Evaluación del perfil de citoquinas de monocitos, Th1 y Treg en malaria complicada por Plasmodium vivax
En el contexto fisiopatológico de las infecciones mediadas por Plasmodium se ha documentado que la respuesta mediada por citoquinas proinflamatorias o antiinflamatorias contribuyen a la eliminación del parásito; sin embargo, una respuesta inmunológica exacerbada que puede favorecer el desarrollo de...
- Autores:
-
Tovar Acero, Catalina
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad de Cartagena
- Repositorio:
- Repositorio Universidad de Cartagena
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unicartagena.edu.co:11227/15502
- Acceso en línea:
- https://hdl.handle.net/11227/15502
http://dx.doi.org/10.57799/11227/144
- Palabra clave:
- Malaria
Parásito de la malaria
Plasmodium
Malaria - Epidemiologia
- Rights
- openAccess
- License
- Derechos Reservados - Universidad de Cartagena, 2021
id |
UCART2_09bd50aa73fad11134fc2067a264bc0f |
---|---|
oai_identifier_str |
oai:repositorio.unicartagena.edu.co:11227/15502 |
network_acronym_str |
UCART2 |
network_name_str |
Repositorio Universidad de Cartagena |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación del perfil de citoquinas de monocitos, Th1 y Treg en malaria complicada por Plasmodium vivax |
title |
Evaluación del perfil de citoquinas de monocitos, Th1 y Treg en malaria complicada por Plasmodium vivax |
spellingShingle |
Evaluación del perfil de citoquinas de monocitos, Th1 y Treg en malaria complicada por Plasmodium vivax Malaria Parásito de la malaria Plasmodium Malaria - Epidemiologia |
title_short |
Evaluación del perfil de citoquinas de monocitos, Th1 y Treg en malaria complicada por Plasmodium vivax |
title_full |
Evaluación del perfil de citoquinas de monocitos, Th1 y Treg en malaria complicada por Plasmodium vivax |
title_fullStr |
Evaluación del perfil de citoquinas de monocitos, Th1 y Treg en malaria complicada por Plasmodium vivax |
title_full_unstemmed |
Evaluación del perfil de citoquinas de monocitos, Th1 y Treg en malaria complicada por Plasmodium vivax |
title_sort |
Evaluación del perfil de citoquinas de monocitos, Th1 y Treg en malaria complicada por Plasmodium vivax |
dc.creator.fl_str_mv |
Tovar Acero, Catalina |
dc.contributor.advisor.none.fl_str_mv |
Yasnot Acosta, María Fernanda |
dc.contributor.author.none.fl_str_mv |
Tovar Acero, Catalina |
dc.subject.armarc.none.fl_str_mv |
Malaria Parásito de la malaria Plasmodium Malaria - Epidemiologia |
topic |
Malaria Parásito de la malaria Plasmodium Malaria - Epidemiologia |
description |
En el contexto fisiopatológico de las infecciones mediadas por Plasmodium se ha documentado que la respuesta mediada por citoquinas proinflamatorias o antiinflamatorias contribuyen a la eliminación del parásito; sin embargo, una respuesta inmunológica exacerbada que puede favorecer el desarrollo de cuadros complicados de la enfermedad. En los últimos años ha sido estudiado el papel de las citoquinas en la patogénesis de la malaria, así como su rol como biomarcadores capaces de pronosticar el desarrollo una complicación en pacientes que padecen esta enfermedad. Disponer de un biomarcador con estas características, es un insumo para generar herramientas diagnósticas que permitan de manera temprana dar un mejor enfoque clínico y terapéutico al paciente, por otra parte, es importante generar información que contribuya al conocimiento de la fisiopatología en las infecciones por Plasmodium vivax. Este estudio tuvo como finalidad evaluar del perfil de citoquinas de monocitos, linfocitosTh1 y linfocitos Treg en la malaria complicada por Plasmodium vivax en una zona endémica para la enfermedad en el noreste de Colombia. Se vincularon 156 individuos, conformando tres grupos de estudio, pacientes con malaria complicada, malaria no complicada y controles sanos. La trombocitopenia, la hipoglicemia, la disfunción hepática y renal fueron las complicaciones más frecuentes observadas en la malaria por P. vivax en la población de estudio. La evaluación de las citoquinas derivadas de los monocitos, Th1 y Treg, permitió identificar que la concentración plasmática de IL-6, IL-10 y IFN-γ marca un perfil diferenciador entre pacientes complicados y no complicados, la concentración aumentada de estas citoquinas mostró correlaciones con manifestaciones complicadas como la trombocitopenia severa, hipoglicemia, alteraciones hepáticas y renales. Adicionalmente, IL-6 mostró potencial para pronosticar el desarrollo de complicaciones en pacientes con infección por P. vivax. El TGF-β se postula como una citoquina moduladora de la inflamación en la infección por P. vivax, se encontró una mayor concentración de esta citoquina en el grupo control y en pacientes no complicados; sin embargo, las células Treg parecen estar suprimidas en pacientes complicados favoreciendo un ambiente proinflamatorio de citoquinas como IFN-γ e IL-6, que media las complicaciones observadas en los pacientes. El papel de la IL-10 parece estar asociado al desarrollo de complicaciones en la malaria por P. vivax, fue la citoquina con mayor concentración plasmática en pacientes con malaria complicada, y postulamos que la fuente de esta citoquina en el curso de esta infección proviene de fuentes celulares diferentes a Treg. Este es el primer estudio en Colombia que se realiza comparando grupos de pacientes con malaria vivax con diferentes formas clínicas y evalúa el comportamiento de las citoquinas en el curso de las infecciones, estas aproximaciones generan conocimiento de la inmunopatogénesis de este parásito que puede ser explorado en pronóstico de complicaciones o en blancos terapéuticos. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-07-28T13:57:31Z |
dc.date.available.none.fl_str_mv |
2022-07-28T13:57:31Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11227/15502 http://dx.doi.org/10.57799/11227/144 |
url |
https://hdl.handle.net/11227/15502 http://dx.doi.org/10.57799/11227/144 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad de Cartagena, 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad de Cartagena, 2021 https://creativecommons.org/licenses/by-nc/4.0/ Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de Cartagena |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Medicina |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.publisher.program.spa.fl_str_mv |
Doctorado en Medicina Tropical |
institution |
Universidad de Cartagena |
bitstream.url.fl_str_mv |
https://dspace7-unicartagena.metabuscador.org/bitstreams/cbfccf03-6a43-4201-973a-6657ddac6a23/download https://dspace7-unicartagena.metabuscador.org/bitstreams/a9eaf130-dc13-4879-bbb2-54c936e65ada/download https://dspace7-unicartagena.metabuscador.org/bitstreams/5ed8f877-eabf-4858-b2c9-4e4042e3bd22/download https://dspace7-unicartagena.metabuscador.org/bitstreams/7d1534e6-dc4c-43b7-b2ba-ad9e15c9bf8f/download https://dspace7-unicartagena.metabuscador.org/bitstreams/891dac3b-b7f7-4d87-b1e7-a8b11bd264d0/download https://dspace7-unicartagena.metabuscador.org/bitstreams/44ad2e87-386e-4dc5-b159-02a84c95da55/download https://dspace7-unicartagena.metabuscador.org/bitstreams/41760a56-a2bd-4b41-a0bf-63f61ac97faf/download |
bitstream.checksum.fl_str_mv |
01f837163201d1851489db3f085373ed 3e72335d44a024817af31068310717c8 7b38fcee9ba3bc8639fa56f350c81be3 641d74c970f06c46b531939afc08fa00 de4a2e0427fcaf3a95bf5571e6d0e8d1 c8417511185a23a64149769cd990153f cb4f929b19b33cef883c8cd906f8712f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital Universidad de Cartagena |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814214022631784448 |
spelling |
