Rol de los receptores nicotínicos de acetilcolina en mecanismos de dolor

Autores:
Jérez Escobar, Javier
Martínez Visbal, Alfonso
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad de Cartagena
Repositorio:
Repositorio Universidad de Cartagena
Idioma:
spa
OAI Identifier:
oai:repositorio.unicartagena.edu.co:11227/13272
Acceso en línea:
https://hdl.handle.net/11227/13272
https://doi.org/10.32997/rcb-2015-2990
Palabra clave:
Receptores nicotínicos
Dolor
Dimensión del dolor
Clínicas de dolor
Percepción del Dolor
Hiperalgesia.
Rights
openAccess
License
Revista Ciencias Biomédicas - 2020
id UCART2_0df8a307fd79bf9fd6ee7816090a24f2
oai_identifier_str oai:repositorio.unicartagena.edu.co:11227/13272
network_acronym_str UCART2
network_name_str Repositorio Universidad de Cartagena
repository_id_str
dc.title.spa.fl_str_mv Rol de los receptores nicotínicos de acetilcolina en mecanismos de dolor
dc.title.translated.eng.fl_str_mv Rol de los receptores nicotínicos de acetilcolina en mecanismos de dolor
title Rol de los receptores nicotínicos de acetilcolina en mecanismos de dolor
spellingShingle Rol de los receptores nicotínicos de acetilcolina en mecanismos de dolor
Receptores nicotínicos
Dolor
Dimensión del dolor
Clínicas de dolor
Percepción del Dolor
Hiperalgesia.
title_short Rol de los receptores nicotínicos de acetilcolina en mecanismos de dolor
title_full Rol de los receptores nicotínicos de acetilcolina en mecanismos de dolor
title_fullStr Rol de los receptores nicotínicos de acetilcolina en mecanismos de dolor
title_full_unstemmed Rol de los receptores nicotínicos de acetilcolina en mecanismos de dolor
title_sort Rol de los receptores nicotínicos de acetilcolina en mecanismos de dolor
dc.creator.fl_str_mv Jérez Escobar, Javier
Martínez Visbal, Alfonso
dc.contributor.author.spa.fl_str_mv Jérez Escobar, Javier
Martínez Visbal, Alfonso
dc.subject.spa.fl_str_mv Receptores nicotínicos
Dolor
Dimensión del dolor
Clínicas de dolor
Percepción del Dolor
Hiperalgesia.
topic Receptores nicotínicos
Dolor
Dimensión del dolor
Clínicas de dolor
Percepción del Dolor
Hiperalgesia.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-11-27 00:00:00
dc.date.available.none.fl_str_mv 2020-11-27 00:00:00
dc.date.issued.none.fl_str_mv 2020-11-27
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2215-7840
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11227/13272
dc.identifier.doi.none.fl_str_mv 10.32997/rcb-2015-2990
dc.identifier.eissn.none.fl_str_mv 2389-7252
dc.identifier.url.none.fl_str_mv https://doi.org/10.32997/rcb-2015-2990
identifier_str_mv 2215-7840
10.32997/rcb-2015-2990
2389-7252
url https://hdl.handle.net/11227/13272
https://doi.org/10.32997/rcb-2015-2990
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofjournal.spa.fl_str_mv Revista Ciencias Biomédicas
dc.relation.bitstream.none.fl_str_mv https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/2990/2523
dc.relation.citationedition.spa.fl_str_mv Núm. 1 , Año 2015
dc.relation.citationendpage.none.fl_str_mv 129
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.none.fl_str_mv 118
dc.relation.citationvolume.spa.fl_str_mv 6
dc.relation.references.spa.fl_str_mv Umana I, Daniele C, McGehee D. Neuronal nicotinic receptors as analgesic targets: It’s a winding road. Biochemical Pharmacology. 2013;86:1208-14.
Brandt D. The cigarette century: the rise, fall and deadly persistence of the product that defined America. J of Popular Culture. 2008;(41)5:893-4.
Corti C. A history of smoking. London: George C. Harrap. 2007.
Hurts R, Rollema H, Bertrand D. Nicotinic acetylcholine receptors: From basic science to therapeutics. Pharmacology & Therapeutics 2013;137(2):22-54.
Davis L, Pollock LJ, Stone T. Visceral pain. Surgery Gynecology and Obstetrics 1932;55(2):418-27. 6. Criado M. El receptor nicotínico de acetilcolina. Instituto de Neurociencias, Sant Joan d’Alacant, Alicante, España. 2011.
Flores M, Segura J. Estructura y función de los receptores acetilcolina de tipo muscarínico y nicotínico. Rev Mex Neuroci 2005;6(4):315-26.
Díaz M, Gualix J, Gómez R, Castro R, Pintor J, Miras Portugal MT. Receptores nicotínicos neurales: interacción con receptores purinérgicos. Anal Real Acad Farm. 2000; 66(1):1-21.
Devillers-Thiéry A, Galzi JL, Eiselé JL, Bertrand S, Changeux JP. Functional architecture of the nicotinic acetylcholine receptor: a prototype of ligand-gated ion channels. J. Membr. Biol. 1993;136:97-112.
