Clasificador de Máquinas de Vectores de Soporte para el Apoyo en la Detección del Grado I y II de Osteoartritis de Rodilla Según Kellgren- Lawrence Mediante Imágenes de Rayos X.
Propia
- Autores:
-
Sanchez Vasquez, Maria Jose
Bastos Claros, Carlos Alberto
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2020
- Institución:
- Universidad Antonio Nariño
- Repositorio:
- Repositorio UAN
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uan.edu.co:123456789/3159
- Acceso en línea:
- http://repositorio.uan.edu.co/handle/123456789/3159
- Palabra clave:
- Osteoartritis
SVM
Aprendizaje de máquina
Características Kellgren-Lawrence
Rayos X
Osteoarthritis
SVM
Machine Learning
Kellgren-Lawrence Features
X- Ray
- Rights
- openAccess
- License
- Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0)
id |
UAntonioN2_f991cc13b0c8691108fa336f20e5c201 |
---|---|
oai_identifier_str |
oai:repositorio.uan.edu.co:123456789/3159 |
network_acronym_str |
UAntonioN2 |
network_name_str |
Repositorio UAN |
repository_id_str |
|
dc.title.es_ES.fl_str_mv |
Clasificador de Máquinas de Vectores de Soporte para el Apoyo en la Detección del Grado I y II de Osteoartritis de Rodilla Según Kellgren- Lawrence Mediante Imágenes de Rayos X. |
title |
Clasificador de Máquinas de Vectores de Soporte para el Apoyo en la Detección del Grado I y II de Osteoartritis de Rodilla Según Kellgren- Lawrence Mediante Imágenes de Rayos X. |
spellingShingle |
Clasificador de Máquinas de Vectores de Soporte para el Apoyo en la Detección del Grado I y II de Osteoartritis de Rodilla Según Kellgren- Lawrence Mediante Imágenes de Rayos X. Osteoartritis SVM Aprendizaje de máquina Características Kellgren-Lawrence Rayos X Osteoarthritis SVM Machine Learning Kellgren-Lawrence Features X- Ray |
title_short |
Clasificador de Máquinas de Vectores de Soporte para el Apoyo en la Detección del Grado I y II de Osteoartritis de Rodilla Según Kellgren- Lawrence Mediante Imágenes de Rayos X. |
title_full |
Clasificador de Máquinas de Vectores de Soporte para el Apoyo en la Detección del Grado I y II de Osteoartritis de Rodilla Según Kellgren- Lawrence Mediante Imágenes de Rayos X. |
title_fullStr |
Clasificador de Máquinas de Vectores de Soporte para el Apoyo en la Detección del Grado I y II de Osteoartritis de Rodilla Según Kellgren- Lawrence Mediante Imágenes de Rayos X. |
title_full_unstemmed |
Clasificador de Máquinas de Vectores de Soporte para el Apoyo en la Detección del Grado I y II de Osteoartritis de Rodilla Según Kellgren- Lawrence Mediante Imágenes de Rayos X. |
title_sort |
Clasificador de Máquinas de Vectores de Soporte para el Apoyo en la Detección del Grado I y II de Osteoartritis de Rodilla Según Kellgren- Lawrence Mediante Imágenes de Rayos X. |
dc.creator.fl_str_mv |
Sanchez Vasquez, Maria Jose Bastos Claros, Carlos Alberto |
dc.contributor.advisor.spa.fl_str_mv |
Triana Martínez, Jenniffer Carolina |
dc.contributor.author.spa.fl_str_mv |
Sanchez Vasquez, Maria Jose Bastos Claros, Carlos Alberto |
dc.subject.es_ES.fl_str_mv |
Osteoartritis SVM Aprendizaje de máquina Características Kellgren-Lawrence Rayos X |
topic |
Osteoartritis SVM Aprendizaje de máquina Características Kellgren-Lawrence Rayos X Osteoarthritis SVM Machine Learning Kellgren-Lawrence Features X- Ray |
dc.subject.keyword.es_ES.fl_str_mv |
Osteoarthritis SVM Machine Learning Kellgren-Lawrence Features X- Ray |
description |
Propia |
publishDate |
2020 |
dc.date.issued.spa.fl_str_mv |
2020-12-02 |
dc.date.accessioned.none.fl_str_mv |
2021-03-10T20:24:19Z |
dc.date.available.none.fl_str_mv |
2021-03-10T20:24:19Z |
dc.type.spa.fl_str_mv |
Trabajo de grado (Pregrado y/o Especialización) |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://repositorio.uan.edu.co/handle/123456789/3159 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Agarap FA. (2018). A Neural Network Architecture Combining Gated Recurrent Unit (GRU) and Support Vector Machine (SVM) for Intrusion Detection in Network Traffic Data. 10th International Conference on Machine Learning and Computing, pp. 26-30. Alam S, K. M.-Y. (2016). Performance of classification based on PCA, linear SVM, and Multi-kernel SVM. Eighth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 987- 989. Amat Rodrigo J. (2017, 04). Máquinas de Vector Soporte (Support Vector Machines, SVMs). Retrieved from https://www.cienciadedatos.net/documentos/34_maquinas_de_vector_soporte_support_vect or_machines#Informaci%C3%B3n_sesi%C3%B3n Arregui Espinoza JM, Y. A. (2016). Utilidad de rayos x digital en el diagnóstico de artrosis de rodilla en pacientes de 50 a 60 años de edad en el Hospital Privado Northospital de la ciudad de Quito. Quito: UCE. Bradley J. Erickson, P. K. (2017). Machine Learning for Medical Imaging. RadioGraphics, vol. 37, no. 2. Braun, H. a. (2012). Diagnosis of osteoarthritis: Imaging. Bone, pp. 278-288. C. Cortes and V. Vapnik. (1995). Support-Vector Networks, Machine Learning. Springer, pp. 273- 297. C. Wang, L. L. (2011). Face Recognition Based on Principle Component Analysis and Support Vector Machine. 3rd International Workshop on Intelligent Systems and Applications, pp.1-4. Caleta, E. (2011). Artritis de la rodilla. Retrieved from Dr. Esteban Caleta Especialista en ortopedia y traumatologia Reemplazos articulares, Cirugia artroscopica: http://www.drestebancaleta.com.ar/index.php?PGN=51 Capapé, D. D. (2020). Cirugía Ortopédica y Traumatología Deportiva. Retrieved from Artrosis de rodilla (Gonartrosis): http://doctorlopezcapape.com/cirugia-ortopedica/artrosis-de-rodilla- gonartrosis Cardona H.D.V, O. Á. (2014). Automatic Recognition of Microcalcifications in Mammography Images through Fractal Texture Analysis. Springer, Cham, Lecture Notes in Computer Science, vol 8888. Carmona Suarez, E. (2016). Tutorial sobre Máquinas de Vectores Soporte (SVM). Universidad Nacional de Educacion a Distancia (UNED), Madrid- España, pp. 1-27. Cartas Solis U, P. H. (2015). Demography broad in the knees osteoarthritis. Revista Cubana de Reumatología, vol.17 no.1. Chen, P. (2018, 09 03). Knee Osteoarthritis Severity Grading Dataset. Retrieved from Mendeley: https://data.mendeley.com/datasets/56rmx5bjcr/1 Cheng-Jin Du, D.-W. S. (2008). Histogram Equalization. ScienceDirect. Dhabhai, A. K. (2016). Empirical Study of Image Classification Techniques to Classify the Image using SVM: A Review. International Journal of Innovative Research in Computer and Communication Engineering, pp. 1-6. Dhabhai. A, K. G. (2016). Empirical Study of Image Classification Techniques to Classify the Image using SVM: A Review. International Journal of Innovative Research in Computer and Communication Engineering, pp. 1-6. drzezo. (2017, 04 20). Imaging for osteoarthritis. Retrieved from PHYSICAL MEDICINE & REHABILITATION : https://musculoskeletalkey.com/imaging-for-osteoarthritis/ Farias Concha NM. (2011, 12). MÁQUINAS VECTORIALES HÍBRIDAS PARA CLASIFICAR ACCIDENTES DE TRANSITO EN LA REGION METROPOLITANA . Retrieved from Pontificia Universidad Catolica de Valparaiso : http://opac.pucv.cl/pucv_txt/Txt- 9500/UCF9980_01.pdf Felson, D. (1988). Epidemiology of hip and knee osteoarthritis. Oxford Journals, pp.1-28. Fierro J. (01 de 05 de 2020). Director medico de la Clinica Medilaser de Neiva. (I. d. grado, Entrevistador) Flandry, F. M. (2011). Normal Anatomy and Biomechanics of the Knee. Sports Medicine and Arthroscopy Review, pp. 82-92. FULKERSON J P, G. H. (1980). Anatomy of the Knee Joint Lateral Retinaculum. Clinical Orthopaedics and Related Research, pp. 183-188. Garcia Balboa, J. F. (2018). Homogeneity Test for Confusion Matrices: A Method and an Example. IEEE International Geoscience and Remote Sensing Symposium, pp. 1203-1205. Garcia-Balboa, J. A.