Novedades sobre angiotensina II y fibrilación auricular : de lo molecular a lo fisiopatológico.

Autores:
Llamas Nieves, Andrés Elías
Lozada Martínez, Ivan David
Torres Llinás, Daniela Marcela
Manzur Jattin, Fernando
Cardales Periñán, Miguel
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad de Cartagena
Repositorio:
Repositorio Universidad de Cartagena
Idioma:
eng
OAI Identifier:
oai:repositorio.unicartagena.edu.co:11227/13457
Acceso en línea:
https://doi.org/10.32997/rcb-2021-3371
Palabra clave:
Renin-Angiotensin system
Angiotensin II
Cardiovascular diseases
Cardiac arrhythmias
Angiotensina II
Fibrilación auricular
Sistema Renina-Angiotensina
Enfermedades cardiovasculares
Arritmias cardiacas
Rights
openAccess
License
Andrés Elías Llamas Nieves - 2021
id UCART2_26b6d935702500b1fc9194393bae50da
oai_identifier_str oai:repositorio.unicartagena.edu.co:11227/13457
network_acronym_str UCART2
network_name_str Repositorio Universidad de Cartagena
repository_id_str
dc.title.spa.fl_str_mv Novedades sobre angiotensina II y fibrilación auricular : de lo molecular a lo fisiopatológico.
dc.title.translated.eng.fl_str_mv News on angiotensin II and atrial fibrillation : from the molecular to the pathophysiological.
title Novedades sobre angiotensina II y fibrilación auricular : de lo molecular a lo fisiopatológico.
spellingShingle Novedades sobre angiotensina II y fibrilación auricular : de lo molecular a lo fisiopatológico.
Renin-Angiotensin system
Angiotensin II
Cardiovascular diseases
Cardiac arrhythmias
Angiotensina II
Fibrilación auricular
Sistema Renina-Angiotensina
Enfermedades cardiovasculares
Arritmias cardiacas
title_short Novedades sobre angiotensina II y fibrilación auricular : de lo molecular a lo fisiopatológico.
title_full Novedades sobre angiotensina II y fibrilación auricular : de lo molecular a lo fisiopatológico.
title_fullStr Novedades sobre angiotensina II y fibrilación auricular : de lo molecular a lo fisiopatológico.
title_full_unstemmed Novedades sobre angiotensina II y fibrilación auricular : de lo molecular a lo fisiopatológico.
title_sort Novedades sobre angiotensina II y fibrilación auricular : de lo molecular a lo fisiopatológico.
dc.creator.fl_str_mv Llamas Nieves, Andrés Elías
Lozada Martínez, Ivan David
Torres Llinás, Daniela Marcela
Manzur Jattin, Fernando
Cardales Periñán, Miguel
dc.contributor.author.spa.fl_str_mv Llamas Nieves, Andrés Elías
Lozada Martínez, Ivan David
Torres Llinás, Daniela Marcela
Manzur Jattin, Fernando
Cardales Periñán, Miguel
dc.subject.eng.fl_str_mv Renin-Angiotensin system
Angiotensin II
Cardiovascular diseases
Cardiac arrhythmias
topic Renin-Angiotensin system
Angiotensin II
Cardiovascular diseases
Cardiac arrhythmias
Angiotensina II
Fibrilación auricular
Sistema Renina-Angiotensina
Enfermedades cardiovasculares
Arritmias cardiacas
dc.subject.spa.fl_str_mv Angiotensina II
Fibrilación auricular
Sistema Renina-Angiotensina
Enfermedades cardiovasculares
Arritmias cardiacas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-04-15 00:00:00
dc.date.available.none.fl_str_mv 2021-04-15 00:00:00
dc.date.issued.none.fl_str_mv 2021-04-15
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.eng.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2215-7840
dc.identifier.doi.none.fl_str_mv 10.32997/rcb-2021-3371
dc.identifier.eissn.none.fl_str_mv 2389-7252
dc.identifier.url.none.fl_str_mv https://doi.org/10.32997/rcb-2021-3371
identifier_str_mv 2215-7840
10.32997/rcb-2021-3371
2389-7252
url https://doi.org/10.32997/rcb-2021-3371
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Revista Ciencias Biomédicas
dc.relation.bitstream.none.fl_str_mv https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/3371/2857
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2021
dc.relation.citationendpage.none.fl_str_mv 119
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 109
dc.relation.citationvolume.spa.fl_str_mv 10
dc.relation.references.eng.fl_str_mv Zuljifly H, Lip G, Lane D. Epidemiology of atrial fibrillation. International Journal of Clinical Practice. 2018; 72(3): e13070. https://doi.org/10.1111/ijcp.13070
Shivshankar T, Lau D, Agbaedeng T, Elliott D, Mahajan R, Sanders P. Molecular mechanisms of atrial fibrosis: implications for the clinic. Expert Rev Cardiovasc Ther. 2017; 15(4): 247-256. https://doi.org/10.1080/14779072.2017.1299005
Lip GY, Tello-Montoliu A. Management of atrial fibrillation. Heart. 2006; 92(8): 1177-82. https://doi.org/10.1136/hrt.2005.071555
Lau DH, Middeldorp ME, Brooks AG, Ganesan AN, Roberts-Thomson KC, Stiles MK, et al. Aortic stiffness in lone atrial fibrillation: a novel risk factor for arrhythmia recurrence. PLoS One. 2013; 8(10): e76776. https://doi.org/10.1371/journal.pone.0076776
Pathak RK, Elliott A, Middeldorp ME, Meredith M, Mehta AB, Mahajan R, et al. Impact of CARDIOrespiratory FITness on Arrhythmia Recurrence in Obese Individuals With Atrial Fibrillation: The CARDIO-FIT Study. J Am Coll Cardiol. 2015; 66(9): 985-96. https://doi.org/10.1016/j.jacc.2015.06.488
Tucker NR, Clauss S, Ellinor PT. Common variation in atrial fibrillation: navigating the path from genetic association to mechanism. Cardiovasc Res. 2016; 109(4): 493-501. https://doi.org/10.1093/cvr/cvv283
