Diseño de control PID para un mecanismo con movimiento espacial ajustado al IoT

Throughout the history of humanity, the main objective of technological advances has been to facilitate tasks or processes for human beings, some automatisms are even capable of replacing human labor by one hundred percent, as well as the same It works through collaboration between human capacities...

Full description

Autores:
Franco Mendoza, José Luis
Murillo Anacona, Carlos David
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/2540
Acceso en línea:
http://repositorio.uan.edu.co/handle/123456789/2540
Palabra clave:
PID
Motor DC
MBED
Industria 5.0
MQTT
PID
DC motor
MBED
Industry 5.0
MQTT
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
id UAntonioN2_e18087be54abaf47146b211939b5ea74
oai_identifier_str oai:repositorio.uan.edu.co:123456789/2540
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
dc.title.es_ES.fl_str_mv Diseño de control PID para un mecanismo con movimiento espacial ajustado al IoT
title Diseño de control PID para un mecanismo con movimiento espacial ajustado al IoT
spellingShingle Diseño de control PID para un mecanismo con movimiento espacial ajustado al IoT
PID
Motor DC
MBED
Industria 5.0
MQTT
PID
DC motor
MBED
Industry 5.0
MQTT
title_short Diseño de control PID para un mecanismo con movimiento espacial ajustado al IoT
title_full Diseño de control PID para un mecanismo con movimiento espacial ajustado al IoT
title_fullStr Diseño de control PID para un mecanismo con movimiento espacial ajustado al IoT
title_full_unstemmed Diseño de control PID para un mecanismo con movimiento espacial ajustado al IoT
title_sort Diseño de control PID para un mecanismo con movimiento espacial ajustado al IoT
dc.creator.fl_str_mv Franco Mendoza, José Luis
Murillo Anacona, Carlos David
dc.contributor.advisor.spa.fl_str_mv Cucaita Goméz, Alexander
dc.contributor.author.spa.fl_str_mv Franco Mendoza, José Luis
Murillo Anacona, Carlos David
dc.subject.es_ES.fl_str_mv PID
Motor DC
MBED
Industria 5.0
MQTT
topic PID
Motor DC
MBED
Industria 5.0
MQTT
PID
DC motor
MBED
Industry 5.0
MQTT
dc.subject.keyword.es_ES.fl_str_mv PID
DC motor
MBED
Industry 5.0
MQTT
description Throughout the history of humanity, the main objective of technological advances has been to facilitate tasks or processes for human beings, some automatisms are even capable of replacing human labor by one hundred percent, as well as the same It works through collaboration between human capacities with the facilities offered by intelligent machines. One of the most used technologies in all types of assisted, semi-assisted or automatic processes is the PID controller, due to its robustness, efficiency and precision, this combined with other components such as actuators and instrumentation devices, form intelligent mechanisms that now range from hand in hand with the internet of things and wireless communication, thus achieving total control over the machines from every point of view. In this project, a prototype-level design is carried out that complies with what has been described, where together with the automated process by a PID controller, the position in two axes of an object is controlled, in the same way applications are suggested for the prototype together with a bibliographic review accompanied by a proposal for the integration of the prototype designed in the concept of Industry 5.0, in this way you will find a book divided into 5 chapters, the first one refers to the bibliographic review and the conceptualization of the future processes to be used, the second describes the process of designing the PID controller, the third relates the design of an Android application with the communication protocol that the project will involve in the world of IoT. In the fourth chapter, the general implementation of the prototype is described, explaining the components and how the previously mentioned processes were joined, and finally in chapter 5 there are the conclusions and recommendations for future projects.
publishDate 2020
dc.date.issued.spa.fl_str_mv 2020-05-30
dc.date.accessioned.none.fl_str_mv 2021-03-03T19:50:18Z
dc.date.available.none.fl_str_mv 2021-03-03T19:50:18Z
dc.type.spa.fl_str_mv Trabajo de grado (Pregrado y/o Especialización)
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://repositorio.uan.edu.co/handle/123456789/2540
dc.identifier.bibliographicCitation.spa.fl_str_mv Aslam, F., Aimin, W., Li, M., & Rehman, K. U. (2020). Innovation in the era of IoT and industry 5.0: Absolute innovation management (AIM) framework. Information (Switzerland), 11(2). https://doi.org/10.3390/info11020124
Åström, K. J., & Hägglund, T. (2009). Control PID avanzado.