-F.-L.-A. (2018). Homogeneity Test for Confusion Matrices: A Method and an Example. IEEE International Geoscience and Remote Sensing Symposium, pp. 1203-1205 Gavrilov Z. (n.d.). SVM Tutorial. Retrieved from https://web.mit.edu/zoya/www/SVM.pdf Gonzalez R, B. A. (2017). Application of Support Vector Machines (SVM) for clinical diagnosis of Parkinson's Disease and Essential Tremor. Revista Iberoamericana de Automática e Informática Industrial RIAI, pp. 394-405. Guermazi, A. D. (2015). Severe radiographic knee osteoarthritis – does Kellgren and Lawrence grade 4 represent end stage disease? – the MOST study. Osteoarthritis and Cartilage, pp. 1499-1505. Guo H, W. W. (2009). A novel learning model-Kernel Granular Support Vector Machine. International Conference on Machine Learning and Cybernetics, pp. 930-935. Guyon I, G. S. (2008). Freature Extraction Foundation and Aplications. Poland: Springer. Haidekker, M. A. (2011). Advanced Biomedical Image Analysis. New Jersey: John Wiley & Sons. Inc HEALTH, S. C. (2020). Lesiones de ligamento de la rodilla. Retrieved from STANFORD CHILDREN'S HEALTH: https://www.stanfordchildrens.org/es/topic/default?id=ligamentinjuriestotheknee-85-P04023 Hertzmann A, F. D. (2015). Support Vector Machines. Retrieved from http://www.cs.toronto.edu/~mbrubake/teaching/C11/Handouts/SupportVectorMachines.pdf Hu, J. Z. (2009). Curvilinear thresholding method for noisy images based on 2D histogram. IEEE International Conference on Robotics and Biomimetics, pp. 1014-1019. HUAN-JUN, L. y.-N.-F. (2005). A METHOD TO CHOOSE KERNEL FUNCTION AND ITS PARAMETERS FOR SUPPORT VECTOR MACHINES. Fourth International Conference on Machine Learning and CyberneticS, pp. 4277-4280. IArtificial.net. (n.d.). Retrieved from https://www.iartificial.net/maquinas-de-vectores-de-soporte- svm/#:~:text=El%20truco%20del%20kernel%20consiste,con%20una%20superficie%20de% 20decisi%C3%B3n Jakkula V. (2006). Tutorial on Support Vector Machine (SVM). Washington State: School of EECS, Washington State University. Khalid, R. R. (2015). Enhanced dynamic quadrant histogram equalization plateau limit for image contrast enhancement. Fifth InternationalConference on Digital Information and Communication Technology and its Applications (DICTAP), pp. 86-91. Kim, K. G. (2016). Deep Learning. Healtcare Informatics Research, pp. 351-354. Koonsanit, K. T. (2017). Image enhancement on digital x-ray images using N-CLAHE. Biomedical Engineering International Conference (BMEiCON), pp. 1-4. Kwang Gi, K. (2016). Deep Learning. Healtcare Informatics Research, pp. 351-354. Lopez Diaz, A. (2018). Fundamentos Matematicos de los Metodos Kernel para Aprendizaje Supervisado. Universidad de Sevilla. DEPARTAMENTO: CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL, pp. 1-73. López Pineda G. (2017, 05). Modelos de regresión para datos funcionales por la metodología de Kernel reproductor en espacios de Hilbert. Retrieved from BUAP: https://repositorioinstitucional.buap.mx/handle/20.500.12371/488 López-Portilla Vigil, B. M. (2016). Implementación del Algoritmo de Otsu sobre FPGA. Revista Cubana de Ciencias Informáticas. Retrieved from http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2227- 18992016000300002&lng=es&tlng=es. Lovejoy, C. (2007). The natural history of human gait and posture: Part 3. The knee. Gait & Posture, pp. 325-341. Luijkx, T. &. (2016). Kellgren and Lawrence system for classification of osteoarthritis of knee. Retrieved from http://radiopaedia. org/articles/kellgren-and-lawrencesystem-for- classification-of-osteoarthritis-of-knee Mark D. Kohn, A. A. (2016). Classifications in Brief: Kellgren-Lawrence Classification of Osteoarthritis. Clinical Orthopaedics and Related Research, pp. 1886-1893. Martinez Figueroa R, M. F. (2017). Knee Osteoarthritis (osteoarthrosis). Revista Chilena de Ortopedia y Traumatología, pp. 45-51. Martinez, D. A. (2020, 05 28). Caracteristicas mas relevantes de la rodilla. (M. J. Bastos, Interviewer) Martínez, V. G. (2013). TÉCNICAS DE UMBRALIZACIÓN PARA LA DETECCIÓN DE ANOMALÍAS EN LA PARED AÓRTICA MEDIANTE OCT. UNIVERSIDAD DE CANTABRIA. Matlab. (2020). MathWorks. Retrieved from regionprops: https://www.mathworks.com/help/images/ref/regionprops.html Matlab. (2020). MathWorks. Retrieved from Support Vector Machines for Binary Classification: https://www.mathworks.com/help/stats/support-vector-machines-for-binary-classification.html Matlab. (2020). MathWorks. Retrieved from Support Vector Machines for Binary Classification: https://www.mathworks.com/help/stats/support-vector-machines-for-binary-classification.html MLMath.io. (2013, 02 13). Math behind SVM(Support Vector Machine). Retrieved from https://medium.com/@ankitnitjsr13/math-behind-svm-support-vector-machine-864e58977fdb MLMath.io. (2019, 02 09). Deep Learning. Retrieved from Math behind SVM (Support Vector Machine): https://medium.com/@ankitnitjsr13/math-behind-support-vector-machine-svm- 5e7376d0ee4d#:~:text=SVM%20is%20one%20of%20the,versatile%20supervised%20machi ne%20learning%20algorithm.&text=The%20main%20objective%20of%20SVM,blue%20and %20pink%20classes%20balls Mori, M. (2010). Preprocessing techiniques in character recognition. Rijeka, Croatia: Character Recognition. Moya-Angeler J, V. J. (2016). Valuation of the degenerative process joint of the knee by magnetic resonance imaging. Revista Latinoamericana de Cirugía Ortopédica, pp. 88-94. Navale DI, H. R. (2015). Block based texture analysis approach for knee osteoarthritis identification using SVM. IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), pp. 338-341 Noble, W. (2006). What is a support vector machine? Nat Biotechnol , pp. 1565-1567. OTSU N. (1979). A Tlreshold Selection Method from Gray-Level Histograms. 