La neuroglobina y su potencial relación con la función cerebral y el sueño.
- Autores:
-
Acosta Hernández, Mario Eduardo
Rendón Bautista, Luis
Priego Fernández, Sergio
Peña Escudero, Carolina
Martínez Cruz, Betsy
Melgarejo Gutiérrez, Montserrat
García García, Fabio
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2016
- Institución:
- Universidad de Cartagena
- Repositorio:
- Repositorio Universidad de Cartagena
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unicartagena.edu.co:11227/13048
- Acceso en línea:
- https://doi.org/10.32997/rcb-2016-2857
- Palabra clave:
- Privación de sueño
Estrés oxidativo
Globinas
Orexina
Sleep deprivation
Oxidative stress
Globin
Orexin
- Rights
- openAccess
- License
- Revista Ciencias Biomédicas - 2016
id |
UCART2_0b847a2bb0b206e182e433b2d8d8ef7d |
---|---|
oai_identifier_str |
oai:repositorio.unicartagena.edu.co:11227/13048 |
network_acronym_str |
UCART2 |
network_name_str |
Repositorio Universidad de Cartagena |
repository_id_str |
|
dc.title.spa.fl_str_mv |
La neuroglobina y su potencial relación con la función cerebral y el sueño. |
dc.title.translated.eng.fl_str_mv |
The potential role of neuroglobin in the cerebral function and sleep. |
title |
La neuroglobina y su potencial relación con la función cerebral y el sueño. |
spellingShingle |
La neuroglobina y su potencial relación con la función cerebral y el sueño. Privación de sueño Estrés oxidativo Globinas Orexina Sleep deprivation Oxidative stress Globin Orexin |
title_short |
La neuroglobina y su potencial relación con la función cerebral y el sueño. |
title_full |
La neuroglobina y su potencial relación con la función cerebral y el sueño. |
title_fullStr |
La neuroglobina y su potencial relación con la función cerebral y el sueño. |
title_full_unstemmed |
La neuroglobina y su potencial relación con la función cerebral y el sueño. |
title_sort |
La neuroglobina y su potencial relación con la función cerebral y el sueño. |
dc.creator.fl_str_mv |
Acosta Hernández, Mario Eduardo Rendón Bautista, Luis Priego Fernández, Sergio Peña Escudero, Carolina Martínez Cruz, Betsy Melgarejo Gutiérrez, Montserrat García García, Fabio |
dc.contributor.author.spa.fl_str_mv |
Acosta Hernández, Mario Eduardo Rendón Bautista, Luis Priego Fernández, Sergio Peña Escudero, Carolina Martínez Cruz, Betsy Melgarejo Gutiérrez, Montserrat García García, Fabio |
dc.subject.spa.fl_str_mv |
Privación de sueño Estrés oxidativo Globinas Orexina |
topic |
Privación de sueño Estrés oxidativo Globinas Orexina Sleep deprivation Oxidative stress Globin Orexin |
dc.subject.eng.fl_str_mv |
Sleep deprivation Oxidative stress Globin Orexin |
publishDate |
2016 |
dc.date.accessioned.none.fl_str_mv |
2016-07-15 00:00:00 |
dc.date.available.none.fl_str_mv |
2016-07-15 00:00:00 |
dc.date.issued.none.fl_str_mv |
2016-07-15 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.eng.fl_str_mv |
Journal article |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2215-7840 |
dc.identifier.doi.none.fl_str_mv |
10.32997/rcb-2016-2857 |
dc.identifier.eissn.none.fl_str_mv |
2389-7252 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.32997/rcb-2016-2857 |
identifier_str_mv |
2215-7840 10.32997/rcb-2016-2857 2389-7252 |
url |
https://doi.org/10.32997/rcb-2016-2857 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista Ciencias Biomédicas |
dc.relation.bitstream.none.fl_str_mv |
