La neuroglobina y su potencial relación con la función cerebral y el sueño.

Autores:
Acosta Hernández, Mario Eduardo
Rendón Bautista, Luis
Priego Fernández, Sergio
Peña Escudero, Carolina
Martínez Cruz, Betsy
Melgarejo Gutiérrez, Montserrat
García García, Fabio
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad de Cartagena
Repositorio:
Repositorio Universidad de Cartagena
Idioma:
spa
OAI Identifier:
oai:repositorio.unicartagena.edu.co:11227/13048
Acceso en línea:
https://doi.org/10.32997/rcb-2016-2857
Palabra clave:
Privación de sueño
Estrés oxidativo
Globinas
Orexina
Sleep deprivation
Oxidative stress
Globin
Orexin
Rights
openAccess
License
Revista Ciencias Biomédicas - 2016
id UCART2_0b847a2bb0b206e182e433b2d8d8ef7d
oai_identifier_str oai:repositorio.unicartagena.edu.co:11227/13048
network_acronym_str UCART2
network_name_str Repositorio Universidad de Cartagena
repository_id_str
dc.title.spa.fl_str_mv La neuroglobina y su potencial relación con la función cerebral y el sueño.
dc.title.translated.eng.fl_str_mv The potential role of neuroglobin in the cerebral function and sleep.
title La neuroglobina y su potencial relación con la función cerebral y el sueño.
spellingShingle La neuroglobina y su potencial relación con la función cerebral y el sueño.
Privación de sueño
Estrés oxidativo
Globinas
Orexina
Sleep deprivation
Oxidative stress
Globin
Orexin
title_short La neuroglobina y su potencial relación con la función cerebral y el sueño.
title_full La neuroglobina y su potencial relación con la función cerebral y el sueño.
title_fullStr La neuroglobina y su potencial relación con la función cerebral y el sueño.
title_full_unstemmed La neuroglobina y su potencial relación con la función cerebral y el sueño.
title_sort La neuroglobina y su potencial relación con la función cerebral y el sueño.
dc.creator.fl_str_mv Acosta Hernández, Mario Eduardo
Rendón Bautista, Luis
Priego Fernández, Sergio
Peña Escudero, Carolina
Martínez Cruz, Betsy
Melgarejo Gutiérrez, Montserrat
García García, Fabio
dc.contributor.author.spa.fl_str_mv Acosta Hernández, Mario Eduardo
Rendón Bautista, Luis
Priego Fernández, Sergio
Peña Escudero, Carolina
Martínez Cruz, Betsy
Melgarejo Gutiérrez, Montserrat
García García, Fabio
dc.subject.spa.fl_str_mv Privación de sueño
Estrés oxidativo
Globinas
Orexina
topic Privación de sueño
Estrés oxidativo
Globinas
Orexina
Sleep deprivation
Oxidative stress
Globin
Orexin
dc.subject.eng.fl_str_mv Sleep deprivation
Oxidative stress
Globin
Orexin
publishDate 2016
dc.date.accessioned.none.fl_str_mv 2016-07-15 00:00:00
dc.date.available.none.fl_str_mv 2016-07-15 00:00:00
dc.date.issued.none.fl_str_mv 2016-07-15
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2215-7840
dc.identifier.doi.none.fl_str_mv 10.32997/rcb-2016-2857
dc.identifier.eissn.none.fl_str_mv 2389-7252
dc.identifier.url.none.fl_str_mv https://doi.org/10.32997/rcb-2016-2857
identifier_str_mv 2215-7840
10.32997/rcb-2016-2857
2389-7252
url https://doi.org/10.32997/rcb-2016-2857
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofjournal.spa.fl_str_mv Revista Ciencias Biomédicas
dc.relation.bitstream.none.fl_str_mv https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/2857/2400
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2016
dc.relation.citationendpage.none.fl_str_mv 295
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 285
dc.relation.citationvolume.spa.fl_str_mv 7