2EEE TRANSACTIONS ON SYSTREMS, MAN, AND CYBERNETICS, VOL. SMC-9, NO. 1, pp.62- 66 Pandey, M. B. (2018). An anatomization of noise removal techniques on medical image. International Conference on Innovation and Challenges in Cyber Security (ICICCS- INBUSH), pp. 224–229. Paoletti ME, H. M. (2020). Estudio Comparativo de Técnicas de Clasificación de Imágenes Hiperespectrales. Revista Iberoamericana de Automática e Informática industrial, pp. 129- 137. Patin aka, F. (2003). An Introduction To Digital Image Processing. pp.1-49. Pineda, G. L. (2017). Modelos de regresión para datos funcionales por la metodología de Kernel reproductor en espacios de Hilbert. Benemérita Universidad Autónoma de Puebla. Retrieved from https://hdl.handle.net/20.500.12371/488 Pizzi, N. P. (2006). Confusion Matrix. ScienceDirect. Q. Wang, H. Z. (2012). Algorithm for segmentation based on an improved three-dimensional Otsu's thresholding. International Conference on Computer Science and Network Technology, pp. 1737-1740. Rajith B., S. M. (2016). Edge Preserved De-noising Method for Medical X-Ray Images Using Wavelet Packet Transformation. Emerging Research in Computing, Information, Communication and Applications. Springer, New Delhi. Rajith, B. S. (2016). Edge Preserved De-noising Method for Medical X-Ray Images Using Wavelet Packet Transformation. Emerging Research in Computing, Information, Communication and Applications. Springer, New Delhi. Ramamurthy, P. (1995). FACTORS CONTROLLING THE QUALITY OF RADIOGRAPY AND THE QUALITY ASSURANCE. X-ray, pp. 37-41. Ramon Alcala J, N. G. (2008). La imagen digital y su tratamiento. Cuenca: MIDECIANT Roman V. (2019, 03 29). Aprendizaje Supervisado: Introducción a la Clasificación y Principales Algoritmos. Retrieved from Medium: https://medium.com/datos-y-ciencia/aprendizaje- supervisado-introducci%C3%B3n-a-la-clasificaci%C3%B3n-y-principales-algoritmos- dadee99c9407 Russ, J. (1990). Image Processing. In: Computer-Assisted Microscopy. Boston, MA: Springer. S. Han, C. Q. (2014). Parameter selection in SVM with RBF kernel function. World Automation Congress 2012, Puerto Vallarta, Mexico, pp. 1-4. Sahu SK, P. A. (2015). GP-SVM: Tree Structured Multiclass SVM with Greedy Partitioning. International Conference on Information Technology (ICIT), pp. 142-147. Shamir L, L. S. (2009). Early detection of radiographic knee osteoarthritis using computer-aided analysis. Osteoarthritis and Cartilage, pp. 1307-1312. vol 17. Shamir, L. (2009). Knee X-Ray Image Analysis Method for Automated Detection of Osteoarthritis. IEEE Transactions on Biomedical Engineering, pp. 407-415. Sharma S, S. V. (2016). Detection of Osteoarthritis using SVM. International Conference on Computing for Sustainable Global Development (INDIACom), pp. 2997-3002. Solis Cartas U, C. B. (2018). Comorbidities and quality of life in Osteoarthritis. Revista Cubana de Reumatología, vol.20 no.2. Solis Cartas, U. d. (2014). Osteoartritis. Características sociodemográficas. Revista Cubana de Reumatología, pp. 97-103 no.2. Sonka M, H. V. (2013). Image Processing, Analysis, and Machine Vision. EEUU: Cengage Learning Suykens J. A. K, S. (2001). Nonlinear modelling and support vector machines. 18th IEEE Instrumentation and Measurement Technology Conference, pp. 287-294. Szeliski, R. (2011). Computer Vision. Washington, USA: Springer. Thimmiaraja, J. S. (2014). Histogram Equalization for Image Enhancement Using MRI Brain Images. World Congress on Computing and Communication Technologies, pp. 80-83. Tromberg BJ. (n.d.). Tomografía Computarizada (TC). Retrieved from National Institute of Biomedical Imaging and Bioengieering: https://www.nibib.nih.gov/espanol/temas- cientificos/tomograf%C3%ADa-computarizada-tc Turner A Blackburn, M. E. (1980). Knee Anatomy: A Brief Review. Physical Therapy, pp. 1556- 1560. vol 60, Issue 12. Viatela Ardila, G. (2001). Curso Tecnologia de la Informacion y Comunicaciones por Video Interractivo. Bogota D.C: IICA. Wang R. (2016, 08 19). Soft Margin SVM. Retrieved from Support Vector Machine: http://fourier.eng.hmc.edu/e161/lectures/svm/node5.html Wang, Q. Z. (2012). Algorithm for segmentation based on an improved three-dimensional Otsu's thresholding. International Conference on Computer Science and Network Technology, pp. 1737-1740. Xu K, W. C. (2014). A MapReduce based Parallel SVM for Email. JOURNAL OF NETWORKS, VOL. 9, NO. 6, pp. 1640-1646. Yang Y, W. J. (2012). Improving SVM classifier with prior knowledge in microcalcification detection1. IEEE International Conference on Image Processing, pp. 2837-2840. Yin-Wen C, C.-J. L. (2008). Proceedings of the Workshop on the Causation and Prediction Challenge at WCCI. PMLR, pp. 53-64. Yu, D. L. (2009). Otsu Method and K-means. Ninth International Conference on Hybrid Intelligent Systems, Shenyang, pp. 344-349. Zahurul S, Z. S. (2010). An Adept Edge Detection Algorithm for Human Knee Osteoarthritis Images. International Conference on Signal Acquisition and Processing, pp.375-379. Zhang Y, J. J. (2010). Epidemiology of Osteoarthritis. Clinics in Geriatric Medicine, pp. 355-369. Zhou, S. K. (2016). Medical Image Recognition Segmentation and Parsing. London UK, San Diego CA: ELSEVIER. INC. |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Antonio Nariño |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UAN |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uan.edu.co/ |
url |
http://repositorio.uan.edu.co/handle/123456789/3159 |
identifier_str_mv |
Agarap FA. (2018). A Neural Network Architecture Combining Gated Recurrent Unit (GRU) and Support Vector Machine (SVM) for Intrusion Detection in Network Traffic Data. 10th International Conference on Machine Learning and Computing, pp. 26-30. Alam S, K. M.-Y. (2016). Performance of classification based on PCA, linear SVM, and Multi-kernel SVM. Eighth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 987- 989. Amat Rodrigo J. (2017, 04). Máquinas de Vector Soporte (Support Vector Machines, SVMs). Retrieved from https://www.cienciadedatos.net/documentos/34_maquinas_de_vector_soporte_support_vect or_machines#Informaci%C3%B3n_sesi%C3%B3n Arregui Espinoza JM, Y. A. (2016). Utilidad de rayos x digital en el diagnóstico de artrosis de rodilla en pacientes de 50 a 60 años de edad en el Hospital Privado Northospital de la ciudad de Quito. Quito: UCE. Bradley J. Erickson, P. K. (2017). Machine Learning for Medical Imaging. RadioGraphics, vol. 37, no. 2. Braun, H. a. (2012). Diagnosis of osteoarthritis: Imaging. Bone, pp. 278-288. C. Cortes and V. Vapnik. (1995). Support-Vector Networks, Machine Learning. Springer, pp. 273- 297. C. Wang, L. L. (2011). Face Recognition Based on Principle Component Analysis and Support Vector Machine. 3rd International Workshop on Intelligent Systems and Applications, pp.1-4. Caleta, E. (2011). Artritis de la rodilla. Retrieved from Dr. Esteban Caleta Especialista en ortopedia y traumatologia Reemplazos articulares, Cirugia artroscopica: http://www.drestebancaleta.com.ar/index.php?PGN=51 Capapé, D. D. (2020). Cirugía Ortopédica y Traumatología Deportiva. Retrieved from Artrosis de rodilla (Gonartrosis): http://doctorlopezcapape.com/cirugia-ortopedica/artrosis-de-rodilla- gonartrosis Cardona H.D.V, O. Á. (2014). Automatic Recognition of Microcalcifications in Mammography Images through Fractal Texture Analysis. Springer, Cham, Lecture Notes in Computer Science, vol 8888. Carmona Suarez, E. (2016). Tutorial sobre Máquinas de Vectores Soporte (SVM). Universidad Nacional de Educacion a Distancia (UNED), Madrid- España, pp. 1-27. Cartas Solis U, P. H. (2015). Demography broad in the knees osteoarthritis. Revista Cubana de Reumatología, vol.17 no.1. Chen, P. (2018, 09 03). Knee Osteoarthritis Severity Grading Dataset. Retrieved from Mendeley: https://data.mendeley.com/datasets/56rmx5bjcr/1 Cheng-Jin Du, D.