Mascolo A, Urbanek K, De Angelis A, Sessa M, Scavone C, Berrino L, et al. Angiotensin II and angiotensin 1-7: which is their role in atrial fibrillation?. Heart Fail Rev. 2020; 25(2): 367-380. https://doi.org/10.1007/s10741-019-09837-7
Wagner P. Pathophysiology of hypertension: new concepts. Rev Peru Ginecol Obstet. 2018; 64(2): 175- 184. https://doi.org/10.31403/rpgo.v64i2075
Nehme A, Zouein FA, Zayeri ZD, Zibara K. An Update on the Tissue Renin Angiotensin System and Its Role in Physiology and Pathology. J Cardiovasc Dev Dis. 2019; 6(2): 14. https://doi.org/10.3390/jcdd6020014
Kishihara J, Niwano S, Niwano H, Aoyama Y, Ishikawa S, Oikawa J, et al. Long-term observation of fibrillation cycle length in patients under angiotensin II receptor blocker therapy for chronic atrial fibrillation. Journal of Arrhythmia. 2012; 28: 34-40. https://doi.org/10.1016/j.joa.2012.02.006
Fauchier L, de Groote P. Atrial fibrillation and renin- angiotensin-aldosterone system: believe it or not. Europace. 2011; 13(3): 297-8. https://doi.org/10.1093/europace/euq451
Arslan A, Ozaydin M, Aksoy F, Arslan B, Aydin H, Erdogan D, et al. Association between the use of renin- angiotensin system blockers and development of in- hospital atrial fibrillation in patients with ST-segment elevation myocardial infarction. Medicina. 2016; 52(2): 104-109. https://doi.org/10.1016/j.medici.2016.02.006
Seccia T, Caroccia B, Muiesan M, Rossi G. Atrial fibrillation and arterial hypertension: A common duet with dangerous consequences where the renin angiotensin-aldosterone system plays an important role. International Journal of Cardiology. 2016; 206: 71-76. https://doi.org/10.1016/j.ijcard.2016.01.007
Lugenbiel P, Wenz F, Govorov K, Syren P, Katus H, Thomas D. Atrial myofibroblast activation and connective tissue formation in a porcine model of atrial fibrillation and reduced left ventricular function. Life sciences. 2017; 181: 1-8. https://doi.org/10.1016/j.lfs.2017.05.025
Nair GM, Nery PB, Redpath CJ, Birnie DH. The Role of Renin Angiotensin System In Atrial Fibrillation. J Atr Fibrillation. 2014; 6(6): 972.
Jansen H, Mackasey M, Moghtadaei M, Belke D, Egom E, Tuomi J, et al. Distinct patterns of atrial electrical and structural remodeling in angiotensin II mediated atrial fibrillation. J Mol Cell Cardiol. 2018; 124: 12-25. https://doi.org/10.1016/j.yjmcc.2018.09.011
Perlini S, Belluzzi F, Salinaro F, Musca F. Atrial Fibrillation - Mechanisms and Treatment [Internet]. Tong Liu; 2013. [Consulted 5 Nov 2020]. Available in: https://www.intechopen.com/books/atrial-fibrillation-mechanisms-and-treatment/atrial-fibrillation-and-the-renin-angiotensin-aldosterone-system ; https://doi.org/10.5772/53917
Youn J, Zhang J, Zhang Y, Chen H, Liu D, Ping P, et al. Oxidative stress in atrial fibrillation: an emerging role of NADPH oxidase. J Mol Cell Cardiol. 2013; 62: 72-79. https://doi.org/10.1016/j.yjmcc.2013.04.019
Lu G, Xu S, Peng L, Huang Z, Wang Y, Gao X. Angiotensin II upregulates Kv1.5 expression through ROS-dependent transforming growth factor-beta1 and extracellular signal-regulated kinase 1/2 signalings in neonatal rat atrial myocytes, Biochem Biophys Res Commun. 2014; 454(3): 410-416. https://doi.org/10.1016/j.bbrc.2014.10.088
Lu G, Xu C, Tang K, Zhang J, Li Q, Peng L. H2S inhibits angiotensin II-induced atrial Kv1.5 upregulation by attenuating Nox4/mediated EOS generation during atrial fibrillation. Biochem Biophys Res Commun. 2016; 483(1): 1-7. https://doi.org/10.1016/j.bbrc.2016.12.110
Bujor AM, Asano Y, Haines P, Lafyatis R, Trojanowska M. The c-Abl tyrosine kinase controls protein kinase Cδ- induced Fli-1 phosphorylation in human dermal fibroblasts. Arthritis Rheum. 2011; 63(6): 1729-37. https://doi.org/10.1002/art.30284
Piera-Velazquez S, Li Z, Jimenez SA. Role of Endothelial- Mesenchymal Transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 2011; 179(3): 1074-1080. https://doi.org/10.1016/j.ajpath.2011.06.001
Lamouille S, Derynck R. Emergence of the phosphoinositide 3- kinase-Akt-mammalian target of rapamycin axis in transforming growth factor-β-induced epithelial-mesenchymal transition. Cells Tissues Organs. 2011; 193(1-2): 8-22. https://doi.org/10.1159/000320172
HeX,GaoX,PengL,WangS,ZhuY,MaH,etal.Atrial fibrillation induces myocardial fibrosis through angiotensin II type 1 receptor-specific Arkadia-mediated downregulation of Smad7. Circ Res. 2011; 108(2): 164- 75. https://doi.org/10.1161/CIRCRESAHA.110.234369
Ge Z, Chen Y, Wang B, Zhang X, Yan Y, Zhou L, et al. MFGE8 attenuates Ang-II-induced atrial fibrosis and vulnerability to atrial fibrillation through inhibition of TGF-β1/Smad2/3 pathway. J Mol Cell Cardiol. 2020; 139: 164-175. https://doi.org/10.1016/j.yjmcc.2020.01.001
Tsai CT, Lai LP, Kuo KT, Hwang JJ, Hsieh CS, Hsu KL, et al. Angiotensin II activates signal transducer and activators of transcription 3 via Rac1 in atrial myocytes and fibroblasts: implication for the therapeutic effect of statin in atrial structural remodeling. Circulation. 2008; 117(3): 344-55. https://doi.org/10.1161/CIRCULATIONAHA.107.695346
Zheng L, Jia X, Zhang C, Wang D, Cao Z, Wang J, et al. Angiotensin II in atrial structural remodeling: the role of Ang II/JAK/STAT3 signaling pathway. Am J Transl Res. 2015; 7(6): 1021-31.