https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/2857/2400 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 2 , Año 2016 |
dc.relation.citationendpage.none.fl_str_mv |
295 |
dc.relation.citationissue.spa.fl_str_mv |
2 |
dc.relation.citationstartpage.none.fl_str_mv |
285 |
dc.relation.citationvolume.spa.fl_str_mv |
7 |
dc.relation.references.spa.fl_str_mv |
Fuller PM, Gooley JJ, Saper CB. Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback. J Biol Rhythms. 2006; 6: 482-493. https://doi.org/10.1177/0748730406294627 Stenberg, D. Neuroanatomy and neurochemistry of sleep. Cell Mol Life Sc. 2007, 64: 1187-1204. https://doi.org/10.1007/s00018-007-6530-3 Beersma DG. Models of human sleep regulation. Sleep Med Rev. 1998; 2: 31-43. https://doi.org/10.1016/S1087-0792(98)90052-1 Walker MP, Stickgold R. Sleep-dependent learning and memory consolidation. Neuron. 2004; 44: 121-133. https://doi.org/10.1016/j.neuron.2004.08.031 Timo-Iaria C, Negrão N, Schmidek WR, Hoshino K, Lobato de Menezes CE, Leme da Rocha T. Phases and states of sleep in the rat. PhysiolBehav. 1970; 5(9): 1057-62. https://doi.org/10.1016/0031-9384(70)90162-9 Jin X, Shearman LP, Weaver DR, Zylka MJ, de Vries GJ, Reppert SM. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell. 1999; 96: 1-20. https://doi.org/10.1016/S0092-8674(00)80959-9 Reppert SM. and Weaver DR. Coordination of circadian timing in mammals. Nature. 2002; 418: 935-941. https://doi.org/10.1038/nature00965 Moore RY. The suprachiasmatic nucleus and sleep-wake regulation. Postgrad Med. 2004; 116(6 Suppl Primary): 6-9. Cassone VM, Chesworth MJ, Armstrong SM. Entrainment of rat circadian rhythms by daily injection of melatonin depends upon the hypothalamic suprachiasmatic nuclei. Physiol Behav. 1986; 36: 1111-1121. https://doi.org/10.1016/0031-9384(86)90488-9 Johnson RF, Moore RY. and Morin LP. Loss of entrainment and anatomical plasticity after lesions of the hamster retinohypothalamic tract. Brain Res. 1988; 460: 297-313. https://doi.org/10.1016/0006-8993(88)90374-5 Gooley JJ, Lu J, Fischer D, Saper CB. A broad role for melanopsin in nonvisual photoreception. J Neurosci. 2003; 23: 7093-7106. https://doi.org/10.1523/JNEUROSCI.23-18-07093.2003 Watts AG, Swanson LW, Sanchez-Watts G. Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J Comp Neurol. 1987; 258: 204-229. https://doi.org/10.1002/cne.902580204 Chamberlin NL, Arrigoni E, Chou TC, Scammell TE, Greene RW, Saper CB. Effects of adenosine on GABAergic synaptic inputs to identified ventrolateral preoptic neurons. Neuroscience. 2003; 119: 913-918. https://doi.org/10.1016/S0306-4522(03)00246-X Sakurai T. Roles of orexin/hypocretin in regulation of sleep/wakefulness and energy homeostasis. Sleep Med Rev. 2005; 4: 231-241. https://doi.org/10.1016/j.smrv.2004.07.007 Yoshida K, McCormack S, España, RA, Crocker A, Scammell TE. Afferents to the orexin neurons of the rat brain. J Comp Neurol. 2006; 5: 845-861. https://doi.org/10.1002/cne.20859 Lu J, Zhang YH, Chou TC, Gaus SE, Elmquist JK, Shiromani P, Saper, CB. Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleepwake cycle and temperature regulation. J Neurosci. 2001; 21: 4864-4874. https://doi.org/10.1523/JNEUROSCI.21-13-04864.2001 Deurveilher S and Semba K. Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience. 2005; 130: 165-183. https://doi.org/10.1016/j.neuroscience.2004.08.030 Chou TC, et al. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci. 2003; 23: 10691-10702. https://doi.org/10.1523/JNEUROSCI.23-33-10691.2003 Chou TC, Bjorkum, AA, Gaus SE, Lu J, Scammell TE, Saper, CB. Afferents to the ventrolateral preoptic nucleus. J Neurosci. 2002; 22: 977-990. https://doi.org/10.1523/JNEUROSCI.22-03-00977.2002 Thompson R, Swanson LW, Canteras N. Organization of projections from the dorsomedial nucleus of the hypothalamus: a PHA-L study in the rat. J Comp Neurol. 1997; 376: 143-173. https://doi.org/10.1002/(SICI)1096-9861(19961202)376:1143::AID-CNE93.0.CO;2-3 Peyron C, Tighe DK, Van den Pol AN, De Lecea L, Heller HC, Sutcliffe JG, Kilduff TS. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 1998; 18: 9996-10015. https://doi.org/10.1523/JNEUROSCI.18-23-09996.1998 Chemelli RM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999; 98: 437-451. https://doi.org/10.1016/S0092-8674(00)81973-X Hankeln T, Ebner B, Fuchs C, Gerlach F, Haberkamp M, Laufs T, Roesner A, et. al. Neuroglobin and cytoglobin in search of their role in the vertebrate globin family. Journal of Inorganic Biochemistry. 2005; 99: 110-119. https://doi.org/10.1016/j.jinorgbio.2004.11.009 Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, et. al. CDD: NCBI's conserved domain database. Nucleic acids res 2015 Jan;43 (Database issue): D222-6. doi: 10.1093/nar/gku1221. Epub 2014 Nov 20. https://doi.org/10.1093/nar/gku1221 Kugelstadt D, Haberkamp M, Hankeln T, Burmester T. Neuroglobin, cytoglobin, and a novel, eye-specific globin from chicken Biochemical and Biophysical. Research Communications 2004; 325: 719-725. https://doi.org/10.1016/j.bbrc.2004.10.080 Burmester T, Haberkamp M, Mitz S, Roesner A, Schmidt M, Ebner B, Gerlach F, et. al. Neuroglobin and cytoglobin: genes, proteins and evolution. Life, 2004; 56(11-12): 703-707. https://doi.org/10.1080/15216540500037257 Brunori M and Vallone B. Neuroglobin, seven years after. Cell. Mol. Life Sci. 2007; 64: 1259-1268. https://doi.org/10.1007/s00018-007-7090-2 Roesner A, Fuchs C, Hankeln T and Burmester T. A globin gene of ancient evolutionary origin in lower vertebrates: Evidence for two distinct globin families in animals. Mol. Biol. Evol. 2005; 22: 12-20. https://doi.org/10.1093/molbev/msh258 Pesce A, Dewilde S, Nardini M, Moens L, Ascenzi P, Hankeln T, Burmester T and Bolognesi. Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity. Structure. 2003; 11: 1087-1095. https://doi.org/10.1016/S0969-2126(03)00166-7 Lin YW, Wang J. Structure and function of heme proteins in non-native states: a mini-review. Journal of Inorganic Biochemistry. 2013; 129: 162-171. https://doi.org/10.1016/j.jinorgbio.2013.07.023 Vallone B., Nienhaus K., Brunori M., Nienhaus G.U. The structure of murine neuroglobin: novel pathways for ligand migration and binding. Proteins. 2004; (56): 85-92. https://doi.org/10.1002/prot.20113 Wystub S, Laufs T, Schmidt M, Burmester T, Maas U, Saaler-Reinhardt S, Hankeln T, Reuss S. Localization of neuroglobin protein in the mouse brain. Neuroscience Letters. 2003; 346: 114-116. https://doi.org/10.1016/S0304-3940(03)00563-9 Chen X, Liu Y, Zhang L, Zhu P, Zhu H, Yang Y, Guan P. Long-term neuroglobin expression of human astrocytes following brain trauma. Neuroscience Letters. 2015; 606: 194-199. https://doi.org/10.1016/j.neulet.2015.09.002 Pesce A, Dewilde S, Nardini M, Moens L, Ascenzi P, Hankelnd T, Burmestere T, Bolognesi M. The human brain hexacoordinatedneuroglobin three-dimensional structure. Micron. 