-W. S. (2008). Histogram Equalization. ScienceDirect. Dhabhai, A. K. (2016). Empirical Study of Image Classification Techniques to Classify the Image using SVM: A Review. International Journal of Innovative Research in Computer and Communication Engineering, pp. 1-6. Dhabhai. A, K. G. (2016). Empirical Study of Image Classification Techniques to Classify the Image using SVM: A Review. International Journal of Innovative Research in Computer and Communication Engineering, pp. 1-6. drzezo. (2017, 04 20). Imaging for osteoarthritis. Retrieved from PHYSICAL MEDICINE & REHABILITATION : https://musculoskeletalkey.com/imaging-for-osteoarthritis/ Farias Concha NM. (2011, 12). MÁQUINAS VECTORIALES HÍBRIDAS PARA CLASIFICAR ACCIDENTES DE TRANSITO EN LA REGION METROPOLITANA . Retrieved from Pontificia Universidad Catolica de Valparaiso : http://opac.pucv.cl/pucv_txt/Txt- 9500/UCF9980_01.pdf Felson, D. (1988). Epidemiology of hip and knee osteoarthritis. Oxford Journals, pp.1-28. Fierro J. (01 de 05 de 2020). Director medico de la Clinica Medilaser de Neiva. (I. d. grado, Entrevistador) Flandry, F. M. (2011). Normal Anatomy and Biomechanics of the Knee. Sports Medicine and Arthroscopy Review, pp. 82-92. FULKERSON J P, G. H. (1980). Anatomy of the Knee Joint Lateral Retinaculum. Clinical Orthopaedics and Related Research, pp. 183-188. Garcia Balboa, J. F. (2018). Homogeneity Test for Confusion Matrices: A Method and an Example. IEEE International Geoscience and Remote Sensing Symposium, pp. 1203-1205. Garcia-Balboa, J. A.-F.-L.-A. (2018). Homogeneity Test for Confusion Matrices: A Method and an Example. IEEE International Geoscience and Remote Sensing Symposium, pp. 1203-1205 Gavrilov Z. (n.d.). SVM Tutorial. Retrieved from https://web.mit.edu/zoya/www/SVM.pdf Gonzalez R, B. A. (2017). Application of Support Vector Machines (SVM) for clinical diagnosis of Parkinson's Disease and Essential Tremor. Revista Iberoamericana de Automática e Informática Industrial RIAI, pp. 394-405. Guermazi, A. D. (2015). Severe radiographic knee osteoarthritis – does Kellgren and Lawrence grade 4 represent end stage disease? – the MOST study. Osteoarthritis and Cartilage, pp. 1499-1505. Guo H, W. W. (2009). A novel learning model-Kernel Granular Support Vector Machine. International Conference on Machine Learning and Cybernetics, pp. 930-935. Guyon I, G. S. (2008). Freature Extraction Foundation and Aplications. Poland: Springer. Haidekker, M. A. (2011). Advanced Biomedical Image Analysis. New Jersey: John Wiley & Sons. Inc HEALTH, S. C. (2020). Lesiones de ligamento de la rodilla. Retrieved from STANFORD CHILDREN'S HEALTH: https://www.stanfordchildrens.org/es/topic/default?id=ligamentinjuriestotheknee-85-P04023 Hertzmann A, F. D. (2015). Support Vector Machines. Retrieved from http://www.cs.toronto.edu/~mbrubake/teaching/C11/Handouts/SupportVectorMachines.pdf Hu, J. Z. (2009). Curvilinear thresholding method for noisy images based on 2D histogram. IEEE International Conference on Robotics and Biomimetics, pp. 1014-1019. HUAN-JUN, L. y.-N.-F. (2005). A METHOD TO CHOOSE KERNEL FUNCTION AND ITS PARAMETERS FOR SUPPORT VECTOR MACHINES. Fourth International Conference on Machine Learning and CyberneticS, pp. 4277-4280. IArtificial.net. (n.d.). Retrieved from https://www.iartificial.net/maquinas-de-vectores-de-soporte- svm/#:~:text=El%20truco%20del%20kernel%20consiste,con%20una%20superficie%20de% 20decisi%C3%B3n Jakkula V. (2006). Tutorial on Support Vector Machine (SVM). Washington State: School of EECS, Washington State University. Khalid, R. R. (2015). Enhanced dynamic quadrant histogram equalization plateau limit for image contrast enhancement. Fifth InternationalConference on Digital Information and Communication Technology and its Applications (DICTAP), pp. 86-91. Kim, K. G. (2016). Deep Learning. Healtcare Informatics Research, pp. 351-354. Koonsanit, K. T. (2017). Image enhancement on digital x-ray images using N-CLAHE. Biomedical Engineering International Conference (BMEiCON), pp. 1-4. Kwang Gi, K. (2016). Deep Learning. Healtcare Informatics Research, pp. 351-354. Lopez Diaz, A. (2018). Fundamentos Matematicos de los Metodos Kernel para Aprendizaje Supervisado. Universidad de Sevilla. DEPARTAMENTO: CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL, pp. 1-73. López Pineda G. (2017, 05). Modelos de regresión para datos funcionales por la metodología de Kernel reproductor en espacios de Hilbert. Retrieved from BUAP: https://repositorioinstitucional.buap.mx/handle/20.500.12371/488 López-Portilla Vigil, B. M. (2016). Implementación del Algoritmo de Otsu sobre FPGA. Revista Cubana de Ciencias Informáticas. Retrieved from http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2227- 18992016000300002&lng=es&tlng=es. Lovejoy, C. (2007). The natural history of human gait and posture: Part 3. The knee. Gait & Posture, pp. 325-341. Luijkx, T. &. (2016). Kellgren and Lawrence system for classification of osteoarthritis of knee. Retrieved from http://radiopaedia. org/articles/kellgren-and-lawrencesystem-for- classification-of-osteoarthritis-of-knee Mark D. Kohn, A. A. (2016). Classifications in Brief: Kellgren-Lawrence Classification of Osteoarthritis. Clinical Orthopaedics and Related Research, pp. 1886-1893. Martinez Figueroa R, M. F. (2017). Knee Osteoarthritis (osteoarthrosis). Revista Chilena de Ortopedia y Traumatología, pp. 45-51. Martinez, D. A. (2020, 05 28). Caracteristicas mas relevantes de la rodilla. (M. J. Bastos, Interviewer) Martínez, V. G. (2013). TÉCNICAS DE UMBRALIZACIÓN PARA LA DETECCIÓN DE ANOMALÍAS EN LA PARED AÓRTICA MEDIANTE OCT. UNIVERSIDAD DE CANTABRIA. Matlab. (2020). MathWorks. Retrieved from regionprops: https://www.mathworks.com/help/images/ref/regionprops.html Matlab. (2020). MathWorks. Retrieved from Support Vector Machines for Binary Classification: https://www.mathworks.com/help/stats/support-vector-machines-for-binary-classification.html MLMath.io. (2013, 02 13). Math behind SVM(Support Vector Machine). Retrieved from https://medium.com/@ankitnitjsr13/math-behind-svm-support-vector-machine-864e58977fdb MLMath.io. (2019, 02 09). Deep Learning. Retrieved from Math behind SVM (Support Vector Machine): https://medium.com/@ankitnitjsr13/math-behind-support-vector-machine-svm- 5e7376d0ee4d#:~:text=SVM%20is%20one%20of%20the,versatile%20supervised%20machi ne%20learning%20algorithm.&text=The%20main%20objective%20of%20SVM,blue%20and %20pink%20classes%20balls Mori, M. (2010). Preprocessing techiniques in character recognition. Rijeka, Croatia: Character Recognition. Moya-Angeler J, V. J. (2016). Valuation of the degenerative process joint of the knee by magnetic resonance imaging. Revista Latinoamericana de Cirugía Ortopédica, pp. 88-94. Navale DI, H. R. (2015). Block based texture analysis approach for knee osteoarthritis identification using SVM. IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), pp. 338-341 Noble, W. (2006). What is a support vector machine? Nat Biotechnol , pp. 1565-1567. OTSU N. (1979). A Tlreshold Selection Method from Gray-Level Histograms. 