Benjamin-c-kuo. (1996). sistemas de control automatico.
Carlos, R. J. G., Ramirez, J. L., & Lancheros-Cuesta, D. (2017). Control de posición de motor DC por medio de espacio de estados para plataforma rotativa. Iberian Conference on Information Systems and Technologies, CISTI. https://doi.org/10.23919/CISTI.2017.7975741
Chapman, S. J. (2012). Maquinas electricas.
Cova, W. J. D. (2005). Control Pid Un Enfoque Descriptivo. 45.
Cuero, J. (2018). Prototipo para modelar y controlar un motor DC Prototype for modeling and controling a DC motor. 12(1), 65–72. https://doi.org/10.14483/22484728.13754
Demir, K. A. (2017). Research Questions in Roboethics. Mugla Journal of Science and Technology, December 2017, 160–165. https://doi.org/10.22531/muglajsci.359648; https://doi.org/10.1016/j.procs.2019.09.104
Dorf, R. C., & Bishop, R. H. (2005). Sistemas de Control Moderno. In Pearson Educación S.A.: Vol. 10 ed. (pp. 1–6).
Draft, C. S., & Draft, P. R. (2013). MQTT. July, 1–63.
Durdu, A., & Dursun, E. H. (2019). Sliding mode control for position tracking of servo system with a variable loaded DC motor. Elektronika Ir Elektrotechnika, 25(4), 8–16. https://doi.org/10.5755/j01.eie.25.4.23964
Elsrogy, W. M., Fkirin, M. A., & Hassan, M. A. M. (2013). Speed control of DC motor using PID controller based on Matlab. 2013 International Conference on Control, Decision and Information Technologies, CoDIT 2013, 4(6), 196–201. https://doi.org/10.1109/CoDIT.2013.6689543
Ferheen, A., & Chidambaram, M. (2017). DESIGN OF ROBUST PID CONTROLLER. 2017 Trends in Industrial Measurement and Automation (TIMA), 1–7.
Fernando Firmino. (2014). Estudo Comparativo de Métodos de Sintonia de Controladores PID. 90.
Fraile-Mora, J. (2003). Máquinas Eléctricas - Jesús Fraile Mora (5ta Edición).pdf. FRDM-K64F | Mbed. (n.d.). Retrieved April 21, 2020, from https://os.mbed.com/platforms/FRDM-K64F/
Guia de usuario. (n.d.). Introducción a Android Studio | Desarrolladores de Android. Retrieved May 21, 2020, from https://developer.android.com/studio/intro?hl=es-419
Lee, J., Stanley, M., Spanias, A., & Tepedelenlioglu, C. (2017). Integrating machine learning in embedded sensor systems for Internet-of-Things applications. 2016 IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2016, 290–294. https://doi.org/10.1109/ISSPIT.2016.7886051
Majumdar, J., C Gupta, S., & Prassanna Prasath, B. (2018). Linear and Non-Linear Control Design of Skid Steer Mobile Robot on an Embedded. IAES International Journal of Robotics and Automation (IJRA), 7(3), 185. https://doi.org/10.11591/ijra.v7i3.pp185-196
Maloney, T. J. (1983). Electronica Industrial Dispositivos y Sistemas (p. 586). Martín Rodríguez, J. A. (2012). Sistema de posicionado angular automatizado , configurado y sincronizable para muestras de hormigón.
Mayor, U., & Andres, D. E. S. A. N. (2001). Apuntes de control pid. Miawarni, H., Setyawan, D. E., Setijadi, E., Hidayat, M. M., & Sumpeno, S. (2018). Tracking antenna system design for DVB-T2 set top box based on fuzzy inference system. Proceedings of 2018 10th International Conference on Information Technology and Electrical Engineering: Smart Technology for Better Society, ICITEE 2018, 214–219. https://doi.org/10.1109/ICITEED.2018.8534838
Nahavandi, S. (2019). Industry 5.0-a human-centric solution. Sustainability (Switzerland), 11(16). https://doi.org/10.3390/su11164371
Narendra, A., Naik, N. V. R., Panda, A. K., & Tiwary, N. (2019). A Real Time Implementation of PV Driven DC Motor along with Wireless Control. 2019 10th International Conference on Computing, Communication and Networking Technologies, ICCCNT 2019, 1–4. https://doi.org/10.1109/ICCCNT45670.2019.8944779
Natalia, E., Mendoza, A., Fernando, W., & Suarez, B. (2016). Prototype for Automatic Orientation of Solar Panels. Revista Publicaciones e Investigación, 11, 103–111.