2004; 35: 63-65. https://doi.org/10.1016/j.micron.2003.10.013 Forrellat-Barrios M, Hernández-Ramírez P. Neuroglobina: nuevo miembro de la familia de las globinas. Revista Cubana de Hematología, Inmunología y Hemoterapia. 2011; 27(3): 291-296. Melgarejo-Gutiérrez M, Acosta-Peña E, Venebra-Muñoz A, Escobar C, Santiago-García J and Garcia-Garcia F. Sleep deprivation reduces neuroglobin immunoreactivity in the rat brain. Neuroreport. 2013; 24(3): 120-125. https://doi.org/10.1097/WNR.0b013e32835d4b74 Hundahl CA, Allen GC, Nyengaard SD, Douglas Carter B, Kelsen J, Hay-Schmidt A. Neuroglobin in the rat brain: localization. Neuroendocrinology. 2008; 88: 173-182. https://doi.org/10.1159/000129698 Dewilde S, Kiger L, Burmester T, Hankeln T, Baudin-Creuza V, Aerts T, Marden M, et al. Biochemical characterization and ligand binding properties of neuroglobin, a novel member of the globin family. J. biological chemistry. 2001; 42(19): 38949-38955. https://doi.org/10.1074/jbc.M106438200 Liu ZF, Zhang X, Qiao Y, Xu W, Ma C, Gu H, Zhou X, Shi L, Cui C, Xia D, Chen Y. Neuroglobin protects cardiomyocytes against apoptosis and cardiac hypertrophy induced by isoproterenol in rats. Int J Clin Exp Med. 2015; 8(4): 5351-5360. Yu Z, Poppe JL and Wang X. Mitochondrial mechanisms of neuroglobin's neuroprotection. Oxid Med Cell Longev. 2013; 2013: 756989. doi: https://doi.org/10.1155/2013/756989 Duong TT, Witting PK, Antao ST, Parry SN, Kennerson M, Lai B, Vogt S, Lay PA, Harris HH. Multiple protective activities of neuroglobin in cultured neuronal cells exposed to hypoxia reoxygenation injury. J Neurochem. 2009; 108(5): 1143-1154. https://doi.org/10.1111/j.1471-4159.2008.05846.x Hankeln T, Wystub S, Laufs T, Schmidt M, Gerlach F, Saaler-Reinhardt S, Reuss S, Burmester T. The cellular and subcellular localization of neuroglobin and cytoglobin - a clue to their function? IUBMB Life. 2004; 56 (11-12): 671-679. https://doi.org/10.1080/15216540500037794 Acosta-Peña E, García-García F. Restauración cerebral: una función del sueño. Revista Mexicana de Neurociencia. 2009; 10(4): 274-280. Fiocchetti M, De Marinis E, Ascenzi P, Marino M. Neuroglobin and neuronal cellsurvival. Biochimica et Biophysica Acta. 2013; 1834: 1744-1749. https://doi.org/10.1016/j.bbapap.2013.01.015 Hundahl CA, Allen GC, Hannibal J, Kjaer K, Rehfeld JF, Dewilde S, et al. Anatomical characterization of cytoglobin and neuroglobin mRNA and protein expression in the mouse brain. Brain Res. 2010; 1331: 58-73. https://doi.org/10.1016/j.brainres.2010.03.056 Hundahl CA, Allen GC, Nyengaard JR, Dewilde S, Carter BD, Kelsen J, et al. Neuroglobin in the rat brain: localization. Neuroendocrinology 2008; 88: 173-182. https://doi.org/10.1159/000129698 Szymusiak R, Alam N, McGinty D. Discharge patterns of neurons in cholinergic regions of the basal forebrain during waking and sleep. Behav Brain Res. 2000; 115: 171-182. https://doi.org/10.1016/S0166-4328(00)00257-6 Gopalakrishnan A, Ji LL, Cirelli C. Sleep deprivation and cellular responses to oxidative stress. Sleep. 2004; 27: 27-35. https://doi.org/10.1093/sleep/27.1.27 Everson CA, Henchen CJ, Szabo A, Hogg N. Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats. Sleep. 2014; 37: 1929-1240. https://doi.org/10.5665/sleep.4244 Xu M, Yang Y, Zhang J. Levels of neuroglobin in serum and neurocognitive impairments in Chinese patients with obstructive sleep apnea. Sleep Breath. 