Tanaka Y, Obata K, Ohmori T, Ishiwata K, Abe M, Hamaguchi S, et al. Angiotensin II induces automatic activity of the isolated Guinea Pig pulmonary vein myocardium through activation of the IP3 receptor and the Na+-Ca2+ exchanger. Int J Mol Sci. 2019; 20(7): 1768. https://doi.org/10.3390/ijms20071768
Freedman B, Potpara TS, Lip GYH. Stroke prevention in atrial fibrillation. Lancet. 2016; 388(10046): 806-817. https://doi.org/10.1016/S0140-6736(16)31257-0
Fadhlullah AA, Abdalgbar AA, Altalhi HK. Non rheumatic atrial fibrillation as risk of stroke. Am J Internal Med. 2016; 4(6): 117. https://doi.org/10.11648/j.ajim.20160406.15
Ji C, Wu S, Shi J, Huang Z, Chen S, Wang G. Baseline CHADS2 score and risk of cardiovascular events in the population without atrial fibrillation. The American Journal of Cardiology. 2020; 129: 30-35. https://doi.org/10.1016/j.amjcard.2020.05.035
Saliba W, Gronich N, Barnett-Griness O, Rennert G. The role of CHADS2 and CHA2 DS2 -VASc scores in the prediction of stroke in individuals without atrial fibrillation: a population-based study. J Thromb Haemost. 2016; 14: 1155-1162. https://doi.org/10.1111/jth.13324
Lee D, Goldberger J, Fluckiger J, Ng J, Carr J, Collins J, et al. Analysis of left atrial flow velocity distribution by 4D flow MRI in patients with atrial fibrillation. Circulation. 2013; 128: A17900.
Lee D, Markl M, Ng J, Carr M, Benefiled B, Carr J, et al. Atrial fibrillation is associated with altered left atrial 3D hemodynamics and increased stasis. Circulation. 2014; 130: A14026. https://doi.org/10.1161/circ.130.suppl_2.14026
Goldberger J, Fluckiger J, Lee D, Ng J, Olsen AB, Carr J, et al. Left atrial flow velocity distribution in atrial fibrillation by 4D flow MRI: A new marker for risk of stroke? Heart Rhythm. 2013; 10: S384. https://doi.org/10.1186/1532-429X-15-S1-P261
Siontis K, Geske J, Gersh B. Atrial fibrillation pathophysiology and prognosis insights from cardiovascular imaging. Circ Cardiovasc Imaging. 2015; 8(6): e003020. https://doi.org/10.1161/CIRCIMAGING.115.003020
Goldberger J, Arora R, Green D, Greenland P, Lee D, Lloyd D, et al. Evaluating the atrial myopathy underlying atrial fibrillation: identifying the arrhythmogenic and thrombogenic substrate. Circulation. 2015; 132(4): 278- 291. https://doi.org/10.1161/CIRCULATIONAHA.115.016795
Christersson C, Wallentin L, Andersson U, Alexander JH, Ansell J, De Caterina R, et al. D-dimer and risk of thromboembolic and bleeding events in patients with atrial fibrillation--observations from the ARISTOTLE trial. J Thromb Haemost. 2014; 12: 1401-1412. https://doi.org/10.1111/jth.12638
Claxton J, Chamberlain A, Lutsey P, Chen L, MacLehose R, Bengston L, et al. Association of multimorbidity with cardiovascular endpoints and treatment effectiveness in patients 75 years and older with atrial fibrillation. The American Journal of Medicine. 2020; 133(10): e554-e567. https://doi.org/10.1016/j.amjmed.2020.03.038
Hijazi Z, Oldgren J, Andersson U, Connolly SJ, Ezekowitz MD, Hohnloser SH, et al. Cardiac biomarkers are associated with an increased risk of stroke and death in patients with atrial fibrillation: a Randomized Evaluation of Long-term Anticoagulation Therapy (RE- LY) substudy. Circulation. 2012; 125:1605-1616. https://doi.org/10.1161/CIRCULATIONAHA.111.038729
Rubattu S, Volpe M. Natriuretic peptides in the cardiovascular system: multifaceted roles in physiology, pathology and therapeutics. Int J Mol Sci. 2019; 20(16):3991. https://doi.org/10.3390/ijms20163991
Patton KK, Heckbert SR, Alonso A, Bahrami H, Lima JA, Burke G, et al. N-terminal pro-B-type natriuretic peptide as a predictor of incident atrial fibrillation in the Multi-Ethnic Study of Atherosclerosis: The effects of age, sex and ethnicity. Heart. 2013; 99: 1832-1836. https://doi.org/10.1136/heartjnl-2013-304724
Svennberg E, Lindahl B, Berglund L, Eggers KM, Venge P, Zethelius B, et al. NT-proBNP is a powerful predictor for incident atrial fibrillation-Validation of a multimarker approach. Int J Cardiol. 2016; 223: 74-81. https://doi.org/10.1016/j.ijcard.2016.08.001
Sinner MF, Stepas KA, Moser CB, Krijthe BP, Aspelund T, Sotoodehnia N, et al. B-type natriuretic peptide and C- reactive protein in the prediction of atrial fibrillation risk: The CHARGE-AF Consortium of community-based cohort studies. Europace. 2014; 16: 1426-1433. https://doi.org/10.1093/europace/euu175
Schnabel RB, Larson MG, Yamamoto JF, Sullivan LM, Pencina MJ, Meigs JB, et al. Relations of biomarkers of distinct pathophysiological pathways and atrial fibrillation incidence in the community. Circulation, 2010; 121: 200-207. https://doi.org/10.1161/CIRCULATIONAHA.109.882241