Navarro Salas, R. (2017). Máquinas eléctricas y sistemas de potencia - Google Books. https://books.google.com.co/books?id=ehxKXip1j6EC&printsec=frontcover&dq=maquinas+electricas&hl=es-419&sa=X&ved=0ahUKEwi26K6m5MnOAhVFGx4KHaduADkQ6AEIMjAC#v=onepage&q=maquinas electricas&f=false
Ogata, K. (2003). Ingenieria de control moderno. Özdemir, V., & Hekim, N. (2018). Birth of Industry 5.0: Making Sense of Big Data with Artificial Intelligence, “the Internet of Things” and Next-Generation Technology Policy. OMICS A Journal of Integrative Biology, 22(1), 65–76. https://doi.org/10.1089/omi.2017.0194
Pardo, C. (n.d.). Controlador PID - Control Automático. Retrieved May 21, 2020, from https://www.picuino.com/es/arduprog/control-pid.html
Pathak, P., Pal, P. R., Shrivastava, M., & Ora, P. (2019). Fifth revolution: Applied AI & human intelligence with cyber physical systems. International Journal of Engineering and Advanced Technology, 8(3), 23–27.
Quimbita, C., & Sandoval, E. (2018). CONTROL DE VELOCIDAD DE UN MOTOR DC, UTILIZANDO CONTROLADORES PID. Escuela Politócnica Nacional.
Rairán-Antolines, J. D., & Fonseca-Gómez, J. M. (2011). Doble lazo de control para regular la posición y la velocidad en un motor de corriente directa. Ingenieria y Universidad, 15(2), 337–357.
Shenzhen Anxinke Technology CO;LTD. (2015). ESP-12E WiFi Module. Skobelev, D. S. P. O., & Borovik, D. S. S. Y. (2018). ON THE WAY FROM INDUSTRY 4.0 TO INDUSTRY 5.0: FROM DIGITAL MANUFACTURING TO DIGITAL SOCIETY. In International Scientific Journal I N D U S T R Y 4 . 0 (Issue 5, pp. 307–311).
Vilanova, R. (2011). Tutorial Control PID robusto : Una visi ´ on panor ´ amica. 8, 141–158. https://doi.org/10.1016/j.riai.2011.06.003
Yao, X., Guo, L., Wu, L., & Dong, H. (2017). Static anti-windup design for nonlinear Markovian jump systems with multiple disturbances. Information Sciences, 418–419, 169–183. https://doi.org/10.1016/j.ins.2017.08.006
Yuan, M. (2017). Conociendo MQTT. https://www.ibm.com/developerworks/ssa/library/iot-mqtt-why-good-for-iot/index.html
Zambon, I., Cecchini, M., Egidi, G., Saporito, M. G., & Colantoni, A. (2019). Revolution 4.0: Industry vs. agriculture in a future development for SMEs. Processes, 7(1). https://doi.org/10.3390/pr7010036
dc.identifier.instname.spa.fl_str_mv instname:Universidad Antonio Nariño
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UAN
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uan.edu.co/
url http://repositorio.uan.edu.co/handle/123456789/2540
identifier_str_mv Aslam, F., Aimin, W., Li, M., & Rehman, K. U. (2020). Innovation in the era of IoT and industry 5.0: Absolute innovation management (AIM) framework. Information (Switzerland), 11(2). https://doi.org/10.3390/info11020124
Åström, K. J., & Hägglund, T. (2009). Control PID avanzado.
Benjamin-c-kuo. (1996). sistemas de control automatico.
Carlos, R. J. G., Ramirez, J. L., & Lancheros-Cuesta, D. (2017). Control de posición de motor DC por medio de espacio de estados para plataforma rotativa. Iberian Conference on Information Systems and Technologies, CISTI. https://doi.org/10.23919/CISTI.2017.7975741
Chapman, S. J. (2012). Maquinas electricas.