2012; Published on line 7 June, DOI https://doi.org/10.1007/s11325-012-0723-1 Garry DJ, Mammen PP. Neuroprotection and the role of neuroglobin. Lancet. 2003; 362: 342-343. https://doi.org/10.1016/S0140-6736(03)14055-X Hundahl CA, Kelsen J, Dewilde S, Hay-Schmidt A. Neuroglobin in the rat brain (II): colocalisation with neurotransmitters. Neuroendocrinology. 2008; 88(3): 183-198. https://doi.org/10.1159/000135617 Hundahl CA, Hannibal J, Fahrenkrug J,Dewilde S,Hay-Schmidt A. Neuroglobin expression in the rat suprachiasmatic nucleus: colocalization, innervation, and response to light. J Comp Neurol. 2010; 518(9): 1556-69. https://doi.org/10.1002/cne.22290 Hundahl CA, Fahrenkrug J, Hay-Schmidt A, Georg B, Faltoft B, Hannibal J. Circadian behaviour in neuroglobin deficient mice. PLoS One. 2012; 7(4): e34462. https://doi.org/10.1371/journal.pone.0034462 |
dc.rights.spa.fl_str_mv |
Revista Ciencias Biomédicas - 2016 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Revista Ciencias Biomédicas - 2016 https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de Cartagena |
dc.source.spa.fl_str_mv |
https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/2857 |
institution |
Universidad de Cartagena |
bitstream.url.fl_str_mv |
https://repositorio.unicartagena.edu.co/bitstreams/85ca09d4-94d3-4364-88af-5c0733165dda/download |
bitstream.checksum.fl_str_mv |
baa22b34619eb737b0c9a341f6cd1e85 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Biblioteca Digital Universidad de Cartagena |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814213982074961920 |
spelling |
Acosta Hernández, Mario EduardoRendón Bautista, LuisPriego Fernández, SergioPeña Escudero, CarolinaMartínez Cruz, BetsyMelgarejo Gutiérrez, MontserratGarcía García, Fabio2016-07-15 00:00:002016-07-15 00:00:002016-07-152215-784010.32997/rcb-2016-28572389-7252https://doi.org/10.32997/rcb-2016-2857application/pdfspaUniversidad de CartagenaRevista Ciencias Biomédicashttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/2857/2400Núm. 2 , Año 201629522857Fuller PM, Gooley JJ, Saper CB. Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback. J Biol Rhythms. 2006; 6: 482-493. https://doi.org/10.1177/0748730406294627Stenberg, D. Neuroanatomy and neurochemistry of sleep. Cell Mol Life Sc. 2007, 64: 1187-1204. https://doi.org/10.1007/s00018-007-6530-3Beersma DG. Models of human sleep regulation. Sleep Med Rev. 1998; 2: 31-43. https://doi.org/10.1016/S1087-0792(98)90052-1Walker MP, Stickgold R. Sleep-dependent learning and memory consolidation. Neuron. 2004; 44: 121-133. https://doi.org/10.1016/j.neuron.2004.08.031Timo-Iaria C, Negrão N, Schmidek WR, Hoshino K, Lobato de Menezes CE, Leme da Rocha T. Phases and states of sleep in the rat. PhysiolBehav. 1970; 5(9): 1057-62. https://doi.org/10.1016/0031-9384(70)90162-9Jin X, Shearman LP, Weaver DR, Zylka MJ, de Vries GJ, Reppert SM. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell. 1999; 96: 1-20. https://doi.org/10.1016/S0092-8674(00)80959-9Reppert SM. and Weaver DR. Coordination of circadian timing in mammals. Nature. 2002; 418: 935-941. https://doi.org/10.1038/nature00965Moore RY. The suprachiasmatic nucleus and sleep-wake regulation. Postgrad Med. 2004; 116(6 Suppl Primary): 6-9.Cassone VM, Chesworth MJ, Armstrong SM. Entrainment of rat circadian rhythms by daily injection of melatonin depends upon the hypothalamic suprachiasmatic nuclei. Physiol Behav. 