Hijazi Z, Wallentin L, Siegbahn A, Andersson U, Christersson C, Ezekowitz J, et al. N-terminal pro-B-type natriuretic peptide for risk assessment in patients with atrial fibrillation: insights from the ARISTOTLE Trial (Apixaban for the Prevention of Stroke in Subjects with Atrial Fibrillation). J Am Coll Cardiol. 2013; 61: 2274- 2284. https://doi.org/10.1016/j.jacc.2012.11.082
Wachtell K, Lehto M, Gerdts E, Olsen MH, Hornestam B, Dahlöf B, et al. Angiotensin II Receptor Blockade Reduces New-Onset Atrial Fibrillation and Subsequent Stroke Compared to Atenolol: The Losartan Intervention for end Point Reduction in Hypertension (LIFE) study. J Am Coll Cardiol. 2005; 45: 712-9. https://doi.org/10.1016/j.jacc.2004.10.068
Pedersen OD, Bagger H, Kober L, Torp-Pedersen C. Trandolapril reduces the incidence of atrial fibrillation after acute myocardial infarction in patients with left ventricular dysfunction. Circulation. 1999; 100(4): 376-80. https://doi.org/10.1161/01.CIR.100.4.376
Telmisartan Randomised AssessmeNt Study in ACE iNtolerant subjects with cardiovascular disease (TRANSCEND) Investigators, Yusuf S, Teo K, Anderson C, Pogue J, Dyal L, Copland I, et al. Effects of the angiotensin-receptor blocker telmisartan on cardiovascular events in high-risk patients intolerant to angiotensin-converting enzyme inhibitors: a randomised controlled trial. Lancet. 2008; 372(9644): 1174-83. https://doi.org/10.1016/S0140-6736(08)61242-8
Dahl JS, Videbaek L, Poulsen MK, Pellikka PA, Veien K, Andersen LI, et al. Effect of candesartan treatment on left ventricular remodeling after aortic valve replacement for aortic stenosis. Am J Cardiol. 2010; 106(5): 713-9. https://doi.org/10.1016/j.amjcard.2010.04.028
Swedberg K, Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Shi H, et al. Eplerenone and atrial fibrillation in mild systolic heart failure: results from the EMPHASIS-HF (Eplerenone in Mild Patients Hospitalization and SurvIval Study in Heart Failure) study. J Am Coll Cardiol. 2012; 59(18): 1598-603. https://doi.org/10.1016/j.jacc.2011.11.063
Khatib R, Joseph P, Briel M, Yusuf S, Healey J. Blockade of the renin-angiotensin-aldosterone system (RAAS) for primary prevention of non-valvular atrial fibrillation: a systematic review and meta analysis of randomized controlled trials. Int J Cardiol. 2013; 165(1): 17-24. https://doi.org/10.1016/j.ijcard.2012.02.009
Carson JA, Turner AJ. Beta-amyloid catabolism: Roles for neprilysin (nep) and other metallopeptidases?. J Neurochem. 2002; 81: 1-8. https://doi.org/10.1046/j.1471-4159.2002.00855.x
Barnes K, Turner AJ, Kenny AJ. Membrane localization of endopeptidase-24.11 and peptidyl dipeptidase a (angiotensin converting enzyme) in the pig brain: A study using subcellular fractionation and electron microscopic immunocytochemistry. J Neurochem. 1992; 58: 2088- 2096. https://doi.org/10.1111/j.1471-4159.1992.tb10950.x
Stephenson SL, Kenny AJ. Metabolism of neuropeptides. Hydrolysis of the angiotensins, bradykinin, substance p and oxytocin by pig kidney microvillar membranes. Biochem J. 1987; 241: 237-247. https://doi.org/10.1042/bj2410237
McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014; 371(11): 993-1004. https://doi.org/10.1056/NEJMoa1409077
Solomon S, Rizkala A, Gong J, Wang W, Anand I, Ge J, et al. Angiotensin receptor neprilisyn inhibition in heart failure with preserved ejection fraction: Rationale and design of the PARAGON-HF Trial. JACC Heart Fail. 2017; 5(7): 471-482. https://doi.org/10.1016/j.jchf.2017.04.013
Okutucu S, Fatihoglu SG, Sabanoglu C, Bursa N, Sayin BY, Aksoy H, et al. Effects of angiotensin receptor neprilysin inhibition on P-wave dispersion in heart failure with reduced ejection fraction. Herz. 2019. https://doi.org/10.1007/s00059-019-04872-4
Desai AS, McMurray JJ, Packer M, Swedberg K, Rouleau JL, Chen F, et al. Effect of the angiotensin- receptor-neprilysin inhibitor LCZ696 compared with enalapril on mode of death in heart failure patients. Eur Heart J. 2015; 36(30): 1990-1997. https://doi.org/10.1093/eurheartj/ehv186
De Diego C, Gonzalez-Torres L, Nunez JM, Centurion Inda R, Martin-Langerwerf DA, Sangio AD, et al. Effects of angiotensin-neprilysin inhibition compared to angiotensin inhibition on ventricular arrhythmias in reduced ejection fraction patients under continuous remote monitoring of implantable defibrillator devices. Heart Rhytm. 2018; 15(3): 395-402. https://doi.org/10.1016/j.hrthm.2017.11.012