Karlin, A. and Akabas, M. H. Toward a structural basis for the function of nicolinic acetylcholine receptors and their cousins. Neuron. 1995;15:1231-44.
Paterson D, Nordberg A. Neuronal nicotinic receptors in the human brain. Progress in Neurobiology. 2000;61:75-111. Gotti C, Fornasari D, Clementi F. Human neuronal nicotinic receptors. Prog Neurobiol. 1997;53:199-37.
Sargent PB. The diversity of neuronal nicotinic acetylcholine receptors. Annu. Rev. Neurosci. 1993;16:403-43.
Elgoyhen A B, Johnson DS, Boulter J, Vetter DE, Heinemann S. α9: An acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell. 1994;79:705-15.
Galzi JL, Changeux JP. Neuronal nicotinic receptors: molecular organization and regulations. Neuropharmacology.1995;34:563-82.
Luetje CW, PatrJck J. Both OE- and /J-subunits contribute to the agonist sensitivity of neuronal nicotinic acetylcholine receptors. J Neurosci. 1991;11: 837-45.
Levin ED, Simon BB. Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology. 1998;138:217-30.
Cartaud J, Benedetti E.L, Cohen J.B, Meunier J.C, Changeux J.P. Presence of a lattice structure in membrane fragments rich in nicotinic receptor protein from the electric organ of Torpedo marmorata. FEBS Lett. 1973;33:109-13.
Sargent P.B. The diversity of neuronal nicotinic acetylcholine receptors. Annu Rev Neurosci. 1993;16:403-43.
Hogg RC, Bertrand D. Partial agonists as therapeutic agents at neuronal nicotinic acetylcholine receptors. Biochem Pharmacol. 2007;73:459-68.
Iwamoto ET. Characterization of the antinociception induced by nicotine in the pedunculopontine tegmental nucleus and the nucleus raphe magnus. J Pharmacol Exp Ther. 1991;257:120-33.
Conroy WG, Vernallis AB, Berg DK. The alpha 5 gene product assembles with multiple acetylcholine receptor subunits to form distinctive receptor subtypes in brain. Neuron. 1992;9:679-91.
Couturier S, Bertrand D, Matter J.M, Hernandez M.C, Bertrand S, Millar N, Valera S, Barkas T, Ballivet M. A neuronal nicotinic acetylcholine receptor subunit (alpha 7) is developmentally regulated and forms a homo-oligomeric channel blocked by alpha-BTX. Neuron. 1990;5:847-56.
Ballantyne JC, Shin NS. Efficacy of opioids for chronic pain: a review of the evidence. Clinical J of Pain. 2008;24:469-78.
Hamann SR, Martin WR. Opioid and nicotinic analgesic and hyperalgesic loci in the rat brain stem. J of Pharmacology and Experimental Therapeutics. 1992; 261:707-15.
Sahley TL, Berntson GG. Antinociceptive effects of central and systemic administrations of nicotine in the rat. Psychopharmacology. 1979;65:279-83.
Fertig JB, Pomerleau OF, Sanders B. Nicotine-produced antinociception in minimally deprived smokers and ex-smokers. Addictive Behaviors. 1986;11: 239-48.
Henningfield JE, Miyasato K, Jasinski DR. Abuse liability and pharmacodynamic characteristics of intravenous and inhaled nicotine. J of Pharmacology and Experimental Therapeutics. 1985;234:1-12.
Kottke TE, Brekke ML, Solberg LI, Hughes JR. A randomized trial to increase smoking intervention by physicians. Doctors helping smokers, Round I. JAMA 1989;261:2101-6.
Cepeda-Benito A, Reynoso J, McDaniel EH. Associative tolerance to nicotine analgesia in the rat: tail-flick and hot-plate tests. Experimental and Clinical Psychopharmacology. 1998; 6(2):248-54.
Hogg R.C, Raggenbass M, Bertrand D. Nicotinic acetylcholine receptors: from structure to brain function. Rev. Physiol. Biochem. Pharmacol. 2003;147:1-46.
Marubio L.M, del Mar Arroyo-Jimenez M, Cordero-Erausquin M, Léna C, Le Novère N, de Kerchove d’Exaerde A, Huchet M, Damaj M.I, Changeux J.P. Reduced antinociception in mice lacking neuronal nicotinic receptor subunits. Nature. 1999;398(5):805-10.
Damaj MI, Fonck C, Marks MJ, Deshpande P, Labarca C, Lester HA, Collins AC, Martin BR. Genetic approaches identify differential roles for α4β2 nicotinic receptors in acute models of antinoniception in mice. J. Pharmacol Exp Ther. 2007;321:1161-9.
Shi Y, Weingarten TN, Mantilla CB, Hooten WM, Warner DO. Smoking and pain: pathophysiology and clinical implications. Anesthesiology 2010;113:977-92.
Sher E, Chen Y, Sharples TJ, Broad LM, Benedetti G, Zwart R, McPhie GI, Pearson KH, Baldwinson T, De Filippi G. Physiological roles of neuronal nicotinic receptor subtypes: new insights on the nicotinic modulation of neurotransmitter release, synaptic transmission and plasticity. Curr Top Med. Chem. 2004;4:283-97.