Yasnot Acosta, María FernandaTovar Acero, Catalina2022-07-28T13:57:31Z2022-07-28T13:57:31Z2021https://hdl.handle.net/11227/15502http://dx.doi.org/10.57799/11227/144En el contexto fisiopatológico de las infecciones mediadas por Plasmodium se ha documentado que la respuesta mediada por citoquinas proinflamatorias o antiinflamatorias contribuyen a la eliminación del parásito; sin embargo, una respuesta inmunológica exacerbada que puede favorecer el desarrollo de cuadros complicados de la enfermedad. En los últimos años ha sido estudiado el papel de las citoquinas en la patogénesis de la malaria, así como su rol como biomarcadores capaces de pronosticar el desarrollo una complicación en pacientes que padecen esta enfermedad. Disponer de un biomarcador con estas características, es un insumo para generar herramientas diagnósticas que permitan de manera temprana dar un mejor enfoque clínico y terapéutico al paciente, por otra parte, es importante generar información que contribuya al conocimiento de la fisiopatología en las infecciones por Plasmodium vivax. Este estudio tuvo como finalidad evaluar del perfil de citoquinas de monocitos, linfocitosTh1 y linfocitos Treg en la malaria complicada por Plasmodium vivax en una zona endémica para la enfermedad en el noreste de Colombia. Se vincularon 156 individuos, conformando tres grupos de estudio, pacientes con malaria complicada, malaria no complicada y controles sanos. La trombocitopenia, la hipoglicemia, la disfunción hepática y renal fueron las complicaciones más frecuentes observadas en la malaria por P. vivax en la población de estudio. La evaluación de las citoquinas derivadas de los monocitos, Th1 y Treg, permitió identificar que la concentración plasmática de IL-6, IL-10 y IFN-γ marca un perfil diferenciador entre pacientes complicados y no complicados, la concentración aumentada de estas citoquinas mostró correlaciones con manifestaciones complicadas como la trombocitopenia severa, hipoglicemia, alteraciones hepáticas y renales. Adicionalmente, IL-6 mostró potencial para pronosticar el desarrollo de complicaciones en pacientes con infección por P. vivax. El TGF-β se postula como una citoquina moduladora de la inflamación en la infección por P. vivax, se encontró una mayor concentración de esta citoquina en el grupo control y en pacientes no complicados; sin embargo, las células Treg parecen estar suprimidas en pacientes complicados favoreciendo un ambiente proinflamatorio de citoquinas como IFN-γ e IL-6, que media las complicaciones observadas en los pacientes. El papel de la IL-10 parece estar asociado al desarrollo de complicaciones en la malaria por P. vivax, fue la citoquina con mayor concentración plasmática en pacientes con malaria complicada, y postulamos que la fuente de esta citoquina en el curso de esta infección proviene de fuentes celulares diferentes a Treg. Este es el primer estudio en Colombia que se realiza comparando grupos de pacientes con malaria vivax con diferentes formas clínicas y evalúa el comportamiento de las citoquinas en el curso de las infecciones, estas aproximaciones generan conocimiento de la inmunopatogénesis de este parásito que puede ser explorado en pronóstico de complicaciones o en blancos terapéuticos.DoctoradoDoctor(a) en Medicina Tropicalapplication/pdfspaUniversidad de CartagenaFacultad de MedicinaCartagena de IndiasDoctorado en Medicina TropicalDerechos Reservados - Universidad de Cartagena, 2021https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)http://purl.org/coar/access_right/c_abf2Evaluación del perfil de citoquinas de monocitos, Th1 y Treg en malaria complicada por Plasmodium vivaxTrabajo de grado - Doctoradoinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06Textinfo:eu-repo/semantics/doctoralThesishttps://purl.org/redcol/resource_type/TDhttp://purl.org/coar/version/c_970fb48d4fbd8a85MalariaParásito de la malariaPlasmodiumMalaria - EpidemiologiaAbbas, A. K., Lichtman, A. H., & Pillai, S. (2015). Inmunología celular y molecular: Elsevier.Abbas, A. K., Trotta, E., Simeonov, D. R., Marson, A., & Bluestone, J. A. (2018). Revisiting IL-2: biology and therapeutic prospects. Science immunology, 3(25).S., Kusi, K. A., Ofori, M. F., Tetteh, J. K., Amoako-Sakyi, D., Goka, B. Q., . . . Dodoo, D. (2013). High plasma levels of soluble intercellular adhesion molecule (ICAM)-1 are associated with cerebral malaria. PLoS ONE, 8(12), e84181. doi:10.1371/journal.pone.0084181Amino, R., Thiberge, S., Martin, B., Celli, S., Shorte, S., Frischknecht, F., & Ménard, R. (2006). Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nature medicine, 12(2), 220.Andrade, B. B., & Barral-Netto, M. (2011). Biomarkers for susceptibility to infection and disease severity in human malaria. Mem Inst Oswaldo Cruz, 106 Suppl 1, 70-78.Annunziato, F., & Romagnani, S. (2016). Th1 Cells. In M. J. H. Ratcliffe (Ed.), Encyclopedia of Immunobiology (pp. 287-293). Oxford: Academic Press.Anstey, N. M., Russell, B., Yeo, T. W., & Price, R. N. (2009). The pathophysiology of vivax malaria. Trends Parasitol, 25(5), 220-227. doi:https://doi.org/10.1016/j.pt.2009.02.003Antinori, S., Galimberti, L., Milazzo, L., & Corbellino, M. (2012). Biology of human malaria plasmodia including Plasmodium knowlesi. Mediterranean journal of hematology and infectious diseases, 4(1), e2012013-e2012013. doi:10.4084/MJHID.2012.013Ashley, E. A., Phyo, A. P., & Woodrow, C. J. (2018). Malaria. The Lancet, 391(10130), 1608-1621.Baer, K., Roosevelt, M., Clarkson Jr, A. B., Van Rooijen, N., Schnieder, T., & Frevert, U. (2007). Kupffer cells are obligatory for Plasmodium yoelii sporozoite infection of the liver. Cellular microbiology, 9(2), 397-412.Baran, P., Hansen, S., Waetzig, G. H., Akbarzadeh, M., Lamertz, L., Huber, H. J., . . . Scheller, J. (2018). The balance of interleukin (IL)-6, IL-6·soluble IL-6 receptor (sIL-6R), and IL-6·sIL-6R·sgp130 complexes allows simultaneous classic and trans-signaling. The Journal of biological chemistry, 293(18), 6762-6775. doi:10.1074/jbc.RA117.001163Calzascia, T., Pellegrini, M., Hall, H., Sabbagh, L., Ono, N., Elford, A. R., . . . Ohashi, P. S. (2007). TNF-α is critical for antitumor but not antiviral T cell immunity in mice. The Journal of Clinical Investigation, 117(12), 3833-3845. doi:10.1172/JCI32567Carty, S. A., Riese, M. J., & Koretzky, G. A. (2018). Chapter 21 - T-Cell Immunity. In R. Hoffman, E. J. Benz, L. E. Silberstein, H. E. Heslop, J. I. Weitz, J. Anastasi, M. E. Salama, & S. A. Abutalib (Eds.), Hematology (Seventh Edition) (pp. 221-239): Elsevier.Cowman, A. F., Berry, D., & Baum, J. (2012). The cellular and molecular basis for malaria parasite invasion of the human red blood cell. J Cell Biol, 198(6), 961- 971. doi:10.1083/jcb.201206112Cowman, A. F., Healer, J., Marapana, D., & Marsh, K. (2016). Malaria: Biology and Disease. Cell, 167(3), 610-624. doi:https://doi.org/10.1016/j.cell.2016.07.055Cox-Singh, J., Hiu, J., Lucas, S. B., Divis, P. C., Zulkarnaen, M., Chandran, P., . . . Krishna, S. (2010). Severe malaria - a case of fatal Plasmodium knowlesi infection with post-mortem findings: a case report. Malar J, 9, 10. doi:10.1186/1475-2875-9-10Cyktor, J. C., & Turner, J. (2011). Interleukin-10 and immunity against prokaryotic and eukaryotic intracellular pathogens. Infection and immunity, 79(8), 2964-2973.Choy, E., & Rose-John, S. (2017). Interleukin-6 as a multifunctional regulator: inflammation, immune response, and fibrosis. Journal of Scleroderma and Related Disorders, 2(2_suppl), S1-S5Dembic, Z. (2015a). Chapter 1 - Introduction—Common Features About Cytokines. In Z. Dembic (Ed.), The Cytokines of the Immune System (pp. 1-16). Amsterdam: Academic Press.Dembic, Z. (2015b). Chapter 6 Cytokines of the Immune System Interleukins The Cytokines of the Immune System (pp. 143-239).Dunst, J., Kamena, F., & Matuschewski, K. (2017b). Cytokines and Chemokines in Cerebral Malaria Pathogenesis. Frontiers in Cellular and Infection Microbiology, 7, 324-324. doi:10.3389/fcimb.2017.00324Dups, J. N., Pepper, M., & Cockburn, I. A. (2014). Antibody and B cell responses to Plasmodium sporozoites. Front Microbiol, 5, 625. doi:10.3389/fmicb.2014.00625Espinoza, V. E., & Emmady, P. D. (2020). Histology, Monocytes. StatPearls [Internet].Gómez Marrugo, D. C., & Moneriz Pretell, C. E. (2013). Perfil de citoquinas y anticuerpos en respuesta a la infección por Plasmodium vivax en una población del sur de Bolívar, Colombia. Universidad de Cartagena.Griffin, D. E. (2008). Cytokines and Chemokines. In B. W. J. Mahy & M. H. V. Van Regenmortel (Eds.), Encyclopedia of Virology (Third Edition) (pp. 620-624). Oxford: Academic Press.Guzmán Flores, J. M., & Portales Pérez, D. P. (2013). Mecanismos de supresión de las células T reguladoras (Treg).Harbour, S. N., DiToro, D. F., Witte, S. J., Zindl, C. L., Gao, M., Schoeb, T. R., . . . Weaver, C. T. (2020). TH17 cells require ongoing classic IL-6 receptor signaling to retain transcriptional and functional identity. Sci Immunol, 5(49), eaaw2262Hojo-Souza, N. S., Pereira, D. B., de Souza, F. S. H., de Oliveira Mendes, T. A., Cardoso, M. S., Tada, M. S., . . . Bueno, L. L. (2017). On the cytokine/chemokine network during Plasmodium vivax malaria: new insights to understand the disease. Malaria journal, 16(1), 1-10.Hori, S. (2014). Lineage stability and phenotypic plasticity of Foxp3+ regulatory T cells. Immunol Rev, 259(1), 159-172.Horiguchi, M., Ota, M., & Rifkin, D. B. (2012). Matrix control of transforming growth factor-β function. The Journal of Biochemistry, 152(4), 321-329. doi:10.1093/jb/mvs089INS. (2010b). Guía para Atención Clínica Integral del paciente con malaria. Bogotá.INS. (2020). Semana epidemiológica 53, 27 de dic. de 2020 al 2 de enero de 2021. Retrieved from https://www.ins.gov.co/buscadoreventos/BoletinEpidemiologico/2020_Boletin_epidemiologico_semana_53.pdfJorgovanovic, D., Song, M., Wang, L., & Zhang, Y. (2020). Roles of IFN-γ in tumor progression and regression: a review. Biomarker Research, 8(1), 49. doi:10.1186/s40364-020-00228-xKak, G., Raza, M., & Tiwari, B. K. (2018). Interferon-gamma (IFN-γ): exploring its implications in infectious diseases. Biomolecular concepts, 9(1), 64-79.Kaneko, N., Kurata, M., Yamamoto, T., Morikawa, S., & Masumoto, J. (2019). The role of interleukin-1 in general pathology. Inflammation and regeneration, 39(1), 1-16.Kapellos, T. S., Bonaguro, L., Gemünd, I., Reusch, N., Saglam, A., Hinkley, E. R., & Schultze, J. L. (2019). Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases. Frontiers in Immunology, 10(2035). doi:10.3389/fimmu.2019.02035Krishnegowda, G., Hajjar, A. M., Zhu, J., Douglass, E. J., Uematsu, S., Akira, S., . . . Gowda, D. C. (2005). Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. Journal of Biological Chemistry, 280(9), 8606-8616.Krumm, B., Xiang, Y., & Deng, J. (2014). Structural biology of the IL-1 superfamily: key cytokines in the regulation of immune and inflammatory responses. Protein science : a publication of the Protein Society, 23(5), 526-538. doi:10.1002/pro.2441Kubiczkova, L., Sedlarikova, L., Hajek, R., & Sevcikova, S. (2012). TGF-β–an excellent servant but a bad master. Journal of translational medicine, 10(1), 1-24.Kumar, R., & Saravu, K. (2017). Severe vivax malaria: a prospective exploration at a tertiary healthcare centre in Southwestern India. Pathogens and global health, 111(3), 148-160. doi:10.1080/20477724.2017.1309342Li, C., Jiang, P., Wei, S., Xu, X., & Wang, J. (2020). Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Molecular Cancer, 19(1), 116. doi:10.1186/s12943-020-01234-1Li, M. O., & Flavell, R. A. (2008). TGF-β: a master of all T cell trades. Cell, 134(3), 392- 404.Marsh, K., & Kinyanjui, S. (2006). Immune effector mechanisms in malaria. Parasite Immunol, 28(1-2), 51-60. doi:10.1111/j.1365-3024.2006.00808.xMartínez-Morillo, M., Grados, D., Tejera, B., & Marqués, A. O. (2011). Inhibidor del receptor de la interleucina-6 en el tratamiento de la artritis reumatoide: seguridad y dosificación del tocilizumab. Seminarios de la Fundación Española de Reumatología, 12(2), 57-60.Mosser, D. M., & Zhang, X. (2008). Interleukin-10: new perspectives on an old cytokine. Immunol Rev, 226, 205-218. doi:10.1111/j.1600-065X.2008.00706.xNaing, C., Whittaker, M. A., Nyunt Wai, V., & Mak, J. W. (2014). Is Plasmodium vivax Malaria a Severe Malaria?: A Systematic Review and Meta-Analysis. PLoS neglected tropical diseases, 8(8), e3071. doi:10.1371/journal.pntd.0003071Nie, C. Q., Bernard, N. J., Norman, M. U., Amante, F. H., Lundie, R. J., Crabb, B. S., . . . Schofield, L. (2009). IP-10-mediated T cell homing promotes cerebral inflammation over splenic immunity to malaria infection. PLoS pathogens, 5(4), e1000369.Offeddu, V., Thathy, V., Marsh, K., & Matuschewski, K. (2012). Naturally acquired immune responses against Plasmodium falciparum sporozoites and liver infection. International Journal for Parasitology, 42(6), 535-548.Oh, S. A., & Li, M. O. (2013). TGF-β: guardian of T cell function. Journal of immunology (Baltimore, Md. : 1950), 191(8), 3973-3979. doi:10.4049/jimmunol.1301843Oliveira-Ferreira, J., Lacerda, M. V. G., Brasil, P., Ladislau, J. L. B., Tauil, P. L., & Daniel-Ribeiro, C. T. (2010). Malaria in Brazil: an overview. Malaria journal, 9(1), 115. doi:10.1186/1475-2875-9-115Ong'echa, J. M., Davenport, G. C., Vulule, J. M., Hittner, J. B., & Perkins, D. J. (2011). Identification of inflammatory biomarkers for pediatric malarial anemia severity using novel statistical methods. Infect Immun, 79(11), 4674-4680. doi:10.1128/IAI.05161-11OPS/OMS. (2019). Actualización Epidemiológica: Aumento de malaria en las Américas, 18 de noviembre de 2019, Washington, D.C.Osii, R. S., Otto, T. D., Garside, P., Ndungu, F. M., & Brewer, J. M. (2020). The Impact of Malaria Parasites on Dendritic Cell–T Cell Interaction. Frontiers in Immunology, 11, 1597.Ouyang, W., & O’Garra, A. (2019). IL-10 family cytokines IL-10 and IL-22: from basic science to clinical translation. Immunity, 50(4), 871-891.Peralta-Zaragoza, O., Lagunas-Martínez, A., & Madrid-Marina, V. (2001). Factor de crecimiento transformante beta-1: estructura, función y mecanismos de regulación en cáncer. Salud Pública de México, 43, 340-351.Polley, S. D., Mwangi, T., Kocken, C. H., Thomas, A. W., Dutta, S., Lanar, D. E., . . . Mwambingu, G. (2004). Human antibodies to recombinant protein constructs of Plasmodium falciparum Apical Membrane Antigen 1 (AMA1) and their associations with protection from malaria. Vaccine, 23(5), 718-728.Raballah, E., Kempaiah, P., Karim, Z., Orinda, G. O., Otieno, M. F., Perkins, D. J., & Ong'echa, J. M. (2017). CD4 T-cell expression of IFN-gamma and IL-17 in pediatric malarial anemia. PLoS ONE, 12(4), e0175864. doi:10.1371/journal.pone.0175864Raphael, I., Nalawade, S., Eagar, T. N., & Forsthuber, T. G. (2015). T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine, 74(1), 5-17. doi:10.1016/j.cyto.2014.09.011Riley, E. M., & Stewart, V. A. (2013). Immune mechanisms in malaria: new insights in vaccine development. Nature medicine, 19(2), 168.Romagnani, S. (2014). T cell subpopulations History of Allergy (Vol. 100, pp. 155-164): Karger PublishersRose-John, S. (2012). IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. International journal of biological sciences, 8(9), 1237-1247. doi:10.7150/ijbs.4989Ross, S. H., & Cantrell, D. A. (2018). Signaling and Function of Interleukin-2 in T Lymphocytes. Annual Review of Immunology, 36(1), 411-433. doi:10.1146/annurev-immunol-042617-053352Sampath, P., Moideen, K., Ranganathan, U. D., & Bethunaickan, R. (2018). Monocyte subsets: phenotypes and function in tuberculosis infection. Frontiers in Immunology, 9, 1726.Saraiva, M., & O'garra, A. (2010). The regulation of IL-10 production by immune cells. Nature reviews immunology, 10(3), 170-181.Shaw, T. N., Stewart-Hutchinson, P. J., Strangward, P., Dandamudi, D. B., Coles, J. A., Villegas-Mendez, A., . . . Dustin, M. L. (2015). Perivascular Arrest of CD8+ T Cells Is a Signature of Experimental Cerebral Malaria. PLoS pathogens, 11(11), e1005210. doi:10.1371/journal.ppat.1005210Silva, L. B., dos Santos Neto, A. P., Maia, S. M., dos Santos Guimarães, C., Quidute, I. L., Carvalho, A. d. A., . . . Leão, J. C. (2019). The Role of TNF-α as a Proinflammatory Cytokine in Pathological Processes. The Open Dentistry Journal, 13(1).Su, Z., & Stevenson, M. M. (2002). IL-12 is required for antibody-mediated protective immunity against blood-stage Plasmodium chabaudi AS malaria infection in mice. The Journal of Immunology, 168(3), 1348-1355.Sypniewska, P., Duda, J. F., Locatelli, I., Althaus, C. R., Althaus, F., & Genton, B. (2017). Clinical and laboratory predictors of death in African children with features of severe malaria: a systematic review and meta-analysis. BMC Medicine, 15(1), 147. doi:10.1186/s12916-017-0906-5Tchinda, V. H., Tadem, A. D., Tako, E. A., Tene, G., Fogako, J., Nyonglema, P., . . . Leke, R. G. (2007). Severe malaria in Cameroonian children: correlation between plasma levels of three soluble inducible adhesion molecules and TNF-alpha. Acta Trop, 102(1), 20-28. doi:10.1016/j.actatropica.2007.02.011Urschel, K., & Cicha, I. (2015). TNF-α in the cardiovascular system: from physiology to therapy. Internat J Interferon Cytokine Med Res, 7, 9-25.Vásquez, A. M., & Tobón, A. (2012). Mecanismos de patogenia en la malaria por Plasmodium falciparum. Biomédica, 32, 106-120.Vignali, D. A., Collison, L. W., & Workman, C. J. (2008). How regulatory T cells work. Nature reviews immunology, 8(7), 523-532.Villegas-Mendez, A., Greig, R., Shaw, T. N., de Souza, J. B., Gwyer Findlay, E., Stumhofer, J. S., . . . Couper, K. N. (2012). IFN-gamma-producing CD4+ T cells promote experimental cerebral malaria by modulating CD8+ T cell accumulation within the brain. J Immunol, 189(2), 968-979. doi:10.4049/jimmunol.1200688Wei, X., Zhang, J., Gu, Q., Huang, M., Zhang, W., Guo, J., & Zhou, X. (2017). Reciprocal Expression of IL-35 and IL-10 Defines Two Distinct Effector Treg Subsets that Are Required for Maintenance of Immune Tolerance. Cell Reports, 21(7), 1853-1869. doi:https://doi.org/10.1016/j.celrep.2017.10.090WHO. (2015). Guidelines for the treatment of malaria: World Health Organization.WHO. (2020). World malaria report 2020: 20 years of global progress and challenges.Wickramasinghe, S. N., Looareesuwan, S., Nagachinta, B., & White, N. J. (1989). Dyserythropoiesis and ineffective erythropoiesis in Plasmodium vivax malaria. Br J Haematol, 72(1), 91-99.Yazdani, S. S., Mukherjee, P., Chauhan, V. S., & Chitnis, C. E. (2006). Immune responses to asexual blood-stages of malaria parasites. Curr Mol Med, 6(2), 187- 203. doi:10.2174/156652406776055212Yoshinaga, K., Obata, H., Jurukovski, V., Mazzieri, R., Chen, Y., Zilberberg, L., . . . Todorovic, V. (2008). Perturbation of transforming growth factor (TGF)-ß1 association with latent TGF-β binding protein yields inflammation and tumors. Proceedings of the National Academy of Sciences, 105(48), 18758-18763.Zhang, J.