1986; 36: 1111-1121. https://doi.org/10.1016/0031-9384(86)90488-9Johnson RF, Moore RY. and Morin LP. Loss of entrainment and anatomical plasticity after lesions of the hamster retinohypothalamic tract. Brain Res. 1988; 460: 297-313. https://doi.org/10.1016/0006-8993(88)90374-5Gooley JJ, Lu J, Fischer D, Saper CB. A broad role for melanopsin in nonvisual photoreception. J Neurosci. 2003; 23: 7093-7106. https://doi.org/10.1523/JNEUROSCI.23-18-07093.2003Watts AG, Swanson LW, Sanchez-Watts G. Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J Comp Neurol. 1987; 258: 204-229. https://doi.org/10.1002/cne.902580204Chamberlin NL, Arrigoni E, Chou TC, Scammell TE, Greene RW, Saper CB. Effects of adenosine on GABAergic synaptic inputs to identified ventrolateral preoptic neurons. Neuroscience. 2003; 119: 913-918. https://doi.org/10.1016/S0306-4522(03)00246-XSakurai T. Roles of orexin/hypocretin in regulation of sleep/wakefulness and energy homeostasis. Sleep Med Rev. 2005; 4: 231-241. https://doi.org/10.1016/j.smrv.2004.07.007Yoshida K, McCormack S, España, RA, Crocker A, Scammell TE. Afferents to the orexin neurons of the rat brain. J Comp Neurol. 2006; 5: 845-861. https://doi.org/10.1002/cne.20859Lu J, Zhang YH, Chou TC, Gaus SE, Elmquist JK, Shiromani P, Saper, CB. Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleepwake cycle and temperature regulation. J Neurosci. 2001; 21: 4864-4874. https://doi.org/10.1523/JNEUROSCI.21-13-04864.2001Deurveilher S and Semba K. Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience. 2005; 130: 165-183. https://doi.org/10.1016/j.neuroscience.2004.08.030Chou TC, et al. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci. 2003; 23: 10691-10702. https://doi.org/10.1523/JNEUROSCI.23-33-10691.2003Chou TC, Bjorkum, AA, Gaus SE, Lu J, Scammell TE, Saper, CB. Afferents to the ventrolateral preoptic nucleus. J Neurosci. 2002; 22: 977-990. https://doi.org/10.1523/JNEUROSCI.22-03-00977.2002Thompson R, Swanson LW, Canteras N. Organization of projections from the dorsomedial nucleus of the hypothalamus: a PHA-L study in the rat. J Comp Neurol. 1997; 376: 143-173. https://doi.org/10.1002/(SICI)1096-9861(19961202)376:1143::AID-CNE93.0.CO;2-3Peyron C, Tighe DK, Van den Pol AN, De Lecea L, Heller HC, Sutcliffe JG, Kilduff TS. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 1998; 18: 9996-10015. https://doi.org/10.1523/JNEUROSCI.18-23-09996.1998Chemelli RM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999; 98: 437-451. https://doi.org/10.1016/S0092-8674(00)81973-XHankeln T, Ebner B, Fuchs C, Gerlach F, Haberkamp M, Laufs T, Roesner A, et. al. Neuroglobin and cytoglobin in search of their role in the vertebrate globin family. Journal of Inorganic Biochemistry. 2005; 99: 110-119. https://doi.org/10.1016/j.jinorgbio.2004.11.009Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, et. al. CDD: NCBI's conserved domain database. Nucleic acids res 2015 Jan;43 (Database issue): D222-6. doi: 10.1093/nar/gku1221. Epub 2014 Nov 20. https://doi.org/10.1093/nar/gku1221Kugelstadt D, Haberkamp M, Hankeln T, Burmester T. Neuroglobin, cytoglobin, and a novel, eye-specific globin from chicken Biochemical and Biophysical. Research Communications 2004; 325: 719-725. https://doi.org/10.1016/j.bbrc.2004.10.080Burmester T, Haberkamp M, Mitz S, Roesner A, Schmidt M, Ebner B, Gerlach F, et. al. Neuroglobin and