Nigori R, Jayarajan P, Abraham R, Shanmuganathan D, Rasheed M, Royapalley P, Goura V. Antinociceptive activity of α4β2* neuronal nicotinic receptor agonist A-366833 in experimental models of neuropathic and inflammatory pain. European J of Pharmacology. 2011;668:155-62
Kesingland AC, Gentry CT, Panesar MS, Bowes MA, Vernier JM, Cube R, Walker K, Urban L. Analgesic profile of the nicotinic acetylcholine receptor agonists, (+)- epibatidine and ABT-594 in models of persistent inflammatory and neuropathic pain. Pain. 2000;86:113- 18.
Lynch JJ, Wade CL, Mikusa JP, Decker MW, Honore P. ABT-594 (a nicotinic acetylcholine agonist): antiallodynia in a rat chemotherapy-induced pain model. European J Pharmacol. 2005;509:43-8.
Galindo L, Hernández S, Galarraga E, Tapia D, Bargas J, Garduño J, Frías C, Drucker R, Mihailescu S. Serotoninergic dorsal raphe neurons possess functional postsynaptic nicotinic acetylcholine receptors. Synapse. 2008;62: 601-15.
Nakamura M, Jang S. Presynaptic nicotinic acetylcholine receptors enhance GABAergic synaptic transmission in rat periaqueductal gray neurons. European J of Pharmacology. 2010:640:178-84.
Bitner R.S, Nikkel A.L, Curzon P, Donnelly-Roberts D.L, Puttfarcken P.S, Namovic M, Jacobs I.C, Meyer M.D, Decker M.W. Reduced nicotinic receptor-mediated antinociception following in vivo antisense knock-down in rat. Brain Res. 2000;871:66-74.
Cucchiaro G, Chaijale N, Commons K.G. The dorsal raphe nucleus as a site of action of the antinociceptive and behavioral effects of the α4 nicotinic receptor agonist epibatidine. J Pharmacol Exp Ther. 2005;313:389-94.
Rashid MH, Furue H, Yoshimura M, Ueda H. Tonic inhibitory role of alpha 4 beta 2 subtype of nicotinic acetylcholine receptors on nociceptive transmission in the spinal cord in mice. Pain. 2006;125:125-35.
Li X, Eisenach JC. Nicotinic acetylcholine receptor regulation of spinal norepinephrine release. Anesthesiology. 2002;96:1450-56.
Genzen R, McGehee D.S. Nicotinic modulation of GABAergic synaptic transmission in the spinal cord dorsal horn. Brain Res. 2005;1031:229-37.
Matsunaga K, Klein TW, Friedman H, Yamamoto Y. Involvement of nicotinic acetylcholine receptors in suppression of antimicrobial activity and cytokine responses of alveolar macrophages to Legionella pneumophila infection bynicotine. J Immunol. 2001;167:6518- 24.
Hosur V, Leppanen S, Abutaha A, Loring R.H. Gene regulation of α4β2 nicotinic receptors: microarray analysis of nicotine-induced receptor up-regulation and anti-inflammatory effects. J Neurochem. 2009;111:848-58.
Heinemann S, Boulter J, Deneris E, Conolly J, Duvoisin R, Papke R. The brain nicotinic acetylcholine receptor gene family. Prog Brain Res. 1990;86:195-203.
Vincler M.A, Eisenach J.C. Immunocytochemical localization of the alpha3, alpha4, alpha5, alpha7, beta2, beta3 and beta4 nicotinic acetylcholine receptor subunits in the locus coeruleus of the rat. Brain Res. 2003;974:25-36.
De Biasi M. Nicotinic receptor mutant mice in the study of autonomic function. Curr. Drug Targets CNS Neurol. Disord. 2002;1:331-36.
Ramirez-Latorre J, Yu C.R, Qu X, Perin F, Karlin A, Role L. Functional contributions of alpha5 subunit to neuronal acetylcholine receptor channels. Nature. 1996;380:347-51.
Tapia L, Kuryatov A, Lindstrom J. Ca2+ permeability of the (alpha4)3(beta2)2 stoichiometry greatly exceeds that of (alpha4)2(beta2)3 human acetylcholine receptors. Mol. Pharmacol. 2007;71:769-76.
Bagdas D, AlSharari S, Freitas K, Tracy M, Imad Damaj M. The role of alpha5 nicotinic acetylcholine receptors in mouse models of chronic inflammatory and neuropathic pain. Biochemical Pharmacology. 2015. doi: 10.1016/j.bcp.2015.04.013.
Salas R, Orr-Urtreger A, Broide R.S, Beaudet A, Paylor R, De Biasi M. The nicotinic acetylcholine receptor subunit alpha 5 mediates short-term effects of nicotine in vivo. Mol. Pharmacol. 2003;63:1059-66.
Jackson KJ, Marks MJ, Vann RE, Chen X, Gamage TF, Warner JA, et al. Role of alpha5 nicotinic acetylcholine receptors in pharmacological and behavioral effects of nicotine in mice. Journal of Pharmacology and Experimental Therapeutics. 2010;334:137-46.