2EEE TRANSACTIONS ON SYSTREMS, MAN, AND CYBERNETICS, VOL. SMC-9, NO. 1, pp.62- 66 Pandey, M. B. (2018). An anatomization of noise removal techniques on medical image. International Conference on Innovation and Challenges in Cyber Security (ICICCS- INBUSH), pp. 224–229. Paoletti ME, H. M. (2020). Estudio Comparativo de Técnicas de Clasificación de Imágenes Hiperespectrales. Revista Iberoamericana de Automática e Informática industrial, pp. 129- 137. Patin aka, F. (2003). An Introduction To Digital Image Processing. pp.1-49. Pineda, G. L. (2017). Modelos de regresión para datos funcionales por la metodología de Kernel reproductor en espacios de Hilbert. Benemérita Universidad Autónoma de Puebla. Retrieved from https://hdl.handle.net/20.500.12371/488 Pizzi, N. P. (2006). Confusion Matrix. ScienceDirect. Q. Wang, H. Z. (2012). Algorithm for segmentation based on an improved three-dimensional Otsu's thresholding. International Conference on Computer Science and Network Technology, pp. 1737-1740. Rajith B., S. M. (2016). Edge Preserved De-noising Method for Medical X-Ray Images Using Wavelet Packet Transformation. Emerging Research in Computing, Information, Communication and Applications. Springer, New Delhi. Rajith, B. S. (2016). Edge Preserved De-noising Method for Medical X-Ray Images Using Wavelet Packet Transformation. Emerging Research in Computing, Information, Communication and Applications. Springer, New Delhi. Ramamurthy, P. (1995). FACTORS CONTROLLING THE QUALITY OF RADIOGRAPY AND THE QUALITY ASSURANCE. X-ray, pp. 37-41. Ramon Alcala J, N. G. (2008). La imagen digital y su tratamiento. Cuenca: MIDECIANT Roman V. (2019, 03 29). Aprendizaje Supervisado: Introducción a la Clasificación y Principales Algoritmos. Retrieved from Medium: https://medium.com/datos-y-ciencia/aprendizaje- supervisado-introducci%C3%B3n-a-la-clasificaci%C3%B3n-y-principales-algoritmos- dadee99c9407 Russ, J. (1990). Image Processing. In: Computer-Assisted Microscopy. Boston, MA: Springer. S. Han, C. Q. (2014). Parameter selection in SVM with RBF kernel function. World Automation Congress 2012, Puerto Vallarta, Mexico, pp. 1-4. Sahu SK, P. A. (2015). GP-SVM: Tree Structured Multiclass SVM with Greedy Partitioning. International Conference on Information Technology (ICIT), pp. 142-147. Shamir L, L. S. (2009). Early detection of radiographic knee osteoarthritis using computer-aided analysis. Osteoarthritis and Cartilage, pp. 1307-1312. vol 17. Shamir, L. (2009). Knee X-Ray Image Analysis Method for Automated Detection of Osteoarthritis. IEEE Transactions on Biomedical Engineering, pp. 407-415. Sharma S, S. V. (2016). Detection of Osteoarthritis using SVM. International Conference on Computing for Sustainable Global Development (INDIACom), pp. 2997-3002. Solis Cartas U, C. B. (2018). Comorbidities and quality of life in Osteoarthritis. Revista Cubana de Reumatología, vol.20 no.2. Solis Cartas, U. d. (2014). Osteoartritis. Características sociodemográficas. Revista Cubana de Reumatología, pp. 97-103 no.2. Sonka M, H. V. (2013). Image Processing, Analysis, and Machine Vision. EEUU: Cengage Learning Suykens J. A. K, S. (2001). Nonlinear modelling and support vector machines. 18th IEEE Instrumentation and Measurement Technology Conference, pp. 287-294. Szeliski, R. (2011). Computer Vision. Washington, USA: Springer. Thimmiaraja, J. S. (2014). Histogram Equalization for Image Enhancement Using MRI Brain Images. World Congress on Computing and Communication Technologies, pp. 80-83. Tromberg BJ. (n.d.). Tomografía Computarizada (TC). Retrieved from National Institute of Biomedical Imaging and Bioengieering: https://www.nibib.nih.gov/espanol/temas- cientificos/tomograf%C3%ADa-computarizada-tc Turner A Blackburn, M. E. (1980). Knee Anatomy: A Brief Review. Physical Therapy, pp. 1556- 1560. vol 60, Issue 12. Viatela Ardila, G. (2001). Curso Tecnologia de la Informacion y Comunicaciones por Video Interractivo. Bogota D.C: IICA. Wang R. (2016, 08 19). Soft Margin SVM. Retrieved from Support Vector Machine: http://fourier.eng.hmc.edu/e161/lectures/svm/node5.html Wang, Q. Z. (2012). Algorithm for segmentation based on an improved three-dimensional Otsu's thresholding. International Conference on Computer Science and Network Technology, pp. 1737-1740. Xu K, W. C. (2014). A MapReduce based Parallel SVM for Email. JOURNAL OF NETWORKS, VOL. 9, NO. 6, pp. 1640-1646. Yang Y, W. J. (2012). Improving SVM classifier with prior knowledge in microcalcification detection1. IEEE International Conference on Image Processing, pp. 2837-2840. Yin-Wen C, C.-J. L. (2008). Proceedings of the Workshop on the Causation and Prediction Challenge at WCCI. PMLR, pp. 53-64. Yu, D. L. (2009). Otsu Method and K-means. Ninth International Conference on Hybrid Intelligent Systems, Shenyang, pp. 344-349. Zahurul S, Z. S. (2010). An Adept Edge Detection Algorithm for Human Knee Osteoarthritis Images. International Conference on Signal Acquisition and Processing, pp.375-379. Zhang Y, J. J. (2010). Epidemiology of Osteoarthritis. Clinics in Geriatric Medicine, pp. 355-369. Zhou, S. K. (2016). Medical Image Recognition Segmentation and Parsing. London UK, San Diego CA: ELSEVIER. INC. instname:Universidad Antonio Nariño reponame:Repositorio Institucional UAN repourl:https://repositorio.uan.edu.co/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
Acceso abierto |
dc.rights.license.spa.fl_str_mv |
Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) Acceso abierto https://creativecommons.org/licenses/by-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad Antonio Nariño |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Electrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería Mecánica, Electrónica y Biomédica |
dc.publisher.campus.spa.fl_str_mv |
Neiva Buganviles |
institution |
Universidad Antonio Nariño |
bitstream.url.fl_str_mv |
https://repositorio.uan.edu.co/bitstreams/d7ee6a55-7808-4593-88eb-badb1319f4e6/download https://repositorio.uan.edu.co/bitstreams/2c2710ba-005f-4a6b-8c23-197b3d8576d3/download https://repositorio.uan.edu.co/bitstreams/1d02fb17-ae35-4104-b0df-0bccc71e18ab/download https://repositorio.uan.edu.co/bitstreams/fdd6ebf7-63ef-4520-ab22-b9e3746fe082/download https://repositorio.uan.edu.co/bitstreams/78ee8d49-ff70-444c-99ad-4dce3353128f/download |
bitstream.checksum.fl_str_mv |
8fd33611845305c5880443b4c2e9e27d 2cb870f8f7e57dfa91c0a6f67e06815d ed81d1ad05ff8a9fd7c156464a8b8d83 5812a2eee99d5585fc0c26f0033099bb 45929732dd935afe8b7a333157380579 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UAN |
repository.mail.fl_str_mv |
alertas.repositorio@uan.edu.co |
_version_ |
1814300358888914944 |
spelling |
Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Triana Martínez, Jenniffer CarolinaSanchez Vasquez, Maria JoseBastos Claros, Carlos Alberto10753123241075311566382122332021-03-10T20:24:19Z2021-03-10T20:24:19Z2020-12-02http://repositorio.uan.edu.co/handle/123456789/3159Agarap FA. (2018). A Neural Network Architecture Combining Gated Recurrent Unit (GRU) and Support Vector Machine (SVM) for Intrusion Detection in Network Traffic Data. 10th International Conference on Machine Learning and Computing, pp. 26-30.Alam S, K. M.-Y. (2016). Performance of classification based on PCA, linear SVM, and Multi-kernel SVM. Eighth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 987- 989.Amat Rodrigo J. (2017, 04). Máquinas de Vector Soporte (Support Vector Machines, SVMs). Retrieved from https://www.cienciadedatos.net/documentos/34_maquinas_de_vector_soporte_support_vect or_machines#Informaci%C3%B3n_sesi%C3%B3nArregui Espinoza JM, Y. A. (2016). Utilidad de rayos x digital en el diagnóstico de artrosis de rodilla en pacientes de 50 a 60 años de edad en el Hospital Privado Northospital de la ciudad de Quito. Quito: UCE.Bradley J. Erickson, P. K. (2017). Machine Learning for Medical Imaging. RadioGraphics, vol. 37, no. 2.Braun, H. a. (2012). Diagnosis of osteoarthritis: Imaging. Bone, pp. 278-288.C. Cortes and V. Vapnik. (1995). Support-Vector Networks, Machine Learning. Springer, pp. 273- 297.C. Wang, L. L. (2011). Face Recognition Based on Principle Component Analysis and Support Vector Machine. 3rd International Workshop on Intelligent Systems and Applications, pp.1-4.Caleta, E. (2011). Artritis de la rodilla. Retrieved from Dr. Esteban Caleta Especialista en ortopedia y traumatologia Reemplazos articulares, Cirugia artroscopica: http://www.drestebancaleta.com.ar/index.php?PGN=51Capapé, D. D. (2020). Cirugía Ortopédica y Traumatología Deportiva. Retrieved from Artrosis de rodilla (Gonartrosis): http://doctorlopezcapape.com/cirugia-ortopedica/artrosis-de-rodilla- gonartrosisCardona H.D.V, O. Á. (2014). Automatic Recognition of Microcalcifications in Mammography Images through Fractal Texture Analysis. Springer, Cham, Lecture Notes in Computer Science, vol 8888.Carmona Suarez, E. (2016). Tutorial sobre Máquinas de Vectores Soporte (SVM). Universidad Nacional de Educacion a Distancia (UNED), Madrid- España, pp. 1-27.Cartas Solis U, P. H. (2015). Demography broad in the knees osteoarthritis. Revista Cubana de Reumatología, vol.17 no.1.Chen, P. (2018, 09 03). Knee Osteoarthritis Severity Grading Dataset. Retrieved from Mendeley: https://data.mendeley.com/datasets/56rmx5bjcr/1Cheng-Jin Du, D.-W. S. (2008). Histogram Equalization. ScienceDirect.Dhabhai, A. K. (2016). Empirical Study of Image Classification Techniques to Classify the Image using SVM: A Review. International Journal of Innovative Research in Computer and Communication Engineering, pp. 1-6.Dhabhai. A, K. G. (2016). Empirical Study of Image Classification Techniques to Classify the Image using SVM: A Review. International Journal of Innovative Research in Computer and Communication Engineering, pp. 1-6.drzezo. (2017, 04 20). Imaging for osteoarthritis. Retrieved from PHYSICAL MEDICINE & REHABILITATION : https://musculoskeletalkey.com/imaging-for-osteoarthritis/Farias Concha NM. (2011, 12). MÁQUINAS VECTORIALES HÍBRIDAS PARA CLASIFICAR ACCIDENTES DE TRANSITO EN LA REGION METROPOLITANA . Retrieved from Pontificia Universidad Catolica de Valparaiso : http://opac.pucv.cl/pucv_txt/Txt- 9500/UCF9980_01.pdfFelson, D. (1988). Epidemiology of hip and knee osteoarthritis. Oxford Journals, pp.1-28.Fierro J. (01 de 05 de 2020). Director medico de la Clinica Medilaser de Neiva. (I. d. grado, Entrevistador)Flandry, F. M. (2011). Normal Anatomy and Biomechanics of the Knee. Sports Medicine and Arthroscopy Review, pp. 82-92.FULKERSON J P, G. H. (1980). Anatomy of the Knee Joint Lateral Retinaculum. Clinical Orthopaedics and Related Research, pp. 183-188.Garcia Balboa, J. F. (2018). Homogeneity Test for Confusion Matrices: A Method and an Example. IEEE International Geoscience and Remote Sensing Symposium, pp. 1203-1205.Garcia-Balboa, J. A.-F.-L.-A. (2018). Homogeneity Test for Confusion Matrices: A Method and an Example. IEEE International Geoscience and Remote Sensing Symposium, pp. 1203-1205Gavrilov Z. (n.d.). SVM Tutorial. Retrieved from https://web.mit.edu/zoya/www/SVM.pdfGonzalez R, B. A. (2017). Application of Support Vector Machines (SVM) for clinical diagnosis of Parkinson's Disease and Essential Tremor. Revista Iberoamericana de Automática e Informática Industrial RIAI, pp. 394-405.Guermazi, A. D. (2015). Severe radiographic knee osteoarthritis – does Kellgren and Lawrence grade 4 represent end stage disease? – the MOST study. Osteoarthritis and Cartilage, pp. 1499-1505.Guo H, W. W. (2009). A novel learning model-Kernel Granular Support Vector Machine. International Conference on Machine Learning and Cybernetics, pp. 930-935.Guyon I, G. S. (2008). Freature Extraction Foundation and Aplications. Poland: Springer.Haidekker, M. A. (2011). Advanced Biomedical Image Analysis. New Jersey: John Wiley & Sons. IncHEALTH, S. C. (2020). Lesiones de ligamento de la rodilla. Retrieved from STANFORD CHILDREN'S HEALTH: https://www.stanfordchildrens.org/es/topic/default?id=ligamentinjuriestotheknee-85-P04023Hertzmann A, F. D. (2015). Support Vector Machines. Retrieved from http://www.cs.toronto.edu/~mbrubake/teaching/C11/Handouts/SupportVectorMachines.pdfHu, J. Z. (2009). Curvilinear thresholding method for noisy images based on 2D histogram. IEEE International Conference on Robotics and Biomimetics, pp. 1014-1019.HUAN-JUN, L. y.-N.-F. (2005). A METHOD TO CHOOSE KERNEL FUNCTION AND ITS PARAMETERS FOR SUPPORT VECTOR MACHINES. Fourth International Conference on Machine Learning and CyberneticS, pp. 4277-4280.IArtificial.net. (n.d.). Retrieved from https://www.iartificial.net/maquinas-de-vectores-de-soporte- svm/#:~:text=El%20truco%20del%20kernel%20consiste,con%20una%20superficie%20de% 20decisi%C3%B3nJakkula V. (2006). Tutorial on Support Vector Machine (SVM). Washington State: School of EECS, Washington State University.Khalid, R. R. (2015). Enhanced dynamic quadrant histogram equalization plateau limit for image contrast enhancement. Fifth InternationalConference on Digital Information and Communication Technology and its Applications (DICTAP), pp. 86-91.Kim, K. G. (2016). Deep Learning. Healtcare Informatics Research, pp. 351-354.Koonsanit, K. T. (2017). Image enhancement on digital x-ray images using N-CLAHE. Biomedical Engineering International Conference (BMEiCON), pp. 1-4.Kwang Gi, K. (2016). Deep Learning. Healtcare Informatics Research, pp. 351-354.Lopez Diaz, A. (2018). Fundamentos Matematicos de los Metodos Kernel para Aprendizaje Supervisado. Universidad de Sevilla. DEPARTAMENTO: CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL, pp. 1-73.López Pineda G. (2017, 05). Modelos de regresión para datos funcionales por la metodología de Kernel reproductor en espacios de Hilbert. Retrieved from BUAP: https://repositorioinstitucional.buap.mx/handle/20.500.12371/488López-Portilla Vigil, B. M. (2016). Implementación del Algoritmo de Otsu sobre FPGA. Revista Cubana de Ciencias Informáticas. Retrieved from http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2227- 18992016000300002&lng=es&tlng=es.Lovejoy, C. (2007). The natural history of human gait and posture: Part 3. The knee. Gait & Posture, pp. 325-341.Luijkx, T. &. (2016). Kellgren and Lawrence system for classification of osteoarthritis of knee. Retrieved from http://radiopaedia. org/articles/kellgren-and-lawrencesystem-for- classification-of-osteoarthritis-of-kneeMark D. Kohn, A. A. (2016). Classifications in Brief: Kellgren-Lawrence Classification of Osteoarthritis. Clinical Orthopaedics and