Song S, Zhang R, Mo B, Chen L, Liu L, Yu Y, et al. EZH2 as a novel therapeutic target for atrial fibrosis and atrial fibrillation. J Mol Cell Cardiol. 2019; 135: 119-133. https://doi.org/10.1016/j.yjmcc.2019.08.003
dc.rights.eng.fl_str_mv Andrés Elías Llamas Nieves - 2021
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0
dc.rights.coar.eng.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Andrés Elías Llamas Nieves - 2021
https://creativecommons.org/licenses/by-nc-sa/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Cartagena
dc.source.eng.fl_str_mv https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/3371
institution Universidad de Cartagena
bitstream.url.fl_str_mv https://repositorio.unicartagena.edu.co/bitstreams/a7a9323c-6040-48e2-8b49-ac234f612474/download
bitstream.checksum.fl_str_mv 369c2e42b72cdd79e7147da240d1e9b5
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Biblioteca Digital Universidad de Cartagena
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814214193557012480
spelling Llamas Nieves, Andrés ElíasLozada Martínez, Ivan DavidTorres Llinás, Daniela MarcelaManzur Jattin, FernandoCardales Periñán, Miguel2021-04-15 00:00:002021-04-15 00:00:002021-04-152215-784010.32997/rcb-2021-33712389-7252https://doi.org/10.32997/rcb-2021-3371application/pdfengUniversidad de CartagenaRevista Ciencias Biomédicashttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/3371/2857Núm. 2 , Año 2021119210910Zuljifly H, Lip G, Lane D. Epidemiology of atrial fibrillation. International Journal of Clinical Practice. 2018; 72(3): e13070. https://doi.org/10.1111/ijcp.13070Shivshankar T, Lau D, Agbaedeng T, Elliott D, Mahajan R, Sanders P. Molecular mechanisms of atrial fibrosis: implications for the clinic. Expert Rev Cardiovasc Ther. 2017; 15(4): 247-256. https://doi.org/10.1080/14779072.2017.1299005Lip GY, Tello-Montoliu A. Management of atrial fibrillation. Heart. 2006; 92(8): 1177-82. https://doi.org/10.1136/hrt.2005.071555Lau DH, Middeldorp ME, Brooks AG, Ganesan AN, Roberts-Thomson KC, Stiles MK, et al. Aortic stiffness in lone atrial fibrillation: a novel risk factor for arrhythmia recurrence. PLoS One. 2013; 8(10): e76776. https://doi.org/10.1371/journal.pone.0076776Pathak RK, Elliott A, Middeldorp ME, Meredith M, Mehta AB, Mahajan R, et al. Impact of CARDIOrespiratory FITness on Arrhythmia Recurrence in Obese Individuals With Atrial Fibrillation: The CARDIO-FIT Study. J Am Coll Cardiol. 2015; 66(9): 985-96. https://doi.org/10.1016/j.jacc.2015.06.488Tucker NR, Clauss S, Ellinor PT. Common variation in atrial fibrillation: navigating the path from genetic association to mechanism. Cardiovasc Res. 2016; 109(4): 493-501. https://doi.org/10.1093/cvr/cvv283Mascolo A, Urbanek K, De Angelis A, Sessa M, Scavone C, Berrino L, et al. Angiotensin II and angiotensin 1-7: which is their role in atrial fibrillation?. Heart Fail Rev. 2020; 25(2): 367-380. https://doi.org/10.1007/s10741-019-09837-7Wagner P. Pathophysiology of hypertension: new concepts. Rev Peru Ginecol Obstet. 2018; 64(2): 175- 184. https://doi.org/10.31403/rpgo.v64i2075Nehme A, Zouein FA, Zayeri ZD, Zibara K. An Update on the Tissue Renin Angiotensin System and Its Role in Physiology and Pathology. J Cardiovasc Dev Dis. 2019; 6(2): 14. https://doi.org/10.3390/jcdd6020014Kishihara J, Niwano S, Niwano H, Aoyama Y, Ishikawa S, Oikawa J, et al. Long-term observation of fibrillation cycle length in patients under angiotensin II receptor blocker therapy for chronic atrial fibrillation. Journal of Arrhythmia. 2012; 28: 34-40. https://doi.org/10.1016/j.joa.2012.02.006Fauchier L, de Groote P. Atrial fibrillation and renin- angiotensin-aldosterone system: believe it or not. Europace. 2011; 13(3): 297-8. https://doi.org/10.1093/europace/euq451Arslan A, Ozaydin M, Aksoy F, Arslan B, Aydin H, Erdogan D, et al. Association between the use of renin- angiotensin system blockers and development of in- hospital atrial fibrillation in patients with ST-segment elevation myocardial infarction. Medicina. 2016; 52(2): 104-109. https://doi.org/10.1016/j.medici.2016.02.006Seccia T, Caroccia B, Muiesan M, Rossi G. Atrial fibrillation and arterial hypertension: A common duet with dangerous consequences where the renin angiotensin-aldosterone system plays an important role. International Journal of Cardiology. 2016; 206: 71-76. https://doi.org/10.1016/j.ijcard.2016.01.007Lugenbiel P, Wenz F, Govorov K, Syren P, Katus H, Thomas D. Atrial myofibroblast activation and connective tissue formation in a porcine model of atrial fibrillation and reduced left ventricular function. Life sciences. 