Salas R, Sturm R, Boulter J, De Biasi M. Nicotinic receptors in the habenulointerpeduncular system are necessary for nicotine withdrawal in mice. J. Neurosci. 2009;29:3014-18.
Wang N, Orr-Urtreger A, Chapman J, Rabinowitz R, Nachman R, Korczyn A.D. Autonomic function in mice lacking alpha5 neuronal nicotinic acetylcholine receptor subunit. J. Physiol. 2002;542:347-54.
Vincler M, Eisenach J.C. Plasticity of spinal nicotinic acetylcholine receptors following spinal nerve ligation. Neurosci. Res. 2004;48:139-45.
Lukas R.J, Changeux J.P, Le Nove` re N, Albuquerque E.X, Balfour D.J, Berg D.K, et al. International Union of Pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacol Rev. 1999;51:397-401.
Shen JX, Yakel JL. Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system. Acta Pharmacol Sin. 2009;30(6):673-80.
Feuerbach D, Lingenhoehl K, Olpe H.R, Vassout A, Gentsch C, Chaperon F, Nozulak J, Enz A, Bilbe G, McAllister K, Hoyer D. The selective nicotinic acetylcholine receptor alpha7 agonist JN403 is active in animal models of cognition, sensory gating, epilepsy and pain. Neuropharmacology. 2009;56:254-63.
Kiguchi , Kobayashi Y, Maeda T, Tominaga S, Nakamura J, Fukazawa Y, Ozaki M, Kishioka S. Activation of nicotinic acetylcholine receptors on bone marrow-derived cells relieves neuropathic pain accompanied by peripheral neuroinflammation. Neurochem Int. 2012;61:1212-19.
Westman M, Saha S, Morshed M, Lampa J. Lack of acetylcholine nicotine alpha 7 receptor suppresses development of collagen-induced arthritis and adaptive immunity. Clin Exp Immunol. 2010;162:62-7.
Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy. 2005;4:281-86.
Ulloa L. The vagus nerve and the nicotinic anti-inflammatory pathway. Nat Rev Drug Discov. 2005;4:673-84.
De Rosa MJ, Dionisio L, Agriello E, Bouzat C, Esandi MC. Alpha 7 nicotinic acetylcholine receptor modulates lymphocyte activation. Life Sci. 2009;85:444-49.
Thomsen MS, Hansen HH, Timmerman DB, Mikkelsen JD. Cognitive improvement by activation of a7 nicotinic acetylcholine receptors: from animal models to human pathophysiology. Curr Pharm Des. 2010;16:323-43.
Rowley TJ, McKinstry A, Greenidge E, Smith W, Flood P. Antinociceptive and anti-inflammatory effects of choline in a mouse model of postoperative pain. Br J Anaesth. 2010;105(2):201-7.
Munro G, Hansen R, Erichsen H, Timmermann D, Christensen J, Hansen H. The alpha7 nicotinic ACh receptor agonist compound B and positive allosteric modulator PNU-120596 both alleviate inflammatory hyperalgesia and cytokine release in the rat. Br J Pharmacol. 2012;167:421-35.
Medhurst S.J, Hatcher J.P, Hille C.J, Bingham S, Clayton N.M, Billinton A, Chessell I.P. Activation of the alpha7-nicotinic acetylcholine receptor reverses complete freund adjuvant-induced mechanical hyperalgesia in the rat via a central site of action. J Pain. 2008;9:580-87.
Xiao HS, Huang QH, Zhang FX, Bao L, Lu YJ, Guo C, Yang L, Huang WJ, Fu G, Xu S.H, et al. Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc Natl Acad Sc. 2002:12;8360-65.
Gurun MS, Parker R, Eisenach JC, Vincler M. The effect of peripherally administered CDPcholine in an acute inflammatory pain model: the role of alpha7 nicotinic acetylcholine receptor. Anesth Analg. 2009:108;1680-87.
Freitas K, Ghosh S, Ivy Carroll F, Lichtman A, Damaj M. Effects of alpha 7 positive allosteric modulators in murine inflammatory and chronic neuropathic pain models. Neuropharmacology. 2013;65:156-64.
Bertrand D, Gopalakrishnan M. Allosteric modulation of nicotinic acetylcholine receptors. Biochemical Pharmacology. 2007;74:1155-63.
Faghih R, Gfesser G.A, Gopalakrishnan M. Advances in the discovery of novel positive allosteric modulators of the alpha7 nicotinic acetylcholine receptor. Recent Pat CNS Drug Discov. 2007;2:99-106.
Faghih R, Gopalakrishnan M, Briggs C.A. Allosteric modulators of the alpha7 nicotinic acetylcholine receptor. J Med Chem. 2008;51:701-12.
Timmermann DB, Grønlien JH, Kohlhaas KL, Nielsen EØ, Dam E, Jørgensen TD. et al. An allosteric modulator of the a 7 nicotinic acetylcholine receptor possessing cognition-enhancing properties in vivo. J Pharmacol Exp Ther. 2007;323:294-307.