Cova, W. J. D. (2005). Control Pid Un Enfoque Descriptivo. 45.
Cuero, J. (2018). Prototipo para modelar y controlar un motor DC Prototype for modeling and controling a DC motor. 12(1), 65–72. https://doi.org/10.14483/22484728.13754
Demir, K. A. (2017). Research Questions in Roboethics. Mugla Journal of Science and Technology, December 2017, 160–165. https://doi.org/10.22531/muglajsci.359648; https://doi.org/10.1016/j.procs.2019.09.104
Dorf, R. C., & Bishop, R. H. (2005). Sistemas de Control Moderno. In Pearson Educación S.A.: Vol. 10 ed. (pp. 1–6).
Draft, C. S., & Draft, P. R. (2013). MQTT. July, 1–63.
Durdu, A., & Dursun, E. H. (2019). Sliding mode control for position tracking of servo system with a variable loaded DC motor. Elektronika Ir Elektrotechnika, 25(4), 8–16. https://doi.org/10.5755/j01.eie.25.4.23964
Elsrogy, W. M., Fkirin, M. A., & Hassan, M. A. M. (2013). Speed control of DC motor using PID controller based on Matlab. 2013 International Conference on Control, Decision and Information Technologies, CoDIT 2013, 4(6), 196–201. https://doi.org/10.1109/CoDIT.2013.6689543
Ferheen, A., & Chidambaram, M. (2017). DESIGN OF ROBUST PID CONTROLLER. 2017 Trends in Industrial Measurement and Automation (TIMA), 1–7.
Fernando Firmino. (2014). Estudo Comparativo de Métodos de Sintonia de Controladores PID. 90.
Fraile-Mora, J. (2003). Máquinas Eléctricas - Jesús Fraile Mora (5ta Edición).pdf. FRDM-K64F | Mbed. (n.d.). Retrieved April 21, 2020, from https://os.mbed.com/platforms/FRDM-K64F/
Guia de usuario. (n.d.). Introducción a Android Studio | Desarrolladores de Android. Retrieved May 21, 2020, from https://developer.android.com/studio/intro?hl=es-419
Lee, J., Stanley, M., Spanias, A., & Tepedelenlioglu, C. (2017). Integrating machine learning in embedded sensor systems for Internet-of-Things applications. 2016 IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2016, 290–294. https://doi.org/10.1109/ISSPIT.2016.7886051
Majumdar, J., C Gupta, S., & Prassanna Prasath, B. (2018). Linear and Non-Linear Control Design of Skid Steer Mobile Robot on an Embedded. IAES International Journal of Robotics and Automation (IJRA), 7(3), 185. https://doi.org/10.11591/ijra.v7i3.pp185-196
Maloney, T. J. (1983). Electronica Industrial Dispositivos y Sistemas (p. 586). Martín Rodríguez, J. A. (2012). Sistema de posicionado angular automatizado , configurado y sincronizable para muestras de hormigón.
Mayor, U., & Andres, D. E. S. A. N. (2001). Apuntes de control pid. Miawarni, H., Setyawan, D. E., Setijadi, E., Hidayat, M. M., & Sumpeno, S. (2018). Tracking antenna system design for DVB-T2 set top box based on fuzzy inference system. Proceedings of 2018 10th International Conference on Information Technology and Electrical Engineering: Smart Technology for Better Society, ICITEE 2018, 214–219. https://doi.org/10.1109/ICITEED.2018.8534838
Nahavandi, S. (2019). Industry 5.0-a human-centric solution. Sustainability (Switzerland), 11(16). https://doi.org/10.3390/su11164371
Narendra, A., Naik, N. V. R., Panda, A. K., & Tiwary, N. (2019). A Real Time Implementation of PV Driven DC Motor along with Wireless Control. 2019 10th International Conference on Computing, Communication and Networking Technologies, ICCCNT 2019, 1–4. https://doi.org/10.1109/ICCCNT45670.2019.8944779
Natalia, E., Mendoza, A., Fernando, W., & Suarez, B. (2016). Prototype for Automatic Orientation of Solar Panels. Revista Publicaciones e Investigación, 11, 103–111.