dc.relation.references.spa.fl_str_mv Fuller PM, Gooley JJ, Saper CB. Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback. J Biol Rhythms. 2006; 6: 482-493. https://doi.org/10.1177/0748730406294627
Stenberg, D. Neuroanatomy and neurochemistry of sleep. Cell Mol Life Sc. 2007, 64: 1187-1204. https://doi.org/10.1007/s00018-007-6530-3
Beersma DG. Models of human sleep regulation. Sleep Med Rev. 1998; 2: 31-43. https://doi.org/10.1016/S1087-0792(98)90052-1
Walker MP, Stickgold R. Sleep-dependent learning and memory consolidation. Neuron. 2004; 44: 121-133. https://doi.org/10.1016/j.neuron.2004.08.031
Timo-Iaria C, Negrão N, Schmidek WR, Hoshino K, Lobato de Menezes CE, Leme da Rocha T. Phases and states of sleep in the rat. PhysiolBehav. 1970; 5(9): 1057-62. https://doi.org/10.1016/0031-9384(70)90162-9
Jin X, Shearman LP, Weaver DR, Zylka MJ, de Vries GJ, Reppert SM. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell. 1999; 96: 1-20. https://doi.org/10.1016/S0092-8674(00)80959-9
Reppert SM. and Weaver DR. Coordination of circadian timing in mammals. Nature. 2002; 418: 935-941. https://doi.org/10.1038/nature00965
Moore RY. The suprachiasmatic nucleus and sleep-wake regulation. Postgrad Med. 2004; 116(6 Suppl Primary): 6-9.
Cassone VM, Chesworth MJ, Armstrong SM. Entrainment of rat circadian rhythms by daily injection of melatonin depends upon the hypothalamic suprachiasmatic nuclei. Physiol Behav. 1986; 36: 1111-1121. https://doi.org/10.1016/0031-9384(86)90488-9
Johnson RF, Moore RY. and Morin LP. Loss of entrainment and anatomical plasticity after lesions of the hamster retinohypothalamic tract. Brain Res. 1988; 460: 297-313. https://doi.org/10.1016/0006-8993(88)90374-5
Gooley JJ, Lu J, Fischer D, Saper CB. A broad role for melanopsin in nonvisual photoreception. J Neurosci. 2003; 23: 7093-7106. https://doi.org/10.1523/JNEUROSCI.23-18-07093.2003
Watts AG, Swanson LW, Sanchez-Watts G. Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J Comp Neurol. 1987; 258: 204-229. https://doi.org/10.1002/cne.902580204
Chamberlin NL, Arrigoni E, Chou TC, Scammell TE, Greene RW, Saper CB. Effects of adenosine on GABAergic synaptic inputs to identified ventrolateral preoptic neurons. Neuroscience. 2003; 119: 913-918. https://doi.org/10.1016/S0306-4522(03)00246-X
Sakurai T. Roles of orexin/hypocretin in regulation of sleep/wakefulness and energy homeostasis. Sleep Med Rev. 2005; 4: 231-241. https://doi.org/10.1016/j.smrv.2004.07.007
Yoshida K, McCormack S, España, RA, Crocker A, Scammell TE. Afferents to the orexin neurons of the rat brain. J Comp Neurol. 2006; 5: 845-861. https://doi.org/10.1002/cne.20859
Lu J, Zhang YH, Chou TC, Gaus SE, Elmquist JK, Shiromani P, Saper, CB. Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleepwake cycle and temperature regulation. J Neurosci. 2001; 21: 4864-4874. https://doi.org/10.1523/JNEUROSCI.21-13-04864.2001
Deurveilher S and Semba K. Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience. 2005; 130: 165-183. https://doi.org/10.1016/j.neuroscience.2004.08.030
Chou TC, et al. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci. 2003; 23: 10691-10702. https://doi.org/10.1523/JNEUROSCI.23-33-10691.2003
Chou TC, Bjorkum, AA, Gaus SE, Lu J, Scammell TE, Saper, CB. Afferents to the ventrolateral preoptic nucleus. J Neurosci. 2002; 22: 977-990. https://doi.org/10.1523/JNEUROSCI.22-03-00977.2002