Grønlien JH, Håkerud M, Ween H, Thorin-hagene K, Briggs C.A, Gopalakrishnan M, Malysz J. Distinct profiles of a7 nAChR positive allosteric modulation revealed by structurally diverse chemotypes. Mol Pharmacol. 2007;72:715-24.
Freitas K, Negus SS, Carroll FI, Damaj MI. In vivo pharmacological interactions between a type II positive allosteric modulator of a7 nicotinic ACh receptors and nicotinic agonists in a murine tonic pain model. British J of Pharmacology. 2013;169:567-79.
Gao YJ and Ji RR. Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol Ther. 2010;26:56-68.
Zhang W, Liu Y, Hou B, Gu X, Ma Z. Activation of spinal alpha-7 nicotinic acetylcholine receptor attenuates remifentanil-induced postoperative hiperalgesia. Int J Clin Exp Med. 2015;8(2):1871- 79.
dc.rights.spa.fl_str_mv Revista Ciencias Biomédicas - 2020
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Revista Ciencias Biomédicas - 2020
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Cartagena
dc.source.spa.fl_str_mv https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/2990
institution Universidad de Cartagena
bitstream.url.fl_str_mv https://repositorio.unicartagena.edu.co/bitstreams/0fc4d896-38bf-44b6-9631-04713f0348a6/download
bitstream.checksum.fl_str_mv d4d22de43c9c0144538b24fea72bd56b
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Biblioteca Digital Universidad de Cartagena
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814214153714270208
spelling Jérez Escobar, JavierMartínez Visbal, Alfonso2020-11-27 00:00:002020-11-27 00:00:002020-11-272215-7840https://hdl.handle.net/11227/1327210.32997/rcb-2015-29902389-7252https://doi.org/10.32997/rcb-2015-2990application/pdfspaUniversidad de CartagenaRevista Ciencias Biomédicashttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/2990/2523Núm. 1 , Año 201512911186Umana I, Daniele C, McGehee D. Neuronal nicotinic receptors as analgesic targets: It’s a winding road. Biochemical Pharmacology. 2013;86:1208-14.Brandt D. The cigarette century: the rise, fall and deadly persistence of the product that defined America. J of Popular Culture. 2008;(41)5:893-4.Corti C. A history of smoking. London: George C. Harrap. 2007.Hurts R, Rollema H, Bertrand D. Nicotinic acetylcholine receptors: From basic science to therapeutics. Pharmacology & Therapeutics 2013;137(2):22-54.Davis L, Pollock LJ, Stone T. Visceral pain. Surgery Gynecology and Obstetrics 1932;55(2):418-27. 6. Criado M. El receptor nicotínico de acetilcolina. Instituto de Neurociencias, Sant Joan d’Alacant, Alicante, España. 2011.Flores M, Segura J. Estructura y función de los receptores acetilcolina de tipo muscarínico y nicotínico. Rev Mex Neuroci 2005;6(4):315-26.Díaz M, Gualix J, Gómez R, Castro R, Pintor J, Miras Portugal MT. Receptores nicotínicos neurales: interacción con receptores purinérgicos. Anal Real Acad Farm. 2000; 66(1):1-21.Devillers-Thiéry A, Galzi JL, Eiselé JL, Bertrand S, Changeux JP. Functional architecture of the nicotinic acetylcholine receptor: a prototype of ligand-gated ion channels. J. Membr. Biol. 1993;136:97-112.Karlin, A. and Akabas, M. H. Toward a structural basis for the function of nicolinic acetylcholine receptors and their cousins. Neuron. 1995;15:1231-44.Paterson D, Nordberg A. Neuronal nicotinic receptors in the human brain. Progress in Neurobiology. 2000;61:75-111. Gotti C, Fornasari D, Clementi F. Human neuronal nicotinic receptors. Prog Neurobiol. 1997;53:199-37.Sargent PB. The diversity of neuronal nicotinic acetylcholine receptors. Annu. Rev. Neurosci. 1993;16:403-43.Elgoyhen A B, Johnson DS, Boulter J, Vetter DE, Heinemann S. α9: An acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell. 1994;79:705-15.Galzi JL, Changeux JP. Neuronal nicotinic receptors: molecular organization and regulations. Neuropharmacology.1995;34:563-82.Luetje CW, PatrJck J. Both OE- and /J-subunits contribute to the agonist sensitivity of neuronal nicotinic acetylcholine receptors. J Neurosci. 1991;11: 837-45.Levin ED, Simon BB. Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology. 1998;138:217-30.Cartaud J, Benedetti E.L, Cohen J.B, Meunier J.C, Changeux J.P. Presence of a lattice structure in membrane fragments rich in nicotinic receptor protein from the electric organ of Torpedo marmorata. FEBS Lett. 1973;33:109-13.Sargent P.B. The diversity of neuronal nicotinic acetylcholine receptors. Annu Rev Neurosci. 