2017; 181: 1-8. https://doi.org/10.1016/j.lfs.2017.05.025Nair GM, Nery PB, Redpath CJ, Birnie DH. The Role of Renin Angiotensin System In Atrial Fibrillation. J Atr Fibrillation. 2014; 6(6): 972.Jansen H, Mackasey M, Moghtadaei M, Belke D, Egom E, Tuomi J, et al. Distinct patterns of atrial electrical and structural remodeling in angiotensin II mediated atrial fibrillation. J Mol Cell Cardiol. 2018; 124: 12-25. https://doi.org/10.1016/j.yjmcc.2018.09.011Perlini S, Belluzzi F, Salinaro F, Musca F. Atrial Fibrillation - Mechanisms and Treatment [Internet]. Tong Liu; 2013. [Consulted 5 Nov 2020]. Available in: https://www.intechopen.com/books/atrial-fibrillation-mechanisms-and-treatment/atrial-fibrillation-and-the-renin-angiotensin-aldosterone-system ; https://doi.org/10.5772/53917Youn J, Zhang J, Zhang Y, Chen H, Liu D, Ping P, et al. Oxidative stress in atrial fibrillation: an emerging role of NADPH oxidase. J Mol Cell Cardiol. 2013; 62: 72-79. https://doi.org/10.1016/j.yjmcc.2013.04.019Lu G, Xu S, Peng L, Huang Z, Wang Y, Gao X. Angiotensin II upregulates Kv1.5 expression through ROS-dependent transforming growth factor-beta1 and extracellular signal-regulated kinase 1/2 signalings in neonatal rat atrial myocytes, Biochem Biophys Res Commun. 2014; 454(3): 410-416. https://doi.org/10.1016/j.bbrc.2014.10.088Lu G, Xu C, Tang K, Zhang J, Li Q, Peng L. H2S inhibits angiotensin II-induced atrial Kv1.5 upregulation by attenuating Nox4/mediated EOS generation during atrial fibrillation. Biochem Biophys Res Commun. 2016; 483(1): 1-7. https://doi.org/10.1016/j.bbrc.2016.12.110Bujor AM, Asano Y, Haines P, Lafyatis R, Trojanowska M. The c-Abl tyrosine kinase controls protein kinase Cδ- induced Fli-1 phosphorylation in human dermal fibroblasts. Arthritis Rheum. 2011; 63(6): 1729-37. https://doi.org/10.1002/art.30284Piera-Velazquez S, Li Z, Jimenez SA. Role of Endothelial- Mesenchymal Transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 2011; 179(3): 1074-1080. https://doi.org/10.1016/j.ajpath.2011.06.001Lamouille S, Derynck R. Emergence of the phosphoinositide 3- kinase-Akt-mammalian target of rapamycin axis in transforming growth factor-β-induced epithelial-mesenchymal transition. Cells Tissues Organs. 2011; 193(1-2): 8-22. https://doi.org/10.1159/000320172HeX,GaoX,PengL,WangS,ZhuY,MaH,etal.Atrial fibrillation induces myocardial fibrosis through angiotensin II type 1 receptor-specific Arkadia-mediated downregulation of Smad7. Circ Res. 2011; 108(2): 164- 75. https://doi.org/10.1161/CIRCRESAHA.110.234369Ge Z, Chen Y, Wang B, Zhang X, Yan Y, Zhou L, et al. MFGE8 attenuates Ang-II-induced atrial fibrosis and vulnerability to atrial fibrillation through inhibition of TGF-β1/Smad2/3 pathway. J Mol Cell Cardiol. 2020; 139: 164-175. https://doi.org/10.1016/j.yjmcc.2020.01.001Tsai CT, Lai LP, Kuo KT, Hwang JJ, Hsieh CS, Hsu KL, et al. Angiotensin II activates signal transducer and activators of transcription 3 via Rac1 in atrial myocytes and fibroblasts: implication for the therapeutic effect of statin in atrial structural remodeling. Circulation. 2008; 117(3): 344-55. https://doi.org/10.1161/CIRCULATIONAHA.107.695346Zheng L, Jia X, Zhang C, Wang D, Cao Z, Wang J, et al. Angiotensin II in atrial structural remodeling: the role of Ang II/JAK/STAT3 signaling pathway. Am J Transl Res. 2015; 7(6): 1021-31.Tanaka Y, Obata K, Ohmori T, Ishiwata K, Abe M, Hamaguchi S, et al. Angiotensin II induces automatic activity of the isolated Guinea Pig pulmonary vein myocardium through activation of the IP3 receptor and the Na+-Ca2+ exchanger. Int J Mol Sci. 2019; 20(7): 1768. https://doi.org/10.3390/ijms20071768Freedman B, Potpara TS, Lip GYH. Stroke prevention in atrial fibrillation. Lancet. 2016; 388(10046): 806-817. https://doi.org/10.1016/S0140-6736(16)31257-0Fadhlullah AA, Abdalgbar AA, Altalhi HK. Non rheumatic atrial fibrillation as risk of stroke. Am J Internal Med. 2016; 4(6): 117. https://doi.org/10.11648/j.ajim.20160406.15Ji C, Wu S, Shi J, Huang Z, Chen S, Wang G. Baseline CHADS2 score and risk of cardiovascular events in the population without atrial fibrillation. The American Journal of Cardiology. 2020; 129: 30-35. https://doi.org/10.1016/j.amjcard.2020.05.035Saliba W, Gronich N, Barnett-Griness O, Rennert G. The role of CHADS2 and CHA2 DS2 -VASc scores in the prediction of stroke in individuals without atrial fibrillation: a population-based study. J Thromb Haemost. 