Thompson R, Swanson LW, Canteras N. Organization of projections from the dorsomedial nucleus of the hypothalamus: a PHA-L study in the rat. J Comp Neurol. 1997; 376: 143-173. https://doi.org/10.1002/(SICI)1096-9861(19961202)376:1143::AID-CNE93.0.CO;2-3
Peyron C, Tighe DK, Van den Pol AN, De Lecea L, Heller HC, Sutcliffe JG, Kilduff TS. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 1998; 18: 9996-10015. https://doi.org/10.1523/JNEUROSCI.18-23-09996.1998
Chemelli RM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999; 98: 437-451. https://doi.org/10.1016/S0092-8674(00)81973-X
Hankeln T, Ebner B, Fuchs C, Gerlach F, Haberkamp M, Laufs T, Roesner A, et. al. Neuroglobin and cytoglobin in search of their role in the vertebrate globin family. Journal of Inorganic Biochemistry. 2005; 99: 110-119. https://doi.org/10.1016/j.jinorgbio.2004.11.009
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, et. al. CDD: NCBI's conserved domain database. Nucleic acids res 2015 Jan;43 (Database issue): D222-6. doi: 10.1093/nar/gku1221. Epub 2014 Nov 20. https://doi.org/10.1093/nar/gku1221
Kugelstadt D, Haberkamp M, Hankeln T, Burmester T. Neuroglobin, cytoglobin, and a novel, eye-specific globin from chicken Biochemical and Biophysical. Research Communications 2004; 325: 719-725. https://doi.org/10.1016/j.bbrc.2004.10.080
Burmester T, Haberkamp M, Mitz S, Roesner A, Schmidt M, Ebner B, Gerlach F, et. al. Neuroglobin and cytoglobin: genes, proteins and evolution. Life, 2004; 56(11-12): 703-707. https://doi.org/10.1080/15216540500037257
Brunori M and Vallone B. Neuroglobin, seven years after. Cell. Mol. Life Sci. 2007; 64: 1259-1268. https://doi.org/10.1007/s00018-007-7090-2
Roesner A, Fuchs C, Hankeln T and Burmester T. A globin gene of ancient evolutionary origin in lower vertebrates: Evidence for two distinct globin families in animals. Mol. Biol. Evol. 2005; 22: 12-20. https://doi.org/10.1093/molbev/msh258
Pesce A, Dewilde S, Nardini M, Moens L, Ascenzi P, Hankeln T, Burmester T and Bolognesi. Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity. Structure. 2003; 11: 1087-1095. https://doi.org/10.1016/S0969-2126(03)00166-7
Lin YW, Wang J. Structure and function of heme proteins in non-native states: a mini-review. Journal of Inorganic Biochemistry. 2013; 129: 162-171. https://doi.org/10.1016/j.jinorgbio.2013.07.023
Vallone B., Nienhaus K., Brunori M., Nienhaus G.U. The structure of murine neuroglobin: novel pathways for ligand migration and binding. Proteins. 2004; (56): 85-92. https://doi.org/10.1002/prot.20113
Wystub S, Laufs T, Schmidt M, Burmester T, Maas U, Saaler-Reinhardt S, Hankeln T, Reuss S. Localization of neuroglobin protein in the mouse brain. Neuroscience Letters. 2003; 346: 114-116. https://doi.org/10.1016/S0304-3940(03)00563-9
Chen X, Liu Y, Zhang L, Zhu P, Zhu H, Yang Y, Guan P. Long-term neuroglobin expression of human astrocytes following brain trauma. Neuroscience Letters. 2015; 606: 194-199. https://doi.org/10.1016/j.neulet.2015.09.002
Pesce A, Dewilde S, Nardini M, Moens L, Ascenzi P, Hankelnd T, Burmestere T, Bolognesi M. The human brain hexacoordinatedneuroglobin three-dimensional structure. Micron. 2004; 35: 63-65. https://doi.org/10.1016/j.micron.2003.10.013
Forrellat-Barrios M, Hernández-Ramírez P. Neuroglobina: nuevo miembro de la familia de las globinas. Revista Cubana de Hematología, Inmunología y Hemoterapia. 2011; 27(3): 291-296.