1993;16:403-43.Hogg RC, Bertrand D. Partial agonists as therapeutic agents at neuronal nicotinic acetylcholine receptors. Biochem Pharmacol. 2007;73:459-68.Iwamoto ET. Characterization of the antinociception induced by nicotine in the pedunculopontine tegmental nucleus and the nucleus raphe magnus. J Pharmacol Exp Ther. 1991;257:120-33.Conroy WG, Vernallis AB, Berg DK. The alpha 5 gene product assembles with multiple acetylcholine receptor subunits to form distinctive receptor subtypes in brain. Neuron. 1992;9:679-91.Couturier S, Bertrand D, Matter J.M, Hernandez M.C, Bertrand S, Millar N, Valera S, Barkas T, Ballivet M. A neuronal nicotinic acetylcholine receptor subunit (alpha 7) is developmentally regulated and forms a homo-oligomeric channel blocked by alpha-BTX. Neuron. 1990;5:847-56.Ballantyne JC, Shin NS. Efficacy of opioids for chronic pain: a review of the evidence. Clinical J of Pain. 2008;24:469-78.Hamann SR, Martin WR. Opioid and nicotinic analgesic and hyperalgesic loci in the rat brain stem. J of Pharmacology and Experimental Therapeutics. 1992; 261:707-15.Sahley TL, Berntson GG. Antinociceptive effects of central and systemic administrations of nicotine in the rat. Psychopharmacology. 1979;65:279-83.Fertig JB, Pomerleau OF, Sanders B. Nicotine-produced antinociception in minimally deprived smokers and ex-smokers. Addictive Behaviors. 1986;11: 239-48.Henningfield JE, Miyasato K, Jasinski DR. Abuse liability and pharmacodynamic characteristics of intravenous and inhaled nicotine. J of Pharmacology and Experimental Therapeutics. 1985;234:1-12.Kottke TE, Brekke ML, Solberg LI, Hughes JR. A randomized trial to increase smoking intervention by physicians. Doctors helping smokers, Round I. JAMA 1989;261:2101-6.Cepeda-Benito A, Reynoso J, McDaniel EH. Associative tolerance to nicotine analgesia in the rat: tail-flick and hot-plate tests. Experimental and Clinical Psychopharmacology. 1998; 6(2):248-54.Hogg R.C, Raggenbass M, Bertrand D. Nicotinic acetylcholine receptors: from structure to brain function. Rev. Physiol. Biochem. Pharmacol. 2003;147:1-46.Marubio L.M, del Mar Arroyo-Jimenez M, Cordero-Erausquin M, Léna C, Le Novère N, de Kerchove d’Exaerde A, Huchet M, Damaj M.I, Changeux J.P. Reduced antinociception in mice lacking neuronal nicotinic receptor subunits. Nature. 1999;398(5):805-10.Damaj MI, Fonck C, Marks MJ, Deshpande P, Labarca C, Lester HA, Collins AC, Martin BR. Genetic approaches identify differential roles for α4β2 nicotinic receptors in acute models of antinoniception in mice. J. Pharmacol Exp Ther. 2007;321:1161-9.Shi Y, Weingarten TN, Mantilla CB, Hooten WM, Warner DO. Smoking and pain: pathophysiology and clinical implications. Anesthesiology 2010;113:977-92.Sher E, Chen Y, Sharples TJ, Broad LM, Benedetti G, Zwart R, McPhie GI, Pearson KH, Baldwinson T, De Filippi G. Physiological roles of neuronal nicotinic receptor subtypes: new insights on the nicotinic modulation of neurotransmitter release, synaptic transmission and plasticity. Curr Top Med. Chem. 2004;4:283-97.Nigori R, Jayarajan P, Abraham R, Shanmuganathan D, Rasheed M, Royapalley P, Goura V. Antinociceptive activity of α4β2* neuronal nicotinic receptor agonist A-366833 in experimental models of neuropathic and inflammatory pain. European J of Pharmacology. 2011;668:155-62Kesingland AC, Gentry CT, Panesar MS, Bowes MA, Vernier JM, Cube R, Walker K, Urban L. Analgesic profile of the nicotinic acetylcholine receptor agonists, (+)- epibatidine and ABT-594 in models of persistent inflammatory and neuropathic pain. Pain. 2000;86:113- 18.Lynch JJ, Wade CL, Mikusa JP, Decker MW, Honore P. ABT-594 (a nicotinic acetylcholine agonist): antiallodynia in a rat chemotherapy-induced pain model. European J Pharmacol. 2005;509:43-8.Galindo L, Hernández S, Galarraga E, Tapia D, Bargas J, Garduño J, Frías C, Drucker R, Mihailescu S. Serotoninergic dorsal raphe neurons possess functional postsynaptic nicotinic acetylcholine receptors. Synapse. 2008;62: 601-15.Nakamura M, Jang S. Presynaptic nicotinic acetylcholine receptors enhance GABAergic synaptic transmission in rat periaqueductal gray neurons. European J of Pharmacology. 