2016; 14: 1155-1162. https://doi.org/10.1111/jth.13324Lee D, Goldberger J, Fluckiger J, Ng J, Carr J, Collins J, et al. Analysis of left atrial flow velocity distribution by 4D flow MRI in patients with atrial fibrillation. Circulation. 2013; 128: A17900.Lee D, Markl M, Ng J, Carr M, Benefiled B, Carr J, et al. Atrial fibrillation is associated with altered left atrial 3D hemodynamics and increased stasis. Circulation. 2014; 130: A14026. https://doi.org/10.1161/circ.130.suppl_2.14026Goldberger J, Fluckiger J, Lee D, Ng J, Olsen AB, Carr J, et al. Left atrial flow velocity distribution in atrial fibrillation by 4D flow MRI: A new marker for risk of stroke? Heart Rhythm. 2013; 10: S384. https://doi.org/10.1186/1532-429X-15-S1-P261Siontis K, Geske J, Gersh B. Atrial fibrillation pathophysiology and prognosis insights from cardiovascular imaging. Circ Cardiovasc Imaging. 2015; 8(6): e003020. https://doi.org/10.1161/CIRCIMAGING.115.003020Goldberger J, Arora R, Green D, Greenland P, Lee D, Lloyd D, et al. Evaluating the atrial myopathy underlying atrial fibrillation: identifying the arrhythmogenic and thrombogenic substrate. Circulation. 2015; 132(4): 278- 291. https://doi.org/10.1161/CIRCULATIONAHA.115.016795Christersson C, Wallentin L, Andersson U, Alexander JH, Ansell J, De Caterina R, et al. D-dimer and risk of thromboembolic and bleeding events in patients with atrial fibrillation--observations from the ARISTOTLE trial. J Thromb Haemost. 2014; 12: 1401-1412. https://doi.org/10.1111/jth.12638Claxton J, Chamberlain A, Lutsey P, Chen L, MacLehose R, Bengston L, et al. Association of multimorbidity with cardiovascular endpoints and treatment effectiveness in patients 75 years and older with atrial fibrillation. The American Journal of Medicine. 2020; 133(10): e554-e567. https://doi.org/10.1016/j.amjmed.2020.03.038Hijazi Z, Oldgren J, Andersson U, Connolly SJ, Ezekowitz MD, Hohnloser SH, et al. Cardiac biomarkers are associated with an increased risk of stroke and death in patients with atrial fibrillation: a Randomized Evaluation of Long-term Anticoagulation Therapy (RE- LY) substudy. Circulation. 2012; 125:1605-1616. https://doi.org/10.1161/CIRCULATIONAHA.111.038729Rubattu S, Volpe M. Natriuretic peptides in the cardiovascular system: multifaceted roles in physiology, pathology and therapeutics. Int J Mol Sci. 2019; 20(16):3991. https://doi.org/10.3390/ijms20163991Patton KK, Heckbert SR, Alonso A, Bahrami H, Lima JA, Burke G, et al. N-terminal pro-B-type natriuretic peptide as a predictor of incident atrial fibrillation in the Multi-Ethnic Study of Atherosclerosis: The effects of age, sex and ethnicity. Heart. 2013; 99: 1832-1836. https://doi.org/10.1136/heartjnl-2013-304724Svennberg E, Lindahl B, Berglund L, Eggers KM, Venge P, Zethelius B, et al. NT-proBNP is a powerful predictor for incident atrial fibrillation-Validation of a multimarker approach. Int J Cardiol. 2016; 223: 74-81. https://doi.org/10.1016/j.ijcard.2016.08.001Sinner MF, Stepas KA, Moser CB, Krijthe BP, Aspelund T, Sotoodehnia N, et al. B-type natriuretic peptide and C- reactive protein in the prediction of atrial fibrillation risk: The CHARGE-AF Consortium of community-based cohort studies. Europace. 2014; 16: 1426-1433. https://doi.org/10.1093/europace/euu175Schnabel RB, Larson MG, Yamamoto JF, Sullivan LM, Pencina MJ, Meigs JB, et al. Relations of biomarkers of distinct pathophysiological pathways and atrial fibrillation incidence in the community. Circulation, 2010; 121: 200-207. https://doi.org/10.1161/CIRCULATIONAHA.109.882241Hijazi Z, Wallentin L, Siegbahn A, Andersson U, Christersson C, Ezekowitz J, et al. N-terminal pro-B-type natriuretic peptide for risk assessment in patients with atrial fibrillation: insights from the ARISTOTLE Trial (Apixaban for the Prevention of Stroke in Subjects with Atrial Fibrillation). J Am Coll Cardiol. 2013; 61: 2274- 2284. https://doi.org/10.1016/j.jacc.2012.11.082Wachtell K, Lehto M, Gerdts E, Olsen MH, Hornestam B, Dahlöf B, et al. Angiotensin II Receptor Blockade Reduces New-Onset Atrial Fibrillation and Subsequent Stroke Compared to Atenolol: The Losartan Intervention for end Point Reduction in Hypertension (LIFE) study. J Am Coll Cardiol. 2005; 45: 712-9. https://doi.org/10.1016/j.jacc.2004.10.068Pedersen OD, Bagger H, Kober L, Torp-Pedersen C. Trandolapril reduces the incidence of atrial fibrillation after acute myocardial infarction in patients with left ventricular dysfunction. Circulation. 