Melgarejo-Gutiérrez M, Acosta-Peña E, Venebra-Muñoz A, Escobar C, Santiago-García J and Garcia-Garcia F. Sleep deprivation reduces neuroglobin immunoreactivity in the rat brain. Neuroreport. 2013; 24(3): 120-125. https://doi.org/10.1097/WNR.0b013e32835d4b74
Hundahl CA, Allen GC, Nyengaard SD, Douglas Carter B, Kelsen J, Hay-Schmidt A. Neuroglobin in the rat brain: localization. Neuroendocrinology. 2008; 88: 173-182. https://doi.org/10.1159/000129698
Dewilde S, Kiger L, Burmester T, Hankeln T, Baudin-Creuza V, Aerts T, Marden M, et al. Biochemical characterization and ligand binding properties of neuroglobin, a novel member of the globin family. J. biological chemistry. 2001; 42(19): 38949-38955. https://doi.org/10.1074/jbc.M106438200
Liu ZF, Zhang X, Qiao Y, Xu W, Ma C, Gu H, Zhou X, Shi L, Cui C, Xia D, Chen Y. Neuroglobin protects cardiomyocytes against apoptosis and cardiac hypertrophy induced by isoproterenol in rats. Int J Clin Exp Med. 2015; 8(4): 5351-5360.
Yu Z, Poppe JL and Wang X. Mitochondrial mechanisms of neuroglobin's neuroprotection. Oxid Med Cell Longev. 2013; 2013: 756989. doi: https://doi.org/10.1155/2013/756989
Duong TT, Witting PK, Antao ST, Parry SN, Kennerson M, Lai B, Vogt S, Lay PA, Harris HH. Multiple protective activities of neuroglobin in cultured neuronal cells exposed to hypoxia reoxygenation injury. J Neurochem. 2009; 108(5): 1143-1154. https://doi.org/10.1111/j.1471-4159.2008.05846.x
Hankeln T, Wystub S, Laufs T, Schmidt M, Gerlach F, Saaler-Reinhardt S, Reuss S, Burmester T. The cellular and subcellular localization of neuroglobin and cytoglobin - a clue to their function? IUBMB Life. 2004; 56 (11-12): 671-679. https://doi.org/10.1080/15216540500037794
Acosta-Peña E, García-García F. Restauración cerebral: una función del sueño. Revista Mexicana de Neurociencia. 2009; 10(4): 274-280.
Fiocchetti M, De Marinis E, Ascenzi P, Marino M. Neuroglobin and neuronal cellsurvival. Biochimica et Biophysica Acta. 2013; 1834: 1744-1749. https://doi.org/10.1016/j.bbapap.2013.01.015
Hundahl CA, Allen GC, Hannibal J, Kjaer K, Rehfeld JF, Dewilde S, et al. Anatomical characterization of cytoglobin and neuroglobin mRNA and protein expression in the mouse brain. Brain Res. 2010; 1331: 58-73. https://doi.org/10.1016/j.brainres.2010.03.056
Hundahl CA, Allen GC, Nyengaard JR, Dewilde S, Carter BD, Kelsen J, et al. Neuroglobin in the rat brain: localization. Neuroendocrinology 2008; 88: 173-182. https://doi.org/10.1159/000129698
Szymusiak R, Alam N, McGinty D. Discharge patterns of neurons in cholinergic regions of the basal forebrain during waking and sleep. Behav Brain Res. 2000; 115: 171-182. https://doi.org/10.1016/S0166-4328(00)00257-6
Gopalakrishnan A, Ji LL, Cirelli C. Sleep deprivation and cellular responses to oxidative stress. Sleep. 2004; 27: 27-35. https://doi.org/10.1093/sleep/27.1.27
Everson CA, Henchen CJ, Szabo A, Hogg N. Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats. Sleep. 2014; 37: 1929-1240. https://doi.org/10.5665/sleep.4244
Xu M, Yang Y, Zhang J. Levels of neuroglobin in serum and neurocognitive impairments in Chinese patients with obstructive sleep apnea. Sleep Breath. 2012; Published on line 7 June, DOI https://doi.org/10.1007/s11325-012-0723-1
Garry DJ, Mammen PP. Neuroprotection and the role of neuroglobin. Lancet. 2003; 362: 342-343. https://doi.org/10.1016/S0140-6736(03)14055-X