cytoglobin: genes, proteins and evolution. Life, 2004; 56(11-12): 703-707. https://doi.org/10.1080/15216540500037257Brunori M and Vallone B. Neuroglobin, seven years after. Cell. Mol. Life Sci. 2007; 64: 1259-1268. https://doi.org/10.1007/s00018-007-7090-2Roesner A, Fuchs C, Hankeln T and Burmester T. A globin gene of ancient evolutionary origin in lower vertebrates: Evidence for two distinct globin families in animals. Mol. Biol. Evol. 2005; 22: 12-20. https://doi.org/10.1093/molbev/msh258Pesce A, Dewilde S, Nardini M, Moens L, Ascenzi P, Hankeln T, Burmester T and Bolognesi. Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity. Structure. 2003; 11: 1087-1095. https://doi.org/10.1016/S0969-2126(03)00166-7Lin YW, Wang J. Structure and function of heme proteins in non-native states: a mini-review. Journal of Inorganic Biochemistry. 2013; 129: 162-171. https://doi.org/10.1016/j.jinorgbio.2013.07.023Vallone B., Nienhaus K., Brunori M., Nienhaus G.U. The structure of murine neuroglobin: novel pathways for ligand migration and binding. Proteins. 2004; (56): 85-92. https://doi.org/10.1002/prot.20113Wystub S, Laufs T, Schmidt M, Burmester T, Maas U, Saaler-Reinhardt S, Hankeln T, Reuss S. Localization of neuroglobin protein in the mouse brain. Neuroscience Letters. 2003; 346: 114-116. https://doi.org/10.1016/S0304-3940(03)00563-9Chen X, Liu Y, Zhang L, Zhu P, Zhu H, Yang Y, Guan P. Long-term neuroglobin expression of human astrocytes following brain trauma. Neuroscience Letters. 2015; 606: 194-199. https://doi.org/10.1016/j.neulet.2015.09.002Pesce A, Dewilde S, Nardini M, Moens L, Ascenzi P, Hankelnd T, Burmestere T, Bolognesi M. The human brain hexacoordinatedneuroglobin three-dimensional structure. Micron. 2004; 35: 63-65. https://doi.org/10.1016/j.micron.2003.10.013Forrellat-Barrios M, Hernández-Ramírez P. Neuroglobina: nuevo miembro de la familia de las globinas. Revista Cubana de Hematología, Inmunología y Hemoterapia. 2011; 27(3): 291-296.Melgarejo-Gutiérrez M, Acosta-Peña E, Venebra-Muñoz A, Escobar C, Santiago-García J and Garcia-Garcia F. Sleep deprivation reduces neuroglobin immunoreactivity in the rat brain. Neuroreport. 2013; 24(3): 120-125. https://doi.org/10.1097/WNR.0b013e32835d4b74Hundahl CA, Allen GC, Nyengaard SD, Douglas Carter B, Kelsen J, Hay-Schmidt A. Neuroglobin in the rat brain: localization. Neuroendocrinology. 2008; 88: 173-182. https://doi.org/10.1159/000129698Dewilde S, Kiger L, Burmester T, Hankeln T, Baudin-Creuza V, Aerts T, Marden M, et al. Biochemical characterization and ligand binding properties of neuroglobin, a novel member of the globin family. J. biological chemistry. 2001; 42(19): 38949-38955. https://doi.org/10.1074/jbc.M106438200Liu ZF, Zhang X, Qiao Y, Xu W, Ma C, Gu H, Zhou X, Shi L, Cui C, Xia D, Chen Y. Neuroglobin protects cardiomyocytes against apoptosis and cardiac hypertrophy induced by isoproterenol in rats. Int J Clin Exp Med. 2015; 8(4): 5351-5360.Yu Z, Poppe JL and Wang X. Mitochondrial mechanisms of neuroglobin's neuroprotection. Oxid Med Cell Longev. 2013; 2013: 756989. doi: https://doi.org/10.1155/2013/756989Duong TT, Witting PK, Antao ST, Parry SN, Kennerson M, Lai B, Vogt S, Lay PA, Harris HH. Multiple protective activities of neuroglobin in cultured neuronal cells exposed to hypoxia reoxygenation injury. J Neurochem. 