Related Research, pp. 1886-1893.Martinez Figueroa R, M. F. (2017). Knee Osteoarthritis (osteoarthrosis). Revista Chilena de Ortopedia y Traumatología, pp. 45-51.Martinez, D. A. (2020, 05 28). Caracteristicas mas relevantes de la rodilla. (M. J. Bastos, Interviewer)Martínez, V. G. (2013). TÉCNICAS DE UMBRALIZACIÓN PARA LA DETECCIÓN DE ANOMALÍAS EN LA PARED AÓRTICA MEDIANTE OCT. UNIVERSIDAD DE CANTABRIA.Matlab. (2020). MathWorks. Retrieved from regionprops: https://www.mathworks.com/help/images/ref/regionprops.htmlMatlab. (2020). MathWorks. Retrieved from Support Vector Machines for Binary Classification: https://www.mathworks.com/help/stats/support-vector-machines-for-binary-classification.htmlMatlab. (2020). MathWorks. Retrieved from Support Vector Machines for Binary Classification: https://www.mathworks.com/help/stats/support-vector-machines-for-binary-classification.htmlMLMath.io. (2013, 02 13). Math behind SVM(Support Vector Machine). Retrieved from https://medium.com/@ankitnitjsr13/math-behind-svm-support-vector-machine-864e58977fdbMLMath.io. (2019, 02 09). Deep Learning. Retrieved from Math behind SVM (Support Vector Machine): https://medium.com/@ankitnitjsr13/math-behind-support-vector-machine-svm- 5e7376d0ee4d#:~:text=SVM%20is%20one%20of%20the,versatile%20supervised%20machi ne%20learning%20algorithm.&text=The%20main%20objective%20of%20SVM,blue%20and %20pink%20classes%20ballsMori, M. (2010). Preprocessing techiniques in character recognition. Rijeka, Croatia: Character Recognition.Moya-Angeler J, V. J. (2016). Valuation of the degenerative process joint of the knee by magnetic resonance imaging. Revista Latinoamericana de Cirugía Ortopédica, pp. 88-94.Navale DI, H. R. (2015). Block based texture analysis approach for knee osteoarthritis identification using SVM. IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), pp. 338-341Noble, W. (2006). What is a support vector machine? Nat Biotechnol , pp. 1565-1567.OTSU N. (1979). A Tlreshold Selection Method from Gray-Level Histograms. 2EEE TRANSACTIONS ON SYSTREMS, MAN, AND CYBERNETICS, VOL. SMC-9, NO. 1, pp.62- 66Pandey, M. B. (2018). An anatomization of noise removal techniques on medical image. International Conference on Innovation and Challenges in Cyber Security (ICICCS- INBUSH), pp. 224–229.Paoletti ME, H. M. (2020). Estudio Comparativo de Técnicas de Clasificación de Imágenes Hiperespectrales. Revista Iberoamericana de Automática e Informática industrial, pp. 129- 137.Patin aka, F. (2003). An Introduction To Digital Image Processing. pp.1-49.Pineda, G. L. (2017). Modelos de regresión para datos funcionales por la metodología de Kernel reproductor en espacios de Hilbert. Benemérita Universidad Autónoma de Puebla. Retrieved from https://hdl.handle.net/20.500.12371/488Pizzi, N. P. (2006). Confusion Matrix. ScienceDirect.Q. Wang, H. Z. (2012). Algorithm for segmentation based on an improved three-dimensional Otsu's thresholding. International Conference on Computer Science and Network Technology, pp. 1737-1740.Rajith B., S. M. (2016). Edge Preserved De-noising Method for Medical X-Ray Images Using Wavelet Packet Transformation. Emerging Research in Computing, Information, Communication and Applications. Springer, New Delhi.Rajith, B. S. (2016). Edge Preserved De-noising Method for Medical X-Ray Images Using Wavelet Packet Transformation. Emerging Research in Computing, Information, Communication and Applications. Springer, New Delhi.Ramamurthy, P. (1995). FACTORS CONTROLLING THE QUALITY OF RADIOGRAPY AND THE QUALITY ASSURANCE. X-ray, pp. 37-41.Ramon Alcala J, N. G. (2008). La imagen digital y su tratamiento. Cuenca: MIDECIANTRoman V. (2019, 03 29). Aprendizaje Supervisado: Introducción a la Clasificación y Principales Algoritmos. Retrieved from Medium: https://medium.com/datos-y-ciencia/aprendizaje- supervisado-introducci%C3%B3n-a-la-clasificaci%C3%B3n-y-principales-algoritmos- dadee99c9407Russ, J. (1990). Image Processing. In: Computer-Assisted Microscopy. Boston, MA: Springer.S. Han, C. Q. (2014). Parameter selection in SVM with RBF kernel function. World Automation Congress 2012, Puerto Vallarta, Mexico, pp. 1-4.Sahu SK, P. A. (2015). GP-SVM: Tree Structured Multiclass SVM with Greedy Partitioning. International Conference on Information Technology (ICIT), pp. 142-147.Shamir L, L. S. (2009). Early detection of radiographic knee osteoarthritis using computer-aided analysis. Osteoarthritis and Cartilage, pp. 1307-1312. vol 17.Shamir, L. (2009). Knee X-Ray Image Analysis Method for Automated Detection of Osteoarthritis. IEEE Transactions on Biomedical Engineering, pp. 407-415.Sharma S, S. V. (2016). Detection of Osteoarthritis using SVM. International Conference on Computing for Sustainable Global Development (INDIACom), pp. 2997-3002.Solis Cartas U, C. B. (2018). Comorbidities and quality of life in Osteoarthritis. Revista Cubana de Reumatología, vol.20 no.2.Solis Cartas, U. d. (2014). Osteoartritis. Características sociodemográficas. Revista Cubana de Reumatología, pp. 97-103 no.2.Sonka M, H. V. (2013). Image Processing, Analysis, and Machine Vision. EEUU: Cengage LearningSuykens J. A. K, S. (2001). Nonlinear modelling and support vector machines. 18th IEEE Instrumentation and Measurement Technology Conference, pp. 287-294.Szeliski, R. (2011). Computer Vision. Washington, USA: Springer.Thimmiaraja, J. S. (2014). Histogram Equalization for Image Enhancement Using MRI Brain Images. World Congress on Computing and Communication Technologies, pp. 80-83.Tromberg BJ. (n.d.). Tomografía Computarizada (TC). Retrieved from National Institute of Biomedical Imaging and Bioengieering: https://www.nibib.nih.gov/espanol/temas- cientificos/tomograf%C3%ADa-computarizada-tcTurner A Blackburn, M. E. (1980). Knee Anatomy: A Brief Review. Physical Therapy, pp. 1556- 1560. vol 60, Issue 12.Viatela Ardila, G. (2001). Curso Tecnologia de la Informacion y Comunicaciones por Video Interractivo. Bogota D.C: IICA.Wang R. (2016, 08 19). Soft Margin SVM. Retrieved from Support Vector Machine: http://fourier.eng.hmc.edu/e161/lectures/svm/node5.htmlWang, Q. Z. (2012). Algorithm for segmentation based on an improved three-dimensional Otsu's thresholding. International Conference on Computer Science and Network Technology, pp. 1737-1740.Xu K, W. C. (2014). A MapReduce based Parallel SVM for Email. JOURNAL OF NETWORKS, VOL. 9, NO. 6, pp. 1640-1646.Yang Y, W. J. (2012). Improving SVM classifier with prior knowledge in microcalcification detection1. IEEE International Conference on Image Processing, pp. 2837-2840.Yin-Wen C, C.