Hundahl CA, Kelsen J, Dewilde S, Hay-Schmidt A. Neuroglobin in the rat brain (II): colocalisation with neurotransmitters. Neuroendocrinology. 2008; 88(3): 183-198. https://doi.org/10.1159/000135617
Hundahl CA, Hannibal J, Fahrenkrug J,Dewilde S,Hay-Schmidt A. Neuroglobin expression in the rat suprachiasmatic nucleus: colocalization, innervation, and response to light. J Comp Neurol. 2010; 518(9): 1556-69. https://doi.org/10.1002/cne.22290
Hundahl CA, Fahrenkrug J, Hay-Schmidt A, Georg B, Faltoft B, Hannibal J. Circadian behaviour in neuroglobin deficient mice. PLoS One. 2012; 7(4): e34462. https://doi.org/10.1371/journal.pone.0034462
dc.rights.spa.fl_str_mv Revista Ciencias Biomédicas - 2016
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Revista Ciencias Biomédicas - 2016
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Cartagena
dc.source.spa.fl_str_mv https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/2857
institution Universidad de Cartagena
bitstream.url.fl_str_mv https://repositorio.unicartagena.edu.co/bitstreams/85ca09d4-94d3-4364-88af-5c0733165dda/download
bitstream.checksum.fl_str_mv baa22b34619eb737b0c9a341f6cd1e85
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Biblioteca Digital Universidad de Cartagena
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814213982074961920
spelling Acosta Hernández, Mario EduardoRendón Bautista, LuisPriego Fernández, SergioPeña Escudero, CarolinaMartínez Cruz, BetsyMelgarejo Gutiérrez, MontserratGarcía García, Fabio2016-07-15 00:00:002016-07-15 00:00:002016-07-152215-784010.32997/rcb-2016-28572389-7252https://doi.org/10.32997/rcb-2016-2857application/pdfspaUniversidad de CartagenaRevista Ciencias Biomédicashttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/2857/2400Núm. 2 , Año 201629522857Fuller PM, Gooley JJ, Saper CB. Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback. J Biol Rhythms. 2006; 6: 482-493. https://doi.org/10.1177/0748730406294627Stenberg, D. Neuroanatomy and neurochemistry of sleep. Cell Mol Life Sc. 2007, 64: 1187-1204. https://doi.org/10.1007/s00018-007-6530-3Beersma DG. Models of human sleep regulation. Sleep Med Rev. 1998; 2: 31-43. https://doi.org/10.1016/S1087-0792(98)90052-1Walker MP, Stickgold R. Sleep-dependent learning and memory consolidation. Neuron. 2004; 44: 121-133. https://doi.org/10.1016/j.neuron.2004.08.031Timo-Iaria C, Negrão N, Schmidek WR, Hoshino K, Lobato de Menezes CE, Leme da Rocha T. Phases and states of sleep in the rat. PhysiolBehav. 1970; 5(9): 1057-62. https://doi.org/10.1016/0031-9384(70)90162-9Jin X, Shearman LP, Weaver DR, Zylka MJ, de Vries GJ, Reppert SM. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell. 1999; 96: 1-20. https://doi.org/10.1016/S0092-8674(00)80959-9Reppert SM. and Weaver DR. Coordination of circadian timing in mammals. Nature. 2002; 418: 935-941. https://doi.org/10.1038/nature00965Moore RY. The suprachiasmatic nucleus and sleep-wake regulation. Postgrad Med. 2004; 116(6 Suppl Primary): 6-9.Cassone VM, Chesworth MJ, Armstrong SM. Entrainment of rat circadian rhythms by daily injection of melatonin depends upon the hypothalamic suprachiasmatic nuclei. Physiol Behav. 