Implementación y evaluación de un sistema de detección mediante la captura de imágenes para la clasificación de estrabismo, utilizando redes neuronales convolucionales

The diagnosis of strabismus, is very important to do in time during childhood, strabismus affects between 2% and 4% of the world population in children because this condition produces amblyopia, which consists of the loss of vision in the deviated eye, once developed the amblyopia, it cannot be trea...

Full description

Autores:
Córdoba Tamayo, Jaime Alejandro
Jáuregui Yustes, Juan José
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/6208
Acceso en línea:
http://repositorio.uan.edu.co/handle/123456789/6208
Palabra clave:
estrabismo
red neuronal convolucional
detección
strabismus
convolutional neural network
detection
Rights
openAccess
License
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
Description
Summary:The diagnosis of strabismus, is very important to do in time during childhood, strabismus affects between 2% and 4% of the world population in children because this condition produces amblyopia, which consists of the loss of vision in the deviated eye, once developed the amblyopia, it cannot be treated, because the brain inhibits the signal from the deviated eye, resulting in the gradual and permanent loss of visual acuity in the affected eye.Convolutional neural networks were used for this study, In order to detect strabismus in patient images, the model used is DenseNet 201, an architecture designed for image classification tasks, trained by a set of own images, acquired by the authors, consisting of 332 images.