2009; 108(5): 1143-1154. https://doi.org/10.1111/j.1471-4159.2008.05846.xHankeln T, Wystub S, Laufs T, Schmidt M, Gerlach F, Saaler-Reinhardt S, Reuss S, Burmester T. The cellular and subcellular localization of neuroglobin and cytoglobin - a clue to their function? IUBMB Life. 2004; 56 (11-12): 671-679. https://doi.org/10.1080/15216540500037794Acosta-Peña E, García-García F. Restauración cerebral: una función del sueño. Revista Mexicana de Neurociencia. 2009; 10(4): 274-280.Fiocchetti M, De Marinis E, Ascenzi P, Marino M. Neuroglobin and neuronal cellsurvival. Biochimica et Biophysica Acta. 2013; 1834: 1744-1749. https://doi.org/10.1016/j.bbapap.2013.01.015Hundahl CA, Allen GC, Hannibal J, Kjaer K, Rehfeld JF, Dewilde S, et al. Anatomical characterization of cytoglobin and neuroglobin mRNA and protein expression in the mouse brain. Brain Res. 2010; 1331: 58-73. https://doi.org/10.1016/j.brainres.2010.03.056Hundahl CA, Allen GC, Nyengaard JR, Dewilde S, Carter BD, Kelsen J, et al. Neuroglobin in the rat brain: localization. Neuroendocrinology 2008; 88: 173-182. https://doi.org/10.1159/000129698Szymusiak R, Alam N, McGinty D. Discharge patterns of neurons in cholinergic regions of the basal forebrain during waking and sleep. Behav Brain Res. 2000; 115: 171-182. https://doi.org/10.1016/S0166-4328(00)00257-6Gopalakrishnan A, Ji LL, Cirelli C. Sleep deprivation and cellular responses to oxidative stress. Sleep. 2004; 27: 27-35. https://doi.org/10.1093/sleep/27.1.27Everson CA, Henchen CJ, Szabo A, Hogg N. Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats. Sleep. 2014; 37: 1929-1240. https://doi.org/10.5665/sleep.4244Xu M, Yang Y, Zhang J. Levels of neuroglobin in serum and neurocognitive impairments in Chinese patients with obstructive sleep apnea. Sleep Breath. 2012; Published on line 7 June, DOI https://doi.org/10.1007/s11325-012-0723-1Garry DJ, Mammen PP. Neuroprotection and the role of neuroglobin. Lancet. 2003; 362: 342-343. https://doi.org/10.1016/S0140-6736(03)14055-XHundahl CA, Kelsen J, Dewilde S, Hay-Schmidt A. Neuroglobin in the rat brain (II): colocalisation with neurotransmitters. Neuroendocrinology. 2008; 88(3): 183-198. https://doi.org/10.1159/000135617Hundahl CA, Hannibal J, Fahrenkrug J,Dewilde S,Hay-Schmidt A. Neuroglobin expression in the rat suprachiasmatic nucleus: colocalization, innervation, and response to light. J Comp Neurol. 2010; 518(9): 1556-69. https://doi.org/10.1002/cne.22290Hundahl CA, Fahrenkrug J, Hay-Schmidt A, Georg B, Faltoft B, Hannibal J. Circadian behaviour in neuroglobin deficient mice. PLoS One. 2012; 7(4): e34462. https://doi.org/10.1371/journal.pone.0034462Revista Ciencias Biomédicas - 2016https://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/2857Privación de sueñoEstrés oxidativoGlobinasOrexinaSleep deprivationOxidative stressGlobinOrexinLa neuroglobina y su potencial relación con la función cerebral y el sueño.The potential role of neuroglobin in the cerebral function and sleep.Artículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlePublicationOREORE.xmltext/xml2530https://repositorio.unicartagena.edu.co/bitstreams/85ca09d4-94d3-4364-88af-5c0733165dda/downloadbaa22b34619eb737b0c9a341f6cd1e85MD5111227/13048oai:repositorio.unicartagena.edu.co:11227/130482024-09-05 15:30:24.698https://creativecommons.org/licenses/by-nc-sa/4.0/Revista Ciencias Biomédicas - 2016metadata.onlyhttps://repositorio.unicartagena.edu.coBiblioteca Digital Universidad de Cartagenabdigital@metabiblioteca.com |