1986; 36: 1111-1121. https://doi.org/10.1016/0031-9384(86)90488-9Johnson RF, Moore RY. and Morin LP. Loss of entrainment and anatomical plasticity after lesions of the hamster retinohypothalamic tract. Brain Res. 1988; 460: 297-313. https://doi.org/10.1016/0006-8993(88)90374-5Gooley JJ, Lu J, Fischer D, Saper CB. A broad role for melanopsin in nonvisual photoreception. J Neurosci. 2003; 23: 7093-7106. https://doi.org/10.1523/JNEUROSCI.23-18-07093.2003Watts AG, Swanson LW, Sanchez-Watts G. Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J Comp Neurol. 1987; 258: 204-229. https://doi.org/10.1002/cne.902580204Chamberlin NL, Arrigoni E, Chou TC, Scammell TE, Greene RW, Saper CB. Effects of adenosine on GABAergic synaptic inputs to identified ventrolateral preoptic neurons. Neuroscience. 2003; 119: 913-918. https://doi.org/10.1016/S0306-4522(03)00246-XSakurai T. Roles of orexin/hypocretin in regulation of sleep/wakefulness and energy homeostasis. Sleep Med Rev. 2005; 4: 231-241. https://doi.org/10.1016/j.smrv.2004.07.007Yoshida K, McCormack S, España, RA, Crocker A, Scammell TE. Afferents to the orexin neurons of the rat brain. J Comp Neurol. 2006; 5: 845-861. https://doi.org/10.1002/cne.20859Lu J, Zhang YH, Chou TC, Gaus SE, Elmquist JK, Shiromani P, Saper, CB. Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleepwake cycle and temperature regulation. J Neurosci. 2001; 21: 4864-4874. https://doi.org/10.1523/JNEUROSCI.21-13-04864.2001Deurveilher S and Semba K. Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience. 2005; 130: 165-183. https://doi.org/10.1016/j.neuroscience.2004.08.030Chou TC, et al. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci. 2003; 23: 10691-10702. https://doi.org/10.1523/JNEUROSCI.23-33-10691.2003Chou TC, Bjorkum, AA, Gaus SE, Lu J, Scammell TE, Saper, CB. Afferents to the ventrolateral preoptic nucleus. J Neurosci. 2002; 22: 977-990. https://doi.org/10.1523/JNEUROSCI.22-03-00977.2002Thompson R, Swanson LW, Canteras N. Organization of projections from the dorsomedial nucleus of the hypothalamus: a PHA-L study in the rat. J Comp Neurol. 1997; 376: 143-173. https://doi.org/10.1002/(SICI)1096-9861(19961202)376:1143::AID-CNE93.0.CO;2-3Peyron C, Tighe DK, Van den Pol AN, De Lecea L, Heller HC, Sutcliffe JG, Kilduff TS. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 1998; 18: 9996-10015. https://doi.org/10.1523/JNEUROSCI.18-23-09996.1998Chemelli RM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999; 98: 437-451. https://doi.org/10.1016/S0092-8674(00)81973-XHankeln T, Ebner B, Fuchs C, Gerlach F, Haberkamp M, Laufs T, Roesner A, et. al. Neuroglobin and cytoglobin in search of their role in the vertebrate globin family. Journal of Inorganic Biochemistry. 2005; 99: 110-119. https://doi.org/10.1016/j.jinorgbio.2004.11.009Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, et. al. CDD: NCBI's conserved domain database. Nucleic acids res 2015 Jan;43 (Database issue): D222-6. doi: 10.1093/nar/gku1221. Epub 2014 Nov 20. https://doi.org/10.1093/nar/gku1221Kugelstadt D, Haberkamp M, Hankeln T, Burmester T. Neuroglobin, cytoglobin, and a novel, eye-specific globin from chicken Biochemical and Biophysical. Research Communications 2004; 325: 719-725. https://doi.org/10.1016/j.bbrc.2004.10.080Burmester T, Haberkamp M, Mitz S, Roesner A, Schmidt M, Ebner B, Gerlach F, et. al. Neuroglobin and cytoglobin: genes, proteins and evolution. Life, 2004; 56(11-12): 703-707. https://doi.org/10.1080/15216540500037257Brunori M and Vallone B. Neuroglobin, seven years after. Cell. Mol. Life Sci. 2007; 64: 1259-1268. https://doi.org/10.1007/s00018-007-7090-2Roesner A, Fuchs C, Hankeln T and Burmester T. A globin gene of ancient evolutionary origin in lower vertebrates: Evidence for two distinct globin families in animals. Mol. Biol. Evol. 2005; 22: 12-20. https://doi.org/10.1093/molbev/msh258Pesce A, Dewilde S, Nardini M, Moens L, Ascenzi P, Hankeln T, Burmester T and Bolognesi. Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity. Structure. 2003; 11: 1087-1095. https://doi.org/10.1016/S0969-2126(03)00166-7Lin YW, Wang J. Structure and function of heme proteins in non-native states: a mini-review. Journal of Inorganic Biochemistry. 2013; 129: 162-171. https://doi.org/10.1016/j.jinorgbio.2013.07.023Vallone B., Nienhaus K., Brunori M., Nienhaus G.U. The structure of murine neuroglobin: novel pathways for ligand migration and binding. Proteins. 2004; (56): 85-92. https://doi.org/10.1002/prot.20113Wystub S, Laufs T, Schmidt M, Burmester T, Maas U, Saaler-Reinhardt S, Hankeln T, Reuss S. Localization of neuroglobin protein in the mouse brain. Neuroscience Letters. 2003; 346: 114-116. https://doi.org/10.1016/S0304-3940(03)00563-9Chen X, Liu Y, Zhang L, Zhu P, Zhu H, Yang Y, Guan P. Long-term neuroglobin expression of human astrocytes following brain trauma. Neuroscience Letters. 2015; 606: 194-199. https://doi.org/10.1016/j.neulet.2015.09.002Pesce A, Dewilde S, Nardini M, Moens L, Ascenzi P, Hankelnd T, Burmestere T, Bolognesi M. The human brain hexacoordinatedneuroglobin three-dimensional structure. Micron. 2004; 35: 63-65. https://doi.org/10.1016/j.micron.2003.10.013Forrellat-Barrios M, Hernández-Ramírez P. Neuroglobina: nuevo miembro de la familia de las globinas. Revista Cubana de Hematología, Inmunología y Hemoterapia. 2011; 27(3): 291-296.Melgarejo-Gutiérrez M, Acosta-Peña E, Venebra-Muñoz A, Escobar C, Santiago-García J and Garcia-Garcia F. Sleep deprivation reduces neuroglobin immunoreactivity in the rat brain. Neuroreport. 2013; 24(3): 120-125. https://doi.org/10.1097/WNR.0b013e32835d4b74Hundahl CA, Allen GC, Nyengaard SD, Douglas Carter B, Kelsen J, Hay-Schmidt A. Neuroglobin in the rat brain: localization. Neuroendocrinology. 2008; 88: 173-182. https://doi.org/10.1159/000129698Dewilde S, Kiger L, Burmester T, Hankeln T, Baudin-Creuza V, Aerts T, Marden M, et al. Biochemical characterization and ligand binding properties of neuroglobin, a novel member of the globin family. J. biological chemistry. 2001; 42(19): 38949-38955. https://doi.org/10.1074/jbc.M106438200Liu ZF, Zhang X, Qiao Y, Xu W, Ma C, Gu H, Zhou X, Shi L, Cui C, Xia D, Chen Y. Neuroglobin protects cardiomyocytes against apoptosis and cardiac hypertrophy induced by isoproterenol in rats. Int J Clin Exp Med. 2015; 8(4): 5351-5360.Yu Z, Poppe JL and Wang X. Mitochondrial mechanisms of neuroglobin's neuroprotection. Oxid Med Cell Longev. 2013; 2013: 756989. doi: https://doi.org/10.1155/2013/756989Duong TT, Witting PK, Antao ST, Parry SN, Kennerson M, Lai B, Vogt S, Lay PA, Harris HH. Multiple protective activities of neuroglobin in cultured neuronal cells exposed to hypoxia reoxygenation injury. J Neurochem. 