1999; 100(4): 376-80. https://doi.org/10.1161/01.CIR.100.4.376Telmisartan Randomised AssessmeNt Study in ACE iNtolerant subjects with cardiovascular disease (TRANSCEND) Investigators, Yusuf S, Teo K, Anderson C, Pogue J, Dyal L, Copland I, et al. Effects of the angiotensin-receptor blocker telmisartan on cardiovascular events in high-risk patients intolerant to angiotensin-converting enzyme inhibitors: a randomised controlled trial. Lancet. 2008; 372(9644): 1174-83. https://doi.org/10.1016/S0140-6736(08)61242-8Dahl JS, Videbaek L, Poulsen MK, Pellikka PA, Veien K, Andersen LI, et al. Effect of candesartan treatment on left ventricular remodeling after aortic valve replacement for aortic stenosis. Am J Cardiol. 2010; 106(5): 713-9. https://doi.org/10.1016/j.amjcard.2010.04.028Swedberg K, Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Shi H, et al. Eplerenone and atrial fibrillation in mild systolic heart failure: results from the EMPHASIS-HF (Eplerenone in Mild Patients Hospitalization and SurvIval Study in Heart Failure) study. J Am Coll Cardiol. 2012; 59(18): 1598-603. https://doi.org/10.1016/j.jacc.2011.11.063Khatib R, Joseph P, Briel M, Yusuf S, Healey J. Blockade of the renin-angiotensin-aldosterone system (RAAS) for primary prevention of non-valvular atrial fibrillation: a systematic review and meta analysis of randomized controlled trials. Int J Cardiol. 2013; 165(1): 17-24. https://doi.org/10.1016/j.ijcard.2012.02.009Carson JA, Turner AJ. Beta-amyloid catabolism: Roles for neprilysin (nep) and other metallopeptidases?. J Neurochem. 2002; 81: 1-8. https://doi.org/10.1046/j.1471-4159.2002.00855.xBarnes K, Turner AJ, Kenny AJ. Membrane localization of endopeptidase-24.11 and peptidyl dipeptidase a (angiotensin converting enzyme) in the pig brain: A study using subcellular fractionation and electron microscopic immunocytochemistry. J Neurochem. 1992; 58: 2088- 2096. https://doi.org/10.1111/j.1471-4159.1992.tb10950.xStephenson SL, Kenny AJ. Metabolism of neuropeptides. Hydrolysis of the angiotensins, bradykinin, substance p and oxytocin by pig kidney microvillar membranes. Biochem J. 1987; 241: 237-247. https://doi.org/10.1042/bj2410237McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014; 371(11): 993-1004. https://doi.org/10.1056/NEJMoa1409077Solomon S, Rizkala A, Gong J, Wang W, Anand I, Ge J, et al. Angiotensin receptor neprilisyn inhibition in heart failure with preserved ejection fraction: Rationale and design of the PARAGON-HF Trial. JACC Heart Fail. 2017; 5(7): 471-482. https://doi.org/10.1016/j.jchf.2017.04.013Okutucu S, Fatihoglu SG, Sabanoglu C, Bursa N, Sayin BY, Aksoy H, et al. Effects of angiotensin receptor neprilysin inhibition on P-wave dispersion in heart failure with reduced ejection fraction. Herz. 2019. https://doi.org/10.1007/s00059-019-04872-4Desai AS, McMurray JJ, Packer M, Swedberg K, Rouleau JL, Chen F, et al. Effect of the angiotensin- receptor-neprilysin inhibitor LCZ696 compared with enalapril on mode of death in heart failure patients. Eur Heart J. 2015; 36(30): 1990-1997. https://doi.org/10.1093/eurheartj/ehv186De Diego C, Gonzalez-Torres L, Nunez JM, Centurion Inda R, Martin-Langerwerf DA, Sangio AD, et al. Effects of angiotensin-neprilysin inhibition compared to angiotensin inhibition on ventricular arrhythmias in reduced ejection fraction patients under continuous remote monitoring of implantable defibrillator devices. Heart Rhytm. 2018; 15(3): 395-402. https://doi.org/10.1016/j.hrthm.2017.11.012Song S, Zhang R, Mo B, Chen L, Liu L, Yu Y, et al. EZH2 as a novel therapeutic target for atrial fibrosis and atrial fibrillation. J Mol Cell Cardiol. 2019; 135: 119-133. https://doi.org/10.1016/j.yjmcc.2019.08.003Andrés Elías Llamas Nieves - 2021https://creativecommons.org/licenses/by-nc-sa/4.0http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/3371Renin-Angiotensin systemAngiotensin IICardiovascular diseasesCardiac arrhythmiasAngiotensina IIFibrilación auricularSistema Renina-AngiotensinaEnfermedades cardiovascularesArritmias cardiacasNovedades sobre angiotensina II y fibrilación auricular : de lo molecular a lo fisiopatológico.News on angiotensin II and atrial fibrillation : from the molecular to the pathophysiological.Artículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlePublicationOREORE.xmltext/xml2568https://repositorio.unicartagena.edu.co/bitstreams/a7a9323c-6040-48e2-8b49-ac234f612474/download369c2e42b72cdd79e7147da240d1e9b5MD5111227/13457oai:repositorio.unicartagena.edu.co:11227/134572024-09-05 15:30:42.675https://creativecommons.org/licenses/by-nc-sa/4.0Andrés Elías Llamas Nieves - 2021metadata.onlyhttps://repositorio.unicartagena.edu.coBiblioteca Digital Universidad de Cartagenabdigital@metabiblioteca.com