-J. L. (2008). Proceedings of the Workshop on the Causation and Prediction Challenge at WCCI. PMLR, pp. 53-64.Yu, D. L. (2009). Otsu Method and K-means. Ninth International Conference on Hybrid Intelligent Systems, Shenyang, pp. 344-349.Zahurul S, Z. S. (2010). An Adept Edge Detection Algorithm for Human Knee Osteoarthritis Images. International Conference on Signal Acquisition and Processing, pp.375-379.Zhang Y, J. J. (2010). Epidemiology of Osteoarthritis. Clinics in Geriatric Medicine, pp. 355-369.Zhou, S. K. (2016). Medical Image Recognition Segmentation and Parsing. London UK, San Diego CA: ELSEVIER. INC.instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/PropiaThe purpose of this project is to implement a Support Vector Machine (SVM) classifier, based on the Kellgren-Lawrence (KL) grade classification method, and the use of X-ray images (XR), with the objective of supporting the trauma specialist's diagnosis in the detection of knee Osteoarthritis (OA) grade according to the above-mentioned classification, in Orthopedic and Traumatology of the Medilaser Clinic of Neiva treated between the months of June and August 2020. It is expected that this project will allow the categorization of the degree of Osteoarthritis (OA) of the knee supporting the diagnosis of the specialist, in such a way that the amount of tests in addition to those previously named is minimized to determine a diagnosis of this pathology.El propósito de este proyecto es implementar un clasificador de Máquina de Vectores de Soporte (SVM), basándose en el método de clasificación de la Escala de Kellgren-Lawrence (KL), y la utilización de imágenes de rayos x (RX), con el objetivo de apoyar en el diagnóstico del especialista en traumatología en la detección del grado Osteoartritis (OA) de rodilla de acuerdo a la clasificación antes mencionada, en pacientes de Ortopedia y Traumatología de la Clínica Medilaser de Neiva tratados entre los meses de junio y agosto de 2020. Se espera que este proyecto permita categorizar el grado de Osteoartritis (OA) de rodilla apoyando el diagnóstico del especialista, de tal manera que se minimice la cantidad de pruebas además de las nombradas anteriormente para determinar un diagnóstico de esta patología.OtroIngeniero(a) Electrónico(a)PregradoFinanciación estudiantes 2'270.000 COP, Financiación UAN 1'009.520 COPPresencialspaUniversidad Antonio NariñoIngeniería ElectrónicaFacultad de Ingeniería Mecánica, Electrónica y BiomédicaNeiva BuganvilesOsteoartritisSVMAprendizaje de máquinaCaracterísticas Kellgren-LawrenceRayos XOsteoarthritisSVMMachine LearningKellgren-Lawrence FeaturesX- RayClasificador de Máquinas de Vectores de Soporte para el Apoyo en la Detección del Grado I y II de Osteoartritis de Rodilla Según Kellgren- Lawrence Mediante Imágenes de Rayos X.Trabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85ORIGINAL2020MariaJoseSanchezVasquez.pdf2020MariaJoseSanchezVasquez.pdfTrabajo de gradoapplication/pdf2328980https://repositorio.uan.edu.co/bitstreams/d7ee6a55-7808-4593-88eb-badb1319f4e6/download8fd33611845305c5880443b4c2e9e27dMD5172020AutorizaciondeAutores2.pdf2020AutorizaciondeAutores2.pdfAutorización de Autoresapplication/pdf367575https://repositorio.uan.edu.co/bitstreams/2c2710ba-005f-4a6b-8c23-197b3d8576d3/download2cb870f8f7e57dfa91c0a6f67e06815dMD5182020AutorizaciondeAutores.pdf2020AutorizaciondeAutores.pdfAutorización de Autoresapplication/pdf340528https://repositorio.uan.edu.co/bitstreams/1d02fb17-ae35-4104-b0df-0bccc71e18ab/downloaded81d1ad05ff8a9fd7c156464a8b8d83MD519CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uan.edu.co/bitstreams/fdd6ebf7-63ef-4520-ab22-b9e3746fe082/download5812a2eee99d5585fc0c26f0033099bbMD528LICENSElicense.txtlicense.txttext/plain; charset=utf-83277https://repositorio.uan.edu.co/bitstreams/78ee8d49-ff70-444c-99ad-4dce3353128f/download45929732dd935afe8b7a333157380579MD529123456789/3159oai:repositorio.uan.edu.co:123456789/31592024-10-09 22:55:47.79https://creativecommons.org/licenses/by-nd/4.0/Acceso abiertoopen.accesshttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.coQWwgaW5jbHVpciBpbmZvcm1hY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVTklWRVJTSURBRCBBTlRPTklPIE5BUknDkU8sIGVsIGF1dG9yKGVzKSwgY3JlYWRvciAoZXMpLCBpbnZlbnRvciAoZXMpICBhdXRvcml6YW4gYWwgU2lzdGVtYSBOYWNpb25hbCBkZSBCaWJsaW90ZWNhcyBwYXJhIGFsbWFjZW5hciB5IG1hbnRlbmVyIGxhIGluZm9ybWFjacOzbiwgY29uIGZpbmVzIGFjYWTDqW1pY29zIHkgbm8gY29tZXJjaWFsZXMgZW4gdXNvIGRlIGxhcyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgcG9uZ2EgYSBkaXNwb3NpY2nDs24gZGUgbGEgY29tdW5pZGFkIHN1cyBjb250ZW5pZG9zIGTDoW5kb2xlIHZpc2liaWxpZGFkIGEgbG9zIG1pc21vcywgc2UgZW50aWVuZGUgcXVlIGVsKGxvcykgYXV0b3IoZXMpIGFjZXB0YShuKToKCjEuCVF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBsYSBJbnN0aXR1Y2nDs24gcHVlZGFuIGNvbnN1bHRhciBlbCBjb250ZW5pZG8gZGUgZXN0ZSBkb2N1bWVudG8geS9vIHJlY3Vyc29zIGVuIGxvcyBzaXRpb3Mgd2ViIHF1ZSBhZG1pbmlzdHJhIGxhIFVuaXZlcnNpZGFkIEFudG9uaW8gTmFyacOxbywgZW4gQmFzZSBkZSBEYXRvcywgZW4gb3Ryb3MgQ2F0w6Fsb2dvcyB5IGVuIG90cm9zIHNpdGlvcyBXZWIsIFJlZGVzIHkgU2lzdGVtYXMgZGUgSW5mb3JtYWNpw7NuIG5hY2lvbmFsZXMgZSBpbnRlcm5hY2lvbmFsZXMg4oCcQWNjZXNvIGFiaWVydG8gKE9wZW4gQWNjZXNzKSDigJ0geSBlbiBsYXMgcmVkZXMgZGUgaW5mb3JtYWNpw7NuIGRlbCBwYcOtcyB5IGRlbCBleHRlcmlvciwgY29uIGxhcyBjdWFsZXMgdGVuZ2EgY29udmVuaW8gbGEgVW5pdmVyc2lkYWQgQW50b25pbyBOYXJpw7FvLgoKMi4JUXVlIHNlIHBlcm1pdGUgbGEgY29uc3VsdGEgYSBsb3MgdXN1YXJpb3MgaW50ZXJlc2Fkb3MgZW4gZWwgY29udGVuaWRvIGRlIGVzdGUgZG9jdW1lbnRvIHkvbyByZWN1cnNvcywgY29uIGZpbmFsaWRhZCBhY2Fkw6ltaWNhLCBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIHNpZW1wcmUgeSBjdWFuZG8gbWVkaWFudGUgbGEgY29ycmVzcG9uZGllbnRlIGNpdGEgYmlibGlvZ3LDoWZpY2Egc2UgbGUgZMOpIGNyw6lkaXRvICBhbCBkb2N1bWVudG8geS9vIHJlY3Vyc28geSBhIHN1IGF1dG9yIChlcyksIGNyZWFkb3IoZXMpIG8gaW52ZW50b3IoZXMpIC4gRXN0byBpbmNsdXllIGN1YWxxdWllciBmb3JtYXRvIGRpc3BvbmlibGUgY29ub2NpZG8gbyBwb3IgY29ub2NlciBvIGN1YWxxdWllciB0aXBvIGRlIHJlcHJvZHVjY2nDs24gZsOtc2ljYSwgZGlnaXRhbCBvIGZvcm1hdG8gZGlnaXRhbCBjb25vY2lkbyBvIHBvciAgY29ub2Nlci4KCjMuCVF1ZSBsb3MgZGVyZWNob3Mgc29icmUgbG9zIGRvY3VtZW50b3Mgc29uIHByb3BpZWRhZCBkZWwgYXV0b3IgbyBkZSBsb3MgYXV0b3JlcyAsIGNyZWFkb3IgKGVzKSBvIGludmVudG9yIChlcykscXVlIHRpZW5lbiBzb2JyZSBzdSBvYnJhLCBpbnZlbmNpw7NuIG8gY3JlYWNpw7NuICwgZW50cmUgb3Ryb3MsIGxvcyBkZXJlY2hvcyBtb3JhbGVzIGEgcXVlIGhhY2VuIHJlZmVyZW5jaWEgY29uc2VydmFuZG8gbG9zIGNvcnJlc3BvbmRpZW50ZXMgZGVyZWNob3Mgc2luIG1vZGlmaWNhY2nDs24gbyByZXN0cmljY2nDs24gYWxndW5hIHB1ZXN0byBxdWUsIGRlIGFjdWVyZG8gY29uIGxhIGxlZ2lzbGFjacOzbiBjb2xvbWJpYW5hIGUgaW50ZXJuYWNpb25hbCBhcGxpY2FibGUsIGVsIHByZXNlbnRlIGVzIHVuYSBhdXRvcml6YWNpw7NuIHF1ZSBlbiBuaW5nw7puIGNhc28gY29ubGxldmEgbGEgZW5hamVuYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciB5IHN1cyBkZXJlY2hvcyBjb25leG9zICwgYXPDrSBjb21vIGxvcyBkZXJlY2hvcyBlbiBjYWJlemEgZGUgY3JlYWRvcmVzIG8gaW52ZW50b3Jlcy4KCjQuCVF1ZSBlbCBTaXN0ZW1hIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIEFudG9uaW8gTmFyacOxbyBwdWVkYSBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIHkvbyByZWN1cnNvICBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgYXPDrSBjb21vIGxhIERlY2lzacOzbiBBbmRpbmEgNDg2IGRlIDIwMDAgc29icmUgcHJvcGllZGFkIGludGVsZWN0dWFsIGluZHVzdHJpYWwgIHkgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSwgdXRpbGljZSB5IHVzZSBlbiB0b2RhcyBzdXMgZm9ybWFzLCBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuIHDDumJsaWNhLCB0cmFuc2Zvcm1hY2nDs24gKGVuIGRlcmVjaG9zIGRlIGF1dG9yICkgY29tbyBwcm9waWVkYWQgaW5kdXN0cmlhbCBmcmVudGUgYSBsYSBkaXN0cmlidWNpw7NuIGRlIGxhIGluZm9ybWFjacOzbiBpbmNsdWlkYSBlbiBlc3RlIHJlcG9zaXRvcmlvLgoKNS4JUXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgVW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZTsgYXPDrSBtaXNtbyBlbCBhY8OhIGZpcm1hbnRlIGRlamFyw6EgaW5kZW1uZSBhIGxhIFVuaXZlcnNpZGFkIGRlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBwZXJqdWljaW8uCg== |