2009; 108(5): 1143-1154. https://doi.org/10.1111/j.1471-4159.2008.05846.xHankeln T, Wystub S, Laufs T, Schmidt M, Gerlach F, Saaler-Reinhardt S, Reuss S, Burmester T. The cellular and subcellular localization of neuroglobin and cytoglobin - a clue to their function? IUBMB Life. 2004; 56 (11-12): 671-679. https://doi.org/10.1080/15216540500037794Acosta-Peña E, García-García F. Restauración cerebral: una función del sueño. Revista Mexicana de Neurociencia. 2009; 10(4): 274-280.Fiocchetti M, De Marinis E, Ascenzi P, Marino M. Neuroglobin and neuronal cellsurvival. Biochimica et Biophysica Acta. 2013; 1834: 1744-1749. https://doi.org/10.1016/j.bbapap.2013.01.015Hundahl CA, Allen GC, Hannibal J, Kjaer K, Rehfeld JF, Dewilde S, et al. Anatomical characterization of cytoglobin and neuroglobin mRNA and protein expression in the mouse brain. Brain Res. 2010; 1331: 58-73. https://doi.org/10.1016/j.brainres.2010.03.056Hundahl CA, Allen GC, Nyengaard JR, Dewilde S, Carter BD, Kelsen J, et al. Neuroglobin in the rat brain: localization. Neuroendocrinology 2008; 88: 173-182. https://doi.org/10.1159/000129698Szymusiak R, Alam N, McGinty D. Discharge patterns of neurons in cholinergic regions of the basal forebrain during waking and sleep. Behav Brain Res. 2000; 115: 171-182. https://doi.org/10.1016/S0166-4328(00)00257-6Gopalakrishnan A, Ji LL, Cirelli C. Sleep deprivation and cellular responses to oxidative stress. Sleep. 2004; 27: 27-35. https://doi.org/10.1093/sleep/27.1.27Everson CA, Henchen CJ, Szabo A, Hogg N. Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats. Sleep. 2014; 37: 1929-1240. https://doi.org/10.5665/sleep.4244Xu M, Yang Y, Zhang J. Levels of neuroglobin in serum and neurocognitive impairments in Chinese patients with obstructive sleep apnea. Sleep Breath. 2012; Published on line 7 June, DOI https://doi.org/10.1007/s11325-012-0723-1Garry DJ, Mammen PP. Neuroprotection and the role of neuroglobin. Lancet. 2003; 362: 342-343. https://doi.org/10.1016/S0140-6736(03)14055-XHundahl CA, Kelsen J, Dewilde S, Hay-Schmidt A. Neuroglobin in the rat brain (II): colocalisation with neurotransmitters. Neuroendocrinology. 2008; 88(3): 183-198. https://doi.org/10.1159/000135617Hundahl CA, Hannibal J, Fahrenkrug J,Dewilde S,Hay-Schmidt A. Neuroglobin expression in the rat suprachiasmatic nucleus: colocalization, innervation, and response to light. J Comp Neurol. 2010; 518(9): 1556-69. https://doi.org/10.1002/cne.22290Hundahl CA, Fahrenkrug J, Hay-Schmidt A, Georg B, Faltoft B, Hannibal J. Circadian behaviour in neuroglobin deficient mice. PLoS One. 2012; 7(4): e34462. https://doi.org/10.1371/journal.pone.0034462Revista Ciencias Biomédicas - 2016https://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/2857Privación de sueñoEstrés oxidativoGlobinasOrexinaSleep deprivationOxidative stressGlobinOrexinLa neuroglobina y su potencial relación con la función cerebral y el sueño.The potential role of neuroglobin in the cerebral function and sleep.Artículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlePublicationOREORE.xmltext/xml2530https://repositorio.unicartagena.edu.co/bitstreams/85ca09d4-94d3-4364-88af-5c0733165dda/downloadbaa22b34619eb737b0c9a341f6cd1e85MD5111227/13048oai:repositorio.unicartagena.edu.co:11227/130482024-09-05 15:30:24.698https://creativecommons.org/licenses/by-nc-sa/4.0/Revista Ciencias Biomédicas - 2016metadata.onlyhttps://repositorio.unicartagena.edu.coBiblioteca Digital Universidad de Cartagenabdigital@metabiblioteca.com