-M., & An, J. (2007). Cytokines, inflammation, and pain. International anesthesiology clinics, 45(2), 27-37. doi:10.1097/AIA.0b013e318034194eZheng, H., Tan, Z., & Xu, W. (2014). Immune Evasion Strategies of Pre-Erythrocytic Malaria Parasites. Mediators of Inflammation, 2014, 6. doi:10.1155/2014/362605 stance, and pathophysiology of Plasmodium vivax malaria. Journal of vector borne diseases, 55(1), 1.Dhangadamajhi, G., Panigrahi, S., Roy, S., & Tripathy, S. (2019). Effect of Plasmodium falciparum infection on blood parameters and their association with clinical severity in adults of Odisha, India. Acta tropica, 190, 1-8.Douglas, N. M., Anstey, N. M., Buffet, P. A., Poespoprodjo, J. R., Yeo, T. W., White, N. J., & Price, R. N. (2012). The anaemia of Plasmodium vivax malaria. Malaria journal, 11(1), 135.Fazil, A., Vernekar, P. V., Geriani, D., Pant, S., Senthilkumaran, S., Anwar, N., . . . Menezes, R. G. (2013). Clinical profile and complication of malaria hepatopathy. Journal of Infection and Public Health, 6(5), 383-388.Howes, R. E., Battle, K. E., Mendis, K. N., Smith, D. L., Cibulskis, R. E., Baird, J. K., & Hay, S. I. (2016). Global epidemiology of Plasmodium vivax. The American journal of tropical medicine and hygiene, 95(6_Suppl), 15-34.Kumar, B., Mitra, J. K., Rao, R., Kumar, A., Kumar, M., & Kumar, A. (2017). A Study on Incidence, Clinical Profile and Prognosis of Falciparum Malaria in Jharkhand. International Journal of Contemporary Medical Research, 4(7).Lacerda, M. V., Fragoso, S. C., Alecrim, M. G., Alexandre, M. A., Magalhaes, B. M., Siqueira, A. M., . . . Bassat, Q. (2012). Postmortem characterization of patients with clinical diagnosis of Plasmodium vivax malaria: to what extent does this parasite kill? Clin Infect Dis, 55(8), e67-74. doi:10.1093/cid/cis615Lacerda, M. V. G., Mourão, M. P. G., Coelho, H. C. C., & Santos, J. B. (2011). Thrombocytopenia in malaria: who cares? Memorias do Instituto Oswaldo Cruz, 106, 52-63.Lampah, D. A., Yeo, T. W., Malloy, M., Kenangalem, E., Douglas, N. M., Ronaldo, D., . . . Price, R. N. (2014). Severe Malarial Thrombocytopenia: A Risk Factor for Mortality in Papua, Indonesia. The Journal of infectious diseases, 211(4), 623- 634. doi:10.1093/infdis/jiu487Madrid, L., Lanaspa, M., Maculuve, S. A., & Bassat, Q. (2015). Malaria-associated hypoglycaemia in children. Expert review of anti-infective therapy, 13(2), 267-277.Martínez-Salazar, E. L., & Tobón-Castaño, A. (2014). Platelet profile is associated with clinical complications in patients with vivax and falciparum malaria in Colombia. Revista da Sociedade Brasileira de Medicina Tropical, 47, 341-349.Milner, D. A., Jr. (2018). Malaria Pathogenesis. Cold Spring Harbor perspectives in medicine, 8(1), a025569. doi:10.1101/cshperspect.a025569Miranda-Arboleda, A. F., Martínez-Salazar, E. L., & Tobón-Castano, A. (2014). El riñón en la malaria: de la patogénesis a las manifestaciones clínicas. Infectio, 18(3), 120-128.Mukhtar, M. M., Eisawi, O. A., Amanfo, S. A., Elamin, E. M., Imam, Z. S., Osman, F. M., & Hamed, M. E. (2019). Plasmodium vivax cerebral malaria in an adult patient in Sudan. Malaria journal, 18(1), 1-3.Naqvi, R. (2015). Plasmodium vivax causing acute kidney injury: a foe less addressed. Pakistan journal of medical sciences, 31(6), 1472.Pinzon, M. A., Pineda, J. C., Rosso, F., Shinchi, M., & Bonilla-Abadia, F. (2013). Plasmodium vivax cerebral malaria complicated with venous sinus thrombosis in Colombia. Asian Pac J Trop Med, 6(5), 413-415. doi:10.1016/s1995- 7645(13)60050-4Poles, N., Virga, E., Variego, M., Arosio, A., Baldomá, F., Siccardi, M., . . . Cera, D. (2012). Ictericia y colestasis.Pulford, J., Hetzel, M. W., Bryant, M., Siba, P. M., & Mueller, I. (2011). Reported reasons for not using a mosquito net when one is available: a review of the published literature. Malaria journal, 10(1), 83. doi:10.1186/1475-2875-10-83Punnath, K., Dayanand, K. K., Chandrashekar, V. N., Achur, R. N., Kakkilaya, S. B., Ghosh, S. K., . . . Gowda, D. (2019). Association between Inflammatory Cytokine Levels and Thrombocytopenia during Plasmodium falciparum and P. vivax Infections in South-Western Coastal Region of India. Malaria research and treatment, 2019.Rahimi, B. A., Thakkinstian, A., White, N. J., Sirivichayakul, C., Dondorp, A. M., & Chokejindachai, W. (2014). Severe vivax malaria: a systematic review and metaanalysis of clinical studies since 1900. Malaria journal, 13(1), 481. doi:10.1186/1475-2875-13-481Rivera-Correa, J., Conroy, A. L., Opoka, R. O., Batte, A., Namazzi, R., Ouma, B., . . Rodriguez, A. (2019). Autoantibody levels are associated with acute kidney injury, anemia and post-discharge morbidity and mortality in Ugandan children with severe malaria. Scientific Reports, 9(1), 14940. doi:10.1038/s41598-019-51426-zRivera-Correa, J., Pardo-Ruge, M., Gonzalez, S., & Rodriguez, A. (2017). Autoreactive T-bet+ B-cells promote pathological anemia during infection: Am Assoc Immnol.Rivera-Correa, J., Yasnot-Acosta, M. F., Tovar, N. C., Velasco-Pareja, M. C., Easton, A., & Rodriguez, A. (2020). Atypical memory B-cells and autoantibodies correlate with anemia during Plasmodium vivax complicated infections. PLoS neglected tropical diseases, 14(7), e0008466.Rodríguez, J. C. P., Uribe, G. Á., Araújo, R. M., Narváez, P. C., & Valencia, S. H. (2011). Epidemiology and control of malaria in Colombia. Memorias do Instituto Oswaldo Cruz, 106 Suppl 1(Suppl 1), 114-122.Sarkar, S., & Bhattacharya, P. (2008). Cerebral malaria caused by Plasmodium vivax in adult subjects. Indian J Crit Care Med, 12(4), 204-205. doi:10.4103/0972- 5229.45084Shwetha, M. (2014). Correlation of bilirubin with liver enzymes in patients of vivax malaria. Journal of Evolution of Medical and Dental Sciences, 3(60), 13402- 13407.Sinha, A., Singh, G., Bhat, A. S., Mohapatra, S., Gulati, A., Hari, P., . . . Bagga, A. (2013). Thrombotic microangiopathy and acute kidney injury following vivax malaria. Clinical and experimental nephrology, 17(1), 66-72Valecha, N., Pinto, R. G., Turner, G. D., Kumar, A., Rodrigues, S., Dubhashi, N. G., . . . Baird, J. K. (2009). Histopathology of fatal respiratory distress caused by Plasmodium vivax malaria. Am J Trop Med Hyg, 81(5), 758-762. doi:10.4269/ajtmh.2009.09-0348Wassmer, S. C., Taylor, T. E., Rathod, P. K., Mishra, S. K., Mohanty, S., ArevaloHerrera, M., . . . Smith, J. D. (2015). Investigating the Pathogenesis of Severe Malaria: A Multidisciplinary and Cross-Geographical Approach. The American journal of tropical medicine and hygiene, 93(3 Suppl), 42-56. doi:10.4269/ajtmh.14-0841WHO. (2017). World malaria report 2017. Geneva: World Health Organization. Retrieved from http://apps.who.int/iris/bitstream/10665/259492/1/9789241565523- eng.pdf?ua=1WHO. (2019). World malaria report 2019.Yeo, T. W., Lampah, D. A., Tjitra, E., Piera, K., Gitawati, R., Kenangalem, E., . . . Anstey, N. M. (2010). Greater endothelial activation, Weibel-Palade body release and host inflammatory response to Plasmodium vivax, compared with Plasmodium falciparum: a prospective study in Papua, Indonesia. The Journal of infectious diseases, 202(1), 109-112.Andrade, B. B., Rocha, B. C., Reis-Filho, A., Camargo, L. M. A., Tadei, W. P., Moreira, L. A., . . . Barral-Netto, M. (2009). Anti-Anopheles darlingi saliva antibodies as marker of Plasmodium vivax infection and clinical immunity in the Brazilian Amazon. Malaria journal, 8, 121-121. doi:10.1186/1475-2875-8-121Arevalo-Herrera, M., Lopez-Perez, M., Medina, L., Moreno, A., Gutierrez, J. B., & Herrera, S. (2015). Clinical profile of Plasmodium falciparum and Plasmodium vivax infections in low and unstable malaria transmission settings of Colombia. Malar J, 14, 154. doi:10.1186/s12936-015-0678-3Arévalo-Herrera, M., Rengifo, L., Lopez-Perez, M., Arce-Plata, M. I., García, J., & Herrera, S. (2017). Complicated malaria in children and adults from three settings of the Colombian Pacific Coast: a prospective study. PloS one, 12(9), e0185435.Baird, J. K. (2013). Evidence and Implications of Mortality Associated with Acute <span class="named-content genus-species" id="namedcontent-1">Plasmodium vivax</span> Malaria. Clinical Microbiology Reviews, 26(1), 