2010:640:178-84.Bitner R.S, Nikkel A.L, Curzon P, Donnelly-Roberts D.L, Puttfarcken P.S, Namovic M, Jacobs I.C, Meyer M.D, Decker M.W. Reduced nicotinic receptor-mediated antinociception following in vivo antisense knock-down in rat. Brain Res. 2000;871:66-74.Cucchiaro G, Chaijale N, Commons K.G. The dorsal raphe nucleus as a site of action of the antinociceptive and behavioral effects of the α4 nicotinic receptor agonist epibatidine. J Pharmacol Exp Ther. 2005;313:389-94.Rashid MH, Furue H, Yoshimura M, Ueda H. Tonic inhibitory role of alpha 4 beta 2 subtype of nicotinic acetylcholine receptors on nociceptive transmission in the spinal cord in mice. Pain. 2006;125:125-35.Li X, Eisenach JC. Nicotinic acetylcholine receptor regulation of spinal norepinephrine release. Anesthesiology. 2002;96:1450-56.Genzen R, McGehee D.S. Nicotinic modulation of GABAergic synaptic transmission in the spinal cord dorsal horn. Brain Res. 2005;1031:229-37.Matsunaga K, Klein TW, Friedman H, Yamamoto Y. Involvement of nicotinic acetylcholine receptors in suppression of antimicrobial activity and cytokine responses of alveolar macrophages to Legionella pneumophila infection bynicotine. J Immunol. 2001;167:6518- 24.Hosur V, Leppanen S, Abutaha A, Loring R.H. Gene regulation of α4β2 nicotinic receptors: microarray analysis of nicotine-induced receptor up-regulation and anti-inflammatory effects. J Neurochem. 2009;111:848-58.Heinemann S, Boulter J, Deneris E, Conolly J, Duvoisin R, Papke R. The brain nicotinic acetylcholine receptor gene family. Prog Brain Res. 1990;86:195-203.Vincler M.A, Eisenach J.C. Immunocytochemical localization of the alpha3, alpha4, alpha5, alpha7, beta2, beta3 and beta4 nicotinic acetylcholine receptor subunits in the locus coeruleus of the rat. Brain Res. 2003;974:25-36.De Biasi M. Nicotinic receptor mutant mice in the study of autonomic function. Curr. Drug Targets CNS Neurol. Disord. 2002;1:331-36.Ramirez-Latorre J, Yu C.R, Qu X, Perin F, Karlin A, Role L. Functional contributions of alpha5 subunit to neuronal acetylcholine receptor channels. Nature. 1996;380:347-51.Tapia L, Kuryatov A, Lindstrom J. Ca2+ permeability of the (alpha4)3(beta2)2 stoichiometry greatly exceeds that of (alpha4)2(beta2)3 human acetylcholine receptors. Mol. Pharmacol. 2007;71:769-76.Bagdas D, AlSharari S, Freitas K, Tracy M, Imad Damaj M. The role of alpha5 nicotinic acetylcholine receptors in mouse models of chronic inflammatory and neuropathic pain. Biochemical Pharmacology. 2015. doi: 10.1016/j.bcp.2015.04.013.Salas R, Orr-Urtreger A, Broide R.S, Beaudet A, Paylor R, De Biasi M. The nicotinic acetylcholine receptor subunit alpha 5 mediates short-term effects of nicotine in vivo. Mol. Pharmacol. 2003;63:1059-66.Jackson KJ, Marks MJ, Vann RE, Chen X, Gamage TF, Warner JA, et al. Role of alpha5 nicotinic acetylcholine receptors in pharmacological and behavioral effects of nicotine in mice. Journal of Pharmacology and Experimental Therapeutics. 2010;334:137-46.Salas R, Sturm R, Boulter J, De Biasi M. Nicotinic receptors in the habenulointerpeduncular system are necessary for nicotine withdrawal in mice. J. Neurosci. 2009;29:3014-18.Wang N, Orr-Urtreger A, Chapman J, Rabinowitz R, Nachman R, Korczyn A.D. Autonomic function in mice lacking alpha5 neuronal nicotinic acetylcholine receptor subunit. J. Physiol. 2002;542:347-54.Vincler M, Eisenach J.C. Plasticity of spinal nicotinic acetylcholine receptors following spinal nerve ligation. Neurosci. Res. 2004;48:139-45.Lukas R.J, Changeux J.P, Le Nove` re N, Albuquerque E.X, Balfour D.J, Berg D.K, et al. International Union of Pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacol Rev. 1999;51:397-401.Shen JX, Yakel JL. Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system. Acta Pharmacol Sin. 2009;30(6):673-80.Feuerbach D, Lingenhoehl K, Olpe H.R, Vassout A, Gentsch C, Chaperon F, Nozulak J, Enz A, Bilbe G, McAllister K, Hoyer D. The selective nicotinic acetylcholine receptor alpha7 agonist JN403 is active in animal models of cognition, sensory gating, epilepsy and pain. Neuropharmacology. 2009;56:254-63.Kiguchi , Kobayashi Y, Maeda T, Tominaga S, Nakamura J, Fukazawa Y, Ozaki M, Kishioka S. Activation of nicotinic acetylcholine receptors on bone marrow-derived cells relieves neuropathic pain accompanied by peripheral neuroinflammation. Neurochem Int. 2012;61:1212-19.Westman M, Saha S, Morshed M, Lampa J. Lack of acetylcholine nicotine alpha 7 receptor suppresses development of collagen-induced arthritis and adaptive immunity. Clin Exp Immunol. 