHByb3BpZXRhcmlvIChhKSBkZSBsb3MgZG9jdW1lbnRvIHkgbm8gaGFyw6EgbmluZ3VuYSBhbHRlcmFjacOzbiwgZXhlbnRvIGxhcyBwZXJtaXRpZGFzIGVuIGVzdGEgbGljZW5jaWEgcGFyYSBzdSBwcmVzZW50YWNpw7NuLgoKCg== |