36. doi:10.1128/CMR.00074-12Bartoloni, A., & Zammarchi, L. (2012). Clinical aspects of uncomplicated and severe malaria. Mediterranean journal of hematology and infectious diseases, 4(1).Castro-Gomes, T., Mourão, L. C., Melo, G. C., Monteiro, W. M., Lacerda, M. V., & Braga, É. M. (2014). Potential immune mechanisms associated with anemia in Plasmodium vivax malaria: a puzzling question. Infection and immunity, IAI. 01972-01914.Cruz, L. A. B., Barral-Netto, M., & Andrade, B. B. (2018). Distinct inflammatory profile underlies pathological increases in creatinine levels associated with Plasmodium vivax malaria clinical severity. PLoS neglected tropical diseases, 12(3), e0006306-e0006306. doi:10.1371/journal.pntd.0006306Chukwuocha, U. M., Dozie, I., Onwuliri, C., Ukaga, C., Nwoke, B., Nwankwo, B., . . . Udujih, O. (2010). Perceptions on the use of insecticide treated nets in parts of the Imo River Basin, Nigeria: implications for preventing malaria in pregnancy. African journal of reproductive health, 14(1).Dayananda, K. K., Achur, R. N., & Gowda, D. C. (2018). Epidemiology, drug resistance, and pathophysiology of Plasmodium vivax malaria. Journal of vector borne diseases, 55(1), 1.Dhangadamajhi, G., Panigrahi, S., Roy, S., & Tripathy, S. (2019). Effect of Plasmodium falciparum infection on blood parameters and their association with clinical severity in adults of Odisha, India. Acta tropica, 190, 1-8.Dhangadamajhi, G., Panigrahi, S., Roy, S., & Tripathy, S. (2019). Effect of Plasmodium falciparum infection on blood parameters and their association with clinical severity in adults of Odisha, India. Acta tropica, 190, 1-8.Douglas, N. M., Anstey, N. M., Buffet, P. A., Poespoprodjo, J. R., Yeo, T. W., White, N. J., & Price, R. N. (2012). The anaemia of Plasmodium vivax malaria. Malaria journal, 11(1), 135.Fazil, A., Vernekar, P. V., Geriani, D., Pant, S., Senthilkumaran, S., Anwar, N., . . . Menezes, R. G. (2013). Clinical profile and complication of malaria hepatopathy. 69 Journal of Infection and Public Health, 6(5), 383-388. doi:https://doi.org/10.1016/j.jiph.2013.04.003Howes, R. E., Battle, K. E., Mendis, K. N., Smith, D. L., Cibulskis, R. E., Baird, J. K., & Hay, S. I. (2016). Global epidemiology of Plasmodium vivax. The American journal of tropical medicine and hygiene, 95(6_Suppl), 15-34INS. (2010). Guía para Atención Clínica Integral del paciente con malaria. Bogotá.INS. (2020). Semana epidemiológica 53, 27 de dic. de 2020 al 2 de enero de 2021. Retrieved from https://www.ins.gov.co/buscadoreventos/BoletinEpidemiologico/2020_Boletin_epidemiologico_semana_53.pdfKumar, B., Mitra, J. K., Rao, R., Kumar, A., Kumar, M., & Kumar, A. (2017). A Study on Incidence, Clinical Profile and Prognosis of Falciparum Malaria in Jharkhand. International Journal of Contemporary Medical Research, 4(7).Lacerda, M. V. G., Mourão, M. P. G., Coelho, H. C. C., & Santos, J. B. (2011). Thrombocytopenia in malaria: who cares? Memorias do Instituto Oswaldo Cruz, 106, 52-63.Lacerda, M. V. G., Mourão, M. P. G., Coelho, H. C. C., & Santos, J. B. (2011). Thrombocytopenia in malaria: who cares? Memorias do Instituto Oswaldo Cruz, 106, 52-63.Kumar, B., Mitra, J. K., Rao, R., Kumar, A., Kumar, M., & Kumar, A. (2017). A Study on Incidence, Clinical Profile and Prognosis of FalcipLacerda, M. V. G., Mourão, M. P. G., Coelho, H. C. C., & Santos, J. B. (2011). Thrombocytopenia in malaria: who cares? Memorias do Instituto Oswaldo Cruz, 106, 52-63.Lampah, D. A., Yeo, T. W., Malloy, M., Kenangalem, E., Douglas, N. M., Ronaldo, D., . . . Price, R. N. (2014). Severe Malarial Thrombocytopenia: A Risk Factor for Mortality in Papua, Indonesia. The Journal of infectious diseases, 211(4), 623- 634. doi:10.1093/infdis/jiu487Madrid, L., Lanaspa, M., Maculuve, S. A., & Bassat, Q. (2015). Malaria-associated hypoglycaemia in children. Expert review of anti-infective therapy, 13(2), 267-277.Martínez-Salazar, E. L., & Tobón-Castaño, A. (2014). Platelet profile is associated with clinical complications in patients with vivax and falciparum malaria in Colombia. Revista da Sociedade Brasileira de Medicina Tropical, 47, 341-349.Milner, D. A., Jr. (2018). Malaria Pathogenesis. Cold Spring Harbor perspectives in medicine, 8(1), a025569. doi:10.1101/cshperspect.a025569Miranda-Arboleda, A. F., Martínez-Salazar, E. L., & Tobón-Castano, A. (2014). El riñón en la malaria: de la patogénesis a las manifestaciones clínicas. Infectio, 18(3), 120-128.Mukhtar, M. M., Eisawi, O. A., Amanfo, S. A., Elamin, E. M., Imam, Z. S., Osman, F. M., & Hamed, M. E. (2019). Plasmodium vivax cerebral malaria in an adult patient in Sudan. Malaria journal, 18(1), 1-3.Naqvi, R. (2015). Plasmodium vivax causing acute kidney injury: a foe less addressed. Pakistan journal of medical sciences, 31(6), 1472.Pinzon, M. A., Pineda, J. C., Rosso, F., Shinchi, M., & Bonilla-Abadia, F. (2013). Plasmodium vivax cerebral malaria complicated with venous sinus thrombosis in Colombia. Asian Pac J Trop Med, 6(5), 413-415. doi:10.1016/s1995- 7645(13)60050-4Poles, N., Virga, E., Variego, M., Arosio, A., Baldomá, F., Siccardi, M., . . . Cera, D. (2012). Ictericia y colestasis.Pulford, J., Hetzel, M. W., Bryant, M., Siba, P. M., & Mueller, I. (2011). Reported reasons for not using a mosquito net when one is available: a review of the published literature. Malaria journal, 10(1), 83. doi:10.1186/1475-2875-10-83Punnath, K., Dayanand, K. K., Chandrashekar, V. N., Achur, R. N., Kakkilaya, S. B., Ghosh, S. K., . . . Gowda, D. (2019). Association between Inflammatory Cytokine Levels and Thrombocytopenia during Plasmodium falciparum and P. vivax Infections in South-Western Coastal Region of India. Malaria research and treatment, 2019.Rahimi, B. A., Thakkinstian, A., White, N. J., Sirivichayakul, C., Dondorp, A. M., & Chokejindachai, W. (2014). Severe vivax malaria: a systematic review and metaanalysis of clinical studies since 1900. Malaria journal, 13(1), 481. doi:10.1186/1475-2875-13-481Rivera-Correa, J., Conroy, A. L., Opoka, R. O., Batte, A., Namazzi, R., Ouma, B., . . . Rodriguez, A. (2019). Autoantibody levels are associated with acute kidney injury, anemia and post-discharge morbidity and mortality in Ugandan children with severe malaria. Scientific Reports, 9(1), 14940. doi:10.1038/s41598-019-51426-zRivera-Correa, J., Pardo-Ruge, M., Gonzalez, S., & Rodriguez, A. (2017). Autoreactive T-bet+ B-cells promote pathological anemia during infection: Am Assoc ImmnolRivera-Correa, J., Yasnot-Acosta, M. F., Tovar, N. C., Velasco-Pareja, M. C., Easton, A., & Rodriguez, A. (2020). Atypical memory B-cells and autoantibodies correlate with anemia during Plasmodium vivax complicated infections. PLoS neglected tropical diseases, 14(7), e0008466.Rodríguez, J. C. P., Uribe, G. Á., Araújo, R. M., Narváez, P. C., & Valencia, S. H. (2011). Epidemiology and control of malaria in Colombia. Memorias do Instituto Oswaldo Cruz, 106 Suppl 1(Suppl 1), 114-122.Sarkar, S., & Bhattacharya, P. (2008). Cerebral malaria caused by Plasmodium vivax in adult subjects. Indian J Crit Care Med, 12(4), 204-205. doi:10.4103/0972- 5229.45084Shwetha, M. (2014). Correlation of bilirubin with liver enzymes in patients of vivax malaria. Journal of Evolution of Medical and Dental Sciences, 3(60), 13402- 13407.Sinha, A., Singh, G., Bhat, A. S., Mohapatra, S., Gulati, A., Hari, P., . . . Bagga, A. (2013). Thrombotic microangiopathy and acute kidney injury following vivax malaria. Clinical and experimental nephrology, 17(1), 66-72.Valecha, N., Pinto, R. G., Turner, G. D., Kumar, A., Rodrigues, S., Dubhashi, N. G., . . . Baird, J. K. (2009). Histopathology of fatal respiratory distress caused by Plasmodium vivax malaria. Am J Trop Med Hyg, 81(5), 758-762. doi:10.4269/ajtmh.2009.09-0348Wassmer, S. C., Taylor, T. E., Rathod, P. K., Mishra, S. K., Mohanty, S., ArevaloHerrera, M., . . . Smith, J. D. (2015). Investigating the Pathogenesis of Severe Malaria: A Multidisciplinary and Cross-Geographical Approach. The American journal of tropical medicine and hygiene, 93(3 Suppl), 42-56. doi:10.4269/ajtmh.14-0841WHO. (2015). Guidelines for the treatment of malaria: World Health Organization.WHO. (2017). World malaria report 2017. Geneva: World Health Organization. Retrieved from http://apps.who.int/iris/bitstream/10665/259492/1/9789241565523- eng.pdf?ua=1WHO. (2019). World malaria report 2019.Yeo, T. W., Lampah, D. A., Tjitra, E., Piera, K., Gitawati, R., Kenangalem, E., . . . Anstey, N. M. (2010). Greater endothelial activation, Weibel-Palade body release and host inflammatory response to Plasmodium vivax, compared with Plasmodium falciparum: a prospective study in Papua, Indonesia. The Journal of infectious diseases, 202(1), 109-112.Andrade, B. B., Reis-Filho, A., Souza-Neto, S. M., Clarencio, J., Camargo, L. M., Barral, A., & Barral-Netto, M. (2010). Severe Plasmodium vivax malaria exhibits marked inflammatory imbalance. Malar J, 9, 13. doi:10.1186/1475-2875-9-13Amino, R., Thiberge, S., Martin, B., Celli, S., Shorte, S., Frischknecht, F., & Ménard, R. (2006). Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nature medicine, 12(2), 220.Barber, B. E., William, T., Grigg, M. J., Parameswaran, U., Piera, K. A., Price, R. N., . . . Anstey, N. M. (2015). Parasite biomass-related inflammation, endothelial activation, microvascular dysfunction and disease severity in vivax malaria. PLoS pathogens, 11(1), e1004558-e1004558. doi:10.1371/journal.ppat.1004558Cockburn, I. A., & Zavala, F. (2016). Dendritic cell function and antigen presentation in malaria. Current opinion in immunology, 40, 1-6.da Silva Santos, S., Clark, T. G., Campino, S., Suarez-Mutis, M. C., Rockett, K. A., Kwiatkowski, D. P., & Fernandes, O. (2012). Investigation of host candidate malaria-associated risk/protective SNPs in a Brazilian Amazonian population. PloS one, 7(5), e36692.da Silva Ventura, A. M. R., Fernandes, A. A. M., Zanini, G. M., Pratt-Riccio, L. R., Sequeira, C. G., do Monte, C. R. S., . . . de Souza, J. M. (2018). Clinical and immunological profiles of anaemia in children and adolescents with Plasmodium vivax malaria in the Pará State, Brazilian Amazon. Acta tropica, 181, 122-131.Day, N. P., Hien, T. T., Schollaardt, T., Loc, P. P., Chuong, L. V., Hong Chau, T. T., . . . White, N. J. (1999). The prognostic and pathophysiologic role of pro-and antiinflammatory cytokines in severe malaria. The Journal of infectious diseases, 180(4), 1288-1297.Dhar, S. K., Vishnupriyan, K., Damodar, S., Gujar, S., & Das, M. (2021). IL-6 and IL-10 as predictors of disease severity in COVID-19 patients: results from metaanalysis and regression. Heliyon, 7(2), e06155.Dobaño, C., Bardají, A., Arévalo-Herrera, M., Martínez-Espinosa, F. E., Bôtto-Menezes, C., Padilla, N., . . . Requena, P. (2020). Cytokine signatures of Plasmodium vivax infection during pregnancy and delivery outcomes. PLoS neglected tropical diseases, 14(5), e0008155. doi:10.1371/journal.pntd.0008155Drewry, L. L., & Harty, J. T. (2020). Balancing in a black box: Potential immunomodulatory roles for TGF-β signaling during blood-stage malaria. Virulence, 11(1), 159-169.Dunst, J., Kamena, F., & Matuschewski, K. (2017). Cytokines and Chemokines in Cerebral Malaria Pathogenesis. Frontiers in Cellular and Infection Microbiology, 7(324). doi:10.3389/fcimb.2017.00324Gazzinelli, R. T., Kalantari, P., Fitzgerald, K. A., & Golenbock, D. T. (2014). Innate sensing of malaria parasites. Nature Reviews Immunology, 14(11), 744.Gonçalves, R. M., Scopel, K. K. G., Bastos, M. S., & Ferreira, M. U. (2012). Cytokine balance in human malaria: does Plasmodium vivax elicit more inflammatory responses than Plasmodium falciparum? PloS one, 7(9), e44394-e44394. doi:10.1371/journal.pone.0044394Hafalla, J. C., Silvie, O., & Matuschewski, K. (2011). Cell biology and immunology of malaria. Immunological reviews, 240(1), 297-316.Han, H., Ma, Q., Li, C., Liu, R., Zhao, L., Wang, W., . . . Xia, Y. (2020). Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect, 9(1), 1123-1130. doi:10.1080/22221751.2020.1770129Hanisch, B. R., Bangirana, P., Opoka, R. O., Park, G. S., & John, C. C. (2015). Thrombocytopenia May Mediate Disease Severity in Plasmodium falciparum Malaria Through Reduced Transforming Growth Factor Beta-1 Regulation of Proinflammatory and Anti-inflammatory Cytokines. The Pediatric infectious disease journal, 34(7), 783-788. doi:10.1097/INF.0000000000000729Hojo-Souza, N. S., Pereira, D. B., de Souza, F. S. H., de Oliveira Mendes, T. A., Cardoso, M. S., Tada, M. S., . . . Bueno, L. L. (2017). On the cytokine/chemokine network during Plasmodium vivax malaria: new insights to understand the disease. Malaria journal, 16(1), 1-10.Hugosson, E., Montgomery, S., Premji, Z., Troye‑Blomberg, M., & Björkman, A. (2004). Higher IL‑10 levels are associated with less effective clearance of Plasmodium falciparum parasites. Parasite Immunol, 26(3), 111-117.Krishnegowda, G., Hajjar, A. M., Zhu, J., Douglass, E. J., Uematsu, S., Akira, S., . . . Gowda, D. C. (2005). Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. Journal of Biological Chemistry, 280(9), 8606-8616.Longley, R. J., Sattabongkot, J., & Mueller, I. (2016). Insights into the naturally acquired immune response to Plasmodium vivax malaria. Parasitology, 143(2), 154.Luty, A. J., Perkins, D. J., Lell, B., Schmidt-Ott, R., Lehman, L. G., Luckner, D., . . . Schmid, D. (2000). Low interleukin-12 activity in severe Plasmodium falciparum malaria. Infection and immunity, 68(7), 3909-3915.McCall, M. B., & Sauerwein, R. W. (2010). Interferon‑γ—central mediator of protective immune responses against the pre‑erythrocytic and blood stage of malaria. Journal of leukocyte biology, 88(6), 1131-1143.Medina, T. S., Costa, S. P., Oliveira, M. D., Ventura, A. M., Souza, J. M., Gomes, T. F., . . . Cunha, M. G. (2011). Increased interleukin-10 and interferon-γ levels in Plasmodium vivax malaria suggest a reciprocal regulation which is not altered by IL-10 gene promoter polymorphism. Malaria journal, 10(1), 1-10.Miller, J. L., Sack, B. K., Baldwin, M., Vaughan, A. M., & Kappe, S. H. (2014). Interferonmediated innate immune responses against malaria parasite liver stages. Cell reports, 7(2), 436-447.Miyara, M., & Sakaguchi, S. (2007). Natural regulatory T cells: mechanisms of suppression. Trends in molecular medicine, 13(3), 108-116.Mohapatra, P., Sarangi, A., Sarangi, A. K., Dalai, R., & Sahoo, D. (2014). Sequential serum cytokine levels of TNF-alpha, IL-4 and IL-12 are associated with prognosis in Plasmodium falciparum malaria. Indian Journal of Clinical Biochemistry, 29(3), 321-326.Nasr, A., Allam, G., Hamid, O., & Al-Ghamdi, A. (2014). IFN-gamma and TNF associated with severe falciparum malaria infection in Saudi pregnant women. Malaria journal, 13(1), 314.Niikura, M., Inoue, S., & Kobayashi, F. (2011). Role of interleukin-10 in malaria: focusing on coinfection with lethal and nonlethal murine malaria parasites. J Biomed Biotechnol, 2011, 383962. doi:10.1155/2011/383962Othoro, C., Lal, A. A., Nahlen, B., Koech, D., Orago, A. S., & Udhayakumar, V. (1999). A low interleukin-10 tumor necrosis factor-α ratio is associated with malaria anemia in children residing in a holoendemic malaria region in western Kenya. The Journal of infectious diseases, 179(1), 279-282.Ouma, C., Davenport, G. C., Were, T., Otieno, M. F., Hittner, J. B., Vulule, J. M., . . . Perkins, D. J. (2008). Haplotypes of IL-10 promoter variants are associated with susceptibility to severe malarial anemia and functional changes in IL-10 production. Human genetics, 124(5), 515-524. doi:10.1007/s00439-008-0578-5Park, J. W., Park, S. H., Yeom, J. S., Huh, A. J., Cho, Y. K., Ahn, J. Y., . . . Seoh, J. Y. (2003). Serum cytokine profiles in patients with Plasmodium vivax malaria: a comparison between those who presented with and without thrombocytopenia. Annals of tropical medicine and parasitology, 97(4), 339-344. doi:10.1179/000349803235002416Penha-Gonçalves, C. (2019). Genetics of Malaria Inflammatory Responses: A Pathogenesis Perspective. Frontiers in Immunology, 10, 1771-1771. doi:10.3389/fimmu.2019.01771Perkins, D. J., Were, T., Davenport, G. C., Kempaiah, P., Hittner, J. B., & Ong'echa, J. M. (2011). Severe malarial anemia: innate immunity and pathogenesis. International journal of biological sciences, 7(9), 1427.Punnath, K., Dayanand, K. K., Chandrashekar, V. N., Achur, R. N., Kakkilaya, S. B., Ghosh, S. K., . . . Gowda, D. (2019). Association between Inflammatory Cytokine Levels and Thrombocytopenia during Plasmodium falciparum and P. vivax Infections in South-Western Coastal Region of India. Malaria research and treatment, 2019.Raza, A., Ghanchi, N. K., Sarwar Zubairi, A., Raheem, A., Nizami, S., & Beg, M. A. (2013). Tumor necrosis factor -α, interleukin-10, intercellular and vascular adhesion molecules are possible biomarkers of disease severity in complicated Plasmodium vivax isolates from Pakistan. PloS one, 8(12), e81363. doi:10.1371/journal.pone.0081363Ribeiro, B. d. P., Cassiano, G. C., de Souza, R. M., Cysne, D. N., Grisotto, M. A. G., de Azevedo dos Santos, A. P. S., . . . Nascimento, F. R. F. (2016). Polymorphisms in Plasmodium vivax Circumsporozoite Protein (CSP) Influence Parasite Burden and Cytokine Balance in a Pre-Amazon Endemic Area from Brazil. PLoS neglected tropical diseases, 10(3), e0004479-e0004479. doi:10.1371/journal.pntd.0004479Santos, M. L., Coimbra, R. S., Sousa, T. N., Guimarães, L. F., Gomes, M. S., Amaral, L. R., . . . Franklin, B. S. (2020). A distinct fingerprint of inflammatory mediators and miRNAs in Plasmodium vivax severe thrombocytopenia. bioRxivSantos, R. O. d., Cruz, M. G. S. d., Lopes, S. C. P., Oliveira, L. B., Nogueira, P. A., Lima, E. S., . . . Lalwani, P. (2020). A First Plasmodium vivax Natural Infection Induces Increased Activity of the Interferon Gamma-Driven Tryptophan Catabolism Pathway. Front Microbiol, 11(400). doi:10.3389/fmicb.2020.00400Ventura, A., Fernandes, A. A. M., Zanini, G. M., Pratt-Riccio, L. R., Sequeira, C. G., do Monte, C. R. S., . . . Daniel-Ribeiro, C. T. (2018). Clinical and immunological profiles of anaemia in children and adolescents with Plasmodium vivax malaria in the Para state, Brazilian Amazon. Acta Trop, 181, 122-131. doi:10.1016/j.actatropica.2018.01.022Villegas-Mendez, A., Greig, R., Shaw, T. N., de Souza, J. B., Gwyer Findlay, E., Stumhofer, J. S., . . . Couper, K. N. (2012). IFN-gamma-producing CD4+ T cells promote experimental cerebral malaria by modulating CD8+ T cell accumulation within the brain. J Immunol, 189(2), 968-979. doi:10.4049/jimmunol.1200688Yeom, J.