2010;162:62-7.Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy. 2005;4:281-86.Ulloa L. The vagus nerve and the nicotinic anti-inflammatory pathway. Nat Rev Drug Discov. 2005;4:673-84.De Rosa MJ, Dionisio L, Agriello E, Bouzat C, Esandi MC. Alpha 7 nicotinic acetylcholine receptor modulates lymphocyte activation. Life Sci. 2009;85:444-49.Thomsen MS, Hansen HH, Timmerman DB, Mikkelsen JD. Cognitive improvement by activation of a7 nicotinic acetylcholine receptors: from animal models to human pathophysiology. Curr Pharm Des. 2010;16:323-43.Rowley TJ, McKinstry A, Greenidge E, Smith W, Flood P. Antinociceptive and anti-inflammatory effects of choline in a mouse model of postoperative pain. Br J Anaesth. 2010;105(2):201-7.Munro G, Hansen R, Erichsen H, Timmermann D, Christensen J, Hansen H. The alpha7 nicotinic ACh receptor agonist compound B and positive allosteric modulator PNU-120596 both alleviate inflammatory hyperalgesia and cytokine release in the rat. Br J Pharmacol. 2012;167:421-35.Medhurst S.J, Hatcher J.P, Hille C.J, Bingham S, Clayton N.M, Billinton A, Chessell I.P. Activation of the alpha7-nicotinic acetylcholine receptor reverses complete freund adjuvant-induced mechanical hyperalgesia in the rat via a central site of action. J Pain. 2008;9:580-87.Xiao HS, Huang QH, Zhang FX, Bao L, Lu YJ, Guo C, Yang L, Huang WJ, Fu G, Xu S.H, et al. Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc Natl Acad Sc. 2002:12;8360-65.Gurun MS, Parker R, Eisenach JC, Vincler M. The effect of peripherally administered CDPcholine in an acute inflammatory pain model: the role of alpha7 nicotinic acetylcholine receptor. Anesth Analg. 2009:108;1680-87.Freitas K, Ghosh S, Ivy Carroll F, Lichtman A, Damaj M. Effects of alpha 7 positive allosteric modulators in murine inflammatory and chronic neuropathic pain models. Neuropharmacology. 2013;65:156-64.Bertrand D, Gopalakrishnan M. Allosteric modulation of nicotinic acetylcholine receptors. Biochemical Pharmacology. 2007;74:1155-63.Faghih R, Gfesser G.A, Gopalakrishnan M. Advances in the discovery of novel positive allosteric modulators of the alpha7 nicotinic acetylcholine receptor. Recent Pat CNS Drug Discov. 2007;2:99-106.Faghih R, Gopalakrishnan M, Briggs C.A. Allosteric modulators of the alpha7 nicotinic acetylcholine receptor. J Med Chem. 2008;51:701-12.Timmermann DB, Grønlien JH, Kohlhaas KL, Nielsen EØ, Dam E, Jørgensen TD. et al. An allosteric modulator of the a 7 nicotinic acetylcholine receptor possessing cognition-enhancing properties in vivo. J Pharmacol Exp Ther. 2007;323:294-307.Grønlien JH, Håkerud M, Ween H, Thorin-hagene K, Briggs C.A, Gopalakrishnan M, Malysz J. Distinct profiles of a7 nAChR positive allosteric modulation revealed by structurally diverse chemotypes. Mol Pharmacol. 2007;72:715-24.Freitas K, Negus SS, Carroll FI, Damaj MI. In vivo pharmacological interactions between a type II positive allosteric modulator of a7 nicotinic ACh receptors and nicotinic agonists in a murine tonic pain model. British J of Pharmacology. 2013;169:567-79.Gao YJ and Ji RR. Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol Ther. 2010;26:56-68.Zhang W, Liu Y, Hou B, Gu X, Ma Z. Activation of spinal alpha-7 nicotinic acetylcholine receptor attenuates remifentanil-induced postoperative hiperalgesia. Int J Clin Exp Med. 2015;8(2):1871- 79.Revista Ciencias Biomédicas - 2020https://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccesshttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/2990Receptores nicotínicosDolorDimensión del dolorClínicas de dolorPercepción del DolorHiperalgesia.Rol de los receptores nicotínicos de acetilcolina en mecanismos de dolorRol de los receptores nicotínicos de acetilcolina en mecanismos de dolorArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlePublicationOREORE.xmltext/xml2520https://repositorio.unicartagena.edu.co/bitstreams/0fc4d896-38bf-44b6-9631-04713f0348a6/downloadd4d22de43c9c0144538b24fea72bd56bMD5111227/13272oai:repositorio.unicartagena.edu.co:11227/132722024-09-05 15:30:42.295https://creativecommons.org/licenses/by-nc-sa/4.0/Revista Ciencias Biomédicas - 2020metadata.onlyhttps://repositorio.unicartagena.edu.coBiblioteca Digital Universidad de Cartagenabdigital@metabiblioteca.com