-S., Park, S.-H., Ryu, S.-H., Park, H.-K., Woo, S.-Y., Ha, E.-H., . . . Park, J.-W. (2003). Serum cytokine profiles in patients with Plasmodium vivax malaria: A comparison between those who presented with and without hepatic dysfunction. Transactions of The Royal Society of Tropical Medicine and Hygiene, 97(6), 687- 691. doi:https://doi.org/10.1016/S0035-9203(03)80104-9Zhang, G., Manaca, M. N., McNamara-Smith, M., Mayor, A., Nhabomba, A., Berthoud, T. K., . . . Dobaño, C. (2012). Interleukin-10 (IL-10) polymorphisms are associated with IL-10 production and clinical malaria in young children. Infection and immunity, 80(7), 2316-2322. doi:10.1128/IAI.00261-12Ahmed, M. Z., Bhardwaj, N., Sharma, S., Pande, V., & Anvikar, A. R. (2019). Transcriptional Modulation of the Host Immunity Mediated by Cytokines and Transcriptional Factors in Plasmodium falciparum-Infected Patients of North-East India. Biomolecules, 9(10), 600. doi:10.3390/biom9100600Andrade, B. B., Reis-Filho, A., Souza-Neto, S. M., Clarencio, J., Camargo, L. M., Barral, A., & Barral-Netto, M. (2010). Severe Plasmodium vivax malaria exhibits marked inflammatory imbalance. Malaria journal, 9, 13. doi:10.1186/1475-2875-9-13Colborn, J. M., Ylöstalo, J. H., Koita, O. A., Cissé, O. H., & Krogstad, D. J. (2015). Human Gene Expression in Uncomplicated <i>Plasmodium falciparum</i> Malaria. Journal of Immunology Research, 2015, 162639. doi:10.1155/2015/162639de Kossodo, S., & Grau, G. E. (1993). Profiles of cytokine production in relation with susceptibility to cerebral malaria. Journal of immunology (Baltimore, Md. : 1950), 151(9), 4811-4820.Dobaño, C., Berthoud, T., Manaca, M. N., Nhabomba, A., Guinovart, C., Aguilar, R., . . . Alonso, P. L. (2018). High production of pro-inflammatory cytokines by maternal blood mononuclear cells is associated with reduced maternal malaria but increased cord blood infection. Malaria journal, 17(1), 177-177. doi:10.1186/s12936-018-2317-2Drewry, L. L., & Harty, J. T. (2020). Balancing in a black box: Potential immunomodulatory roles for TGF-β signaling during blood-stage malaria. Virulence, 11(1), 159-169.Dunst, J., Kamena, F., & Matuschewski, K. (2017a). Cytokines and Chemokines in Cerebral Malaria Pathogenesis. Frontiers in Cellular and Infection Microbiology, 7, 324-324. doi:10.3389/fcimb.2017.00324Kondĕlková, K., Vokurková, D., Krejsek, J., Borská, L., Fiala, Z., & Ctirad, A. (2010). Regulatory T cells (TREG) and their roles in immune system with respect to immunopathological disorders. Acta Medica (Hradec Kralove), 53(2), 73-77. doi:10.14712/18059694.2016.63Leonard, W. J., & Lin, J.-X. (2000). Cytokine receptor signaling pathways. Journal of Allergy and Clinical Immunology, 105(5), 877-888.Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262López-Guzmán, C., & Carmona-Fonseca, J. (2020). Submicroscopic placental malaria: histopathology and expression of physiological process mediators. Revista Peruana de Medicina Experimental y Salud Pública, 37, 220-228.Mahanta, A., Kar, S. K., Kakati, S., & Baruah, S. (2015). Heightened inflammation in severe malaria is associated with decreased IL-10 expression levels and neutrophils. Innate immunity, 21(5), 546-552.Mukaka, M. M. (2012). Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi medical journal : the journal of Medical Association of Malawi, 24(3), 69-71.Omer, F., Kurtzhals, J., & Riley, E. (2000). Maintaining the immunological balance in parasitic infections: a role for TGF-β? Parasitology Today, 16(1), 18-23.Sortica, V. A., Cunha, M. G., Ohnishi, M. D. O., Souza, J. M., Ribeiro-dos-Santos, Â. K. C., Santos, N. P. C., . . . Hutz, M. H. (2012). IL1B, IL4R, IL12RB1 and TNF gene polymorphisms are associated with Plasmodium vivax malaria in Brazil. Malaria journal, 11(1), 409. doi:10.1186/1475-2875-11-409Stephen-Victor, E., Das, M., Karnam, A., Pitard, B., Gautier, J.-F., & Bayry, J. (2020). Potential of regulatory T-cell-based therapies in the management of severe COVID-19. European Respiratory Journal, 56(3).Yasnot, M. F., Perkins, D. J., Corredor, M., Yanow, S., Carmona-Fonseca, J., & Maestre, A. (2013). The effects of Plasmodium vivax gestational malaria on the clinical and immune status of pregnant women in Northwestern Colombia. Colombia Médica: CM, 44(3), 172.Andrade, B. B., Reis-Filho, A., Souza-Neto, S. M., Clarêncio, J., Camargo, L. M., Barral, A., & Barral-Netto, M. (2010). Severe Plasmodium vivax malaria exhibits marked inflammatory imbalance. Malaria journal, 9(1), 13.Antonelli, L. R., Junqueira, C., Vinetz, J. M., Golenbock, D. T., Ferreira, M. U., & Gazzinelli, R. T. (2020). The immunology of Plasmodium vivax malaria. Immunol Rev, 293(1), 163-189. doi:10.1111/imr.12816Cruz, L. A. B., Barral-Netto, M., & Andrade, B. B. (2018). Distinct inflammatory profile underlies pathological increases in creatinine levels associated with Plasmodium vivax malaria clinical severity. PLoS neglected tropical diseases, 12(3), e0006306-e0006306. doi:10.1371/journal.pntd.0006306Dobaño, C., Bardají, A., Arévalo-Herrera, M., Martínez-Espinosa, F. E., Bôtto-Menezes, C., Padilla, N., . . . Requena, P. (2020). Cytokine signatures of Plasmodium vivax infection during pregnancy and delivery outcomes. PLoS neglected tropical diseases, 14(5), e0008155. doi:10.1371/journal.pntd.0008155Dotson, S., Freeman, R., Failing, H. J., & Adler, G. K. (2008). Hypoglycemia increases serum interleukin-6 levels in healthy men and women. Diabetes care, 31(6), 1222-1223.Gómez Marrugo, D. C. (2013). Perfil de citoquinas y anticuerpos en respuesta a la infección por Plasmodium vivax en una población del sur de Bolívar, Colombia.Guimarães da Costa, A., do Valle Antonelli, L. R., Augusto Carvalho Costa, P., Paulo Diniz Pimentel, J., Garcia, N. P., Monteiro Tarragô, A., . . . Malheiro, A. (2014). The Robust and Modulated Biomarker Network Elicited by the <i>Plasmodium vivax</i> Infection Is Mainly Mediated by the IL-6/IL-10 Axis and Is Associated with the Parasite Load. Journal of Immunology Research, 2014, 318250. doi:10.1155/2014/318250Hojo-Souza, N. S., Pereira, D. B., de Souza, F. S. H., de Oliveira Mendes, T. A., Cardoso, M. S., Tada, M. S., . . . Bueno, L. L. (2017). On the cytokine/chemokine network during Plasmodium vivax malaria: new insights to understand the disease. Malaria journal, 16(1), 1-10.Howes, R. E., Battle, K. E., Mendis, K. N., Smith, D. L., Cibulskis, R. E., Baird, J. K., & Hay, S. I. (2016). Global epidemiology of Plasmodium vivax. The American journal of tropical medicine and hygiene, 95(6_Suppl), 15-34.Jain, V., Singh, P. P., Silawat, N., Patel, R., Saxena, A., Bharti, P. K., . . . Singh, N. (2010). A preliminary study on pro- and anti-inflammatory cytokine profiles in Plasmodium vivax malaria patients from central zone of India. Acta Trop, 113(3), 263-268. doi:10.1016/j.actatropica.2009.11.009Kaushik, J. S., Gomber, S., & Dewan, P. (2012). Clinical and Epidemiological Profiles of Severe Malaria in Children from Delhi, India. Journal of Health, Population, and Nutrition, 30(1), 113-116.Kumar, R., Ng, S., & Engwerda, C. (2019). The Role of IL-10 in Malaria: A Double Edged Sword. Frontiers in Immunology, 10(229). doi:10.3389/fimmu.2019.00229Martínez-Salazar, E. L., & Tobón-Castaño, A. (2014). Platelet profile is associated with clinical complications in patients with vivax and falciparum malaria in Colombia. Revista da Sociedade Brasileira de Medicina Tropical, 47, 341-349.Medina, T. S., Costa, S. P., Oliveira, M. D., Ventura, A. M., Souza, J. M., Gomes, T. F., . . . Cunha, M. G. (2011). Increased interleukin-10 and interferon-γ levels in Plasmodium vivax malaria suggest a reciprocal regulation which is not altered by IL-10 gene promoter polymorphism. Malaria journal, 10(1), 264.Mendonça, V. R., Queiroz, A. T., Lopes, F. M., Andrade, B. B., & Barral-Netto, M. (2013). Networking the host immune response in Plasmodium vivax malaria. Malaria journal, 12(1), 69.Metzger, S., Goldschmidt, N., Barash, V., Peretz, T., Drize, O., Shilyansky, J., . . . Chajek-Shaul, T. (1997). Interleukin-6 secretion in mice is associated with reduced glucose-6-phosphatase and liver glycogen levels. American Journal of Physiology-Endocrinology And Metabolism, 273(2), E262-E267.Monteserín Matesanz, C., de la Gala, F., Rancan, L., Piñeiro, P., Simón, C., Tejedor, A., . . . Garutti, I. (2019). Predictive value of plasma cytokines for acute kidney injury following lung resection surgery: prospective observational study. Revista Brasileira de Anestesiologia, 69, 242-252.Naing, C., Whittaker, M. A., Nyunt Wai, V., & Mak, J. W. (2014). Is Plasmodium vivax Malaria a Severe Malaria?: A Systematic Review and Meta-Analysis. PLoS neglected tropical diseases, 8(8), e3071. doi:10.1371/journal.pntd.0003071Ortega, L. M., & Fornoni, A. (2010). Role of cytokines in the pathogenesis of acute and chronic kidney disease, glomerulonephritis, and end-stage kidney disease. International Journal of Interferon, Cytokine and Mediator Research, 2(1), 49-62.Raza, A., Ghanchi, N. K., Sarwar Zubairi, A., Raheem, A., Nizami, S., & Beg, M. A. (2013). Tumor necrosis factor -α, interleukin-10, intercellular and vascular adhesion molecules are possible biomarkers of disease severity in complicated Plasmodium vivax isolates from Pakistan. PloS one, 8(12), e81363. doi:10.1371/journal.pone.0081363Saravu, K., Docherla, M., Vasudev, A., & Shastry, B. A. (2011). Thrombocytopenia in vivax and falciparum malaria: an observational study of 131 patients in Karnataka, India. Annals of tropical medicine and parasitology, 105(8), 593-598. doi:10.1179/2047773211Y.0000000013Senchenkova, E. Y., Komoto, S., Russell, J., Almeida-Paula, L. D., Yan, L.-S., Zhang, S., & Granger, D. N. (2013). Interleukin-6 mediates the platelet abnormalities and thrombogenesis associated with experimental colitis. The American journal of pathology, 183(1), 173-181.Shi, J., Fan, J., Su, Q., & Yang, Z. (2019). Cytokines and Abnormal Glucose and Lipid Metabolism. Frontiers in Endocrinology, 10(703). doi:10.3389/fendo.2019.00703Silva Junior, G. B. d., Pinto, J. R., Barros, E. J. G., Farias, G. M. N., & Daher, E. D. F. (2017). Kidney involvement in malaria: an update. Revista do Instituto de Medicina Tropical de São Paulo, 59.Tilg, H. (2001). Cytokines and liver diseases. Canadian Journal of Gastroenterology, 15.Ventura, A., Fernandes, A. A. M., Zanini, G. M., Pratt-Riccio, L. R., Sequeira, C. G., do Monte, C. R. S., . . . Daniel-Ribeiro, C. T. (2018). Clinical and immunological profiles of anaemia in children and adolescents with Plasmodium vivax malaria in the Para state, Brazilian Amazon. Acta Trop, 181, 122-131. doi:10.1016/j.actatropica.2018.01.022Wilson, N. O., Jain, V., Roberts, C. E., Lucchi, N., Joel, P. K., Singh, M. P., . . . Stiles, J. K. (2011). CXCL4 and CXCL10 predict risk of fatal cerebral malaria. Dis Markers, 30(1), 39-49. doi:10.3233/dma-2011-0763Wunderlich, C. M., Delić, D., Behnke, K., Meryk, A., Ströhle, P., Chaurasia, B., . . . Wunderlich, F. T. (2012). Cutting edge: Inhibition of IL-6 trans-signaling protects from malaria-induced lethality in mice. The Journal of Immunology, 188(9), 4141- 4144.Yeom, J.-S., Park, S.-H., Ryu, S.-H., Park, H.-K., Woo, S.-Y., Ha, E.-H., . . . Park, J.-W. (2003). Serum cytokine profiles in patients with Plasmodium vivax malaria: A comparison between those who presented with and without hepatic dysfunction. Transactions of The Royal Society of Tropical Medicine and Hygiene, 97(6), 687- 691. doi:https://doi.org/10.1016/S0035-9203(03)80104-9Zeyrek, F. Y., Kurcer, M. A., Zeyrek, D., & Simsek, Z. (2006). Parasite density and serum cytokine levels in Plasmodium vivax malaria in Turkey. Parasite Immunol, 28(5), 201-207. doi:10.1111/j.1365-3024.2006.00822.xPublicationORIGINAL1.TRABAJO FINAL DE TESIS CATALINA TOVAR.pdf1.TRABAJO FINAL DE TESIS CATALINA TOVAR.pdfapplication/pdf2569921https://dspace7-unicartagena.metabuscador.org/bitstreams/cbfccf03-6a43-4201-973a-6657ddac6a23/download01f837163201d1851489db3f085373edMD512.FORMATO CESION DE DERECHOS DE AUTOR.pdf2.FORMATO CESION DE DERECHOS DE AUTOR.pdfapplication/pdf92994https://dspace7-unicartagena.metabuscador.org/bitstreams/a9eaf130-dc13-4879-bbb2-54c936e65ada/download3e72335d44a024817af31068310717c8MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81756https://dspace7-unicartagena.metabuscador.org/bitstreams/5ed8f877-eabf-4858-b2c9-4e4042e3bd22/download7b38fcee9ba3bc8639fa56f350c81be3MD53TEXT1.TRABAJO FINAL DE TESIS CATALINA TOVAR.pdf.txt1.TRABAJO FINAL DE TESIS CATALINA TOVAR.pdf.txtExtracted texttext/plain271182https://dspace7-unicartagena.metabuscador.org/bitstreams/7d1534e6-dc4c-43b7-b2ba-ad9e15c9bf8f/download641d74c970f06c46b531939afc08fa00MD542.FORMATO CESION DE DERECHOS DE AUTOR.pdf.txt2.FORMATO CESION DE DERECHOS DE AUTOR.pdf.txtExtracted texttext/plain2499https://dspace7-unicartagena.metabuscador.org/bitstreams/891dac3b-b7f7-4d87-b1e7-a8b11bd264d0/downloadde4a2e0427fcaf3a95bf5571e6d0e8d1MD56THUMBNAIL1.TRABAJO FINAL DE TESIS CATALINA TOVAR.pdf.jpg1.TRABAJO FINAL DE TESIS CATALINA TOVAR.pdf.jpgGenerated Thumbnailimage/jpeg5388https://dspace7-unicartagena.metabuscador.org/bitstreams/44ad2e87-386e-4dc5-b159-02a84c95da55/downloadc8417511185a23a64149769cd990153fMD552.FORMATO CESION DE DERECHOS DE AUTOR.pdf.jpg2.FORMATO CESION DE DERECHOS DE AUTOR.pdf.jpgGenerated Thumbnailimage/jpeg15571https://dspace7-unicartagena.metabuscador.org/bitstreams/41760a56-a2bd-4b41-a0bf-63f61ac97faf/downloadcb4f929b19b33cef883c8cd906f8712fMD5711227/15502oai:dspace7-unicartagena.metabuscador.org:11227/155022024-08-28 16:58:50.195https://creativecommons.org/licenses/by-nc/4.0/Derechos Reservados - Universidad de Cartagena, 2021open.accesshttps://dspace7-unicartagena.metabuscador.orgBiblioteca Digital Universidad de Cartagenabdigital@metabiblioteca.comCkFsIGZpcm1hciB5IHByZXNlbnRhciBlc3RhIGxpY2VuY2lhLCB1c3RlZCAoQVVUT1IgTyBBVVRPUkVTKSAgbyBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGVsIHByb3BpZXRhcmlvKFMpIGdhcmFudGl6YSBhICBsYSBVTklWRVJTSURBRCBERSBDQVJUQUdFTkEgZWwgZGVyZWNobyBleGNsdXNpdm8gZGUgcmVwcm9kdWNpciwgdHJhZHVjaXIgKGNvbW8gc2UgZGVmaW5lIG3DoXMgYWRlbGFudGUpIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byAoaW5jbHV5ZW5kbyBlbCByZXN1bWVuKSBlbiB0b2RvIGVsIG11bmRvICBlbiBmb3JtYSBpbXByZXNhIHkgZW4gZm9ybWF0byBlbGVjdHLDs25pY28geSBlbiBjdWFscXVpZXIgbWVkaW8sIGluY2x1eWVuZG8gYXVkaW8gbyB2aWRlby4KClVzdGVkIGFjZXB0YSBxdWUgbGEgVU5JVkVSU0lEQUQgREUgQ0FSVEFHRU5BICBwdWVkZSwgc2luIGNhbWJpYXIgZWwgY29udGVuaWRvIGNvbnZlcnRpcmxvLCBwcmVzZW50YXJsbyAgYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgbG9zIGZpbmVzIGRlIGNvbnNlcnZhY2nDs24uCgpVc3RlZCB0YW1iacOpbiBhY2VwdGEgcXVlIGxhIFVOSVZFUlNJREFEIERFIENBUlRBR0VOQSAgIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byBwYXJhIGZpbmVzIGRlIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24uCgpVc3RlZCBkZWNsYXJhIHF1ZSBlbCBkb2N1bWVudG8gZXMgdW4gdHJhYmFqbyBvcmlnaW5hbCB5ICBxdWUgdGllbmUgZWwgZGVyZWNobyBkZSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuICBUYW1iacOpbiByZXByZXNlbnRhbiAgbG8gbWVqb3IgZGUgc3UgY29ub2NpbWllbnRvIHkgbm8gaW5mcmluZ2VuICBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbmFkaWUuCgpTaSBlbCBkb2N1bWVudG8gY29udGllbmUgbWF0ZXJpYWxlcyBkZSBsb3MgcXVlIG5vIHRpZW5lIGxvcyAgZGVyZWNob3MgZGUgYXV0b3IsIHVzdGVkIGRlY2xhcmEgcXVlIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gc2luIHJlc3RyaWNjacOzbiBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zLCBkYSBhIGNvbmNlZGVyICBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgeSBxdWUgY29tbyBtYXRlcmlhbCBwcm9waWVkYWQgIGRlIHRlcmNlcm9zICBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyB5IHJlY29ub2NpZG8gZGVudHJvIGRlbCB0ZXh0byBvIGVsIGNvbnRlbmlkbyBkZSBsYSBwcmVzZW50YWNpw7NuLgoKU2kgbGEgcHJlc2VudGFjacOzbiBzZSBiYXNhIGVuICB0cmFiYWpvcyBRVUUgU0UgSEEgcGF0cm9jaW5hZG8gbyBhcG95YWRvIFBPUiBVTkEgQUdFTkNJQSBVIE9SR0FOSVpBQ0nDk04gUVVFIE5PIFNFQSBMQSBVTklWRVJTSURBRCBERSBDQVJUQUdFTkEsIE1BTklGSUVTVEEgUVVFIFRJRU5FIFFVRSBDVU1QTElSIGRlcmVjaG9zIGEgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHF1ZSBleGlnZW4gZXN0ZSBDb250cmF0byBvIGFjdWVyZG8uCgpEaWNlIHF1ZSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgc3Ugbm9tYnJlIChzKSBjb21vIGVsIGF1dG9yIChzKSBvIHByb3BpZXRhcmlvIChhKSBkZSBsb3MgZG9jdW1lbnRvIHkgbm8gaGFyw6EgbmluZ3VuYSBhbHRlcmFjacOzbiwgZXhlbnRvIGxhcyBwZXJtaXRpZGFzIGVuIGVzdGEgbGljZW5jaWEgcGFyYSBzdSBwcmVzZW50YWNpw7NuLgoKCg== |