Navarro Salas, R. (2017). Máquinas eléctricas y sistemas de potencia - Google Books. https://books.google.com.co/books?id=ehxKXip1j6EC&printsec=frontcover&dq=maquinas+electricas&hl=es-419&sa=X&ved=0ahUKEwi26K6m5MnOAhVFGx4KHaduADkQ6AEIMjAC#v=onepage&q=maquinas electricas&f=false
Ogata, K. (2003). Ingenieria de control moderno. Özdemir, V., & Hekim, N. (2018). Birth of Industry 5.0: Making Sense of Big Data with Artificial Intelligence, “the Internet of Things” and Next-Generation Technology Policy. OMICS A Journal of Integrative Biology, 22(1), 65–76. https://doi.org/10.1089/omi.2017.0194
Pardo, C. (n.d.). Controlador PID - Control Automático. Retrieved May 21, 2020, from https://www.picuino.com/es/arduprog/control-pid.html
Pathak, P., Pal, P. R., Shrivastava, M., & Ora, P. (2019). Fifth revolution: Applied AI & human intelligence with cyber physical systems. International Journal of Engineering and Advanced Technology, 8(3), 23–27.
Quimbita, C., & Sandoval, E. (2018). CONTROL DE VELOCIDAD DE UN MOTOR DC, UTILIZANDO CONTROLADORES PID. Escuela Politócnica Nacional.
Rairán-Antolines, J. D., & Fonseca-Gómez, J. M. (2011). Doble lazo de control para regular la posición y la velocidad en un motor de corriente directa. Ingenieria y Universidad, 15(2), 337–357.
Shenzhen Anxinke Technology CO;LTD. (2015). ESP-12E WiFi Module. Skobelev, D. S. P. O., & Borovik, D. S. S. Y. (2018). ON THE WAY FROM INDUSTRY 4.0 TO INDUSTRY 5.0: FROM DIGITAL MANUFACTURING TO DIGITAL SOCIETY. In International Scientific Journal I N D U S T R Y 4 . 0 (Issue 5, pp. 307–311).
Vilanova, R. (2011). Tutorial Control PID robusto : Una visi ´ on panor ´ amica. 8, 141–158. https://doi.org/10.1016/j.riai.2011.06.003
Yao, X., Guo, L., Wu, L., & Dong, H. (2017). Static anti-windup design for nonlinear Markovian jump systems with multiple disturbances. Information Sciences, 418–419, 169–183. https://doi.org/10.1016/j.ins.2017.08.006
Yuan, M. (2017). Conociendo MQTT. https://www.ibm.com/developerworks/ssa/library/iot-mqtt-why-good-for-iot/index.html
Zambon, I., Cecchini, M., Egidi, G., Saporito, M. G., & Colantoni, A. (2019). Revolution 4.0: Industry vs. agriculture in a future development for SMEs. Processes, 7(1). https://doi.org/10.3390/pr7010036
instname:Universidad Antonio Nariño
reponame:Repositorio Institucional UAN
repourl:https://repositorio.uan.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv Acceso abierto
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Acceso abierto
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad Antonio Nariño
dc.publisher.program.spa.fl_str_mv Ingeniería Electromecánica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Mecánica, Electrónica y Biomédica
dc.publisher.campus.spa.fl_str_mv Villavicencio
institution Universidad Antonio Nariño
bitstream.url.fl_str_mv https://repositorio.uan.edu.co/bitstreams/9296ee12-e498-4334-a60d-95a54719303a/download
https://repositorio.uan.edu.co/bitstreams/51460589-3aba-44f5-9c5d-479924a1597b/download
https://repositorio.uan.edu.co/bitstreams/402ffdb2-9c0a-4f3f-b23c-75cd45e9c2e6/download
https://repositorio.uan.edu.co/bitstreams/4d6701f2-7e8c-4bb6-a8ba-268e0ea24094/download
bitstream.checksum.fl_str_mv e6b62c518baec00a2d49f88a55e9ad46
6f5cee247140348bf582d32e61b0ea20
e26d2cd9a199f0ee50274e7b9d582a28
2e388663398085f69421c9e4c5fcf235
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1812928378409320448
spelling Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cucaita Goméz, AlexanderFranco Mendoza, José LuisMurillo Anacona, Carlos David112351343811181973332021-03-03T19:50:18Z2021-03-03T19:50:18Z2020-05-30http://repositorio.uan.edu.co/handle/123456789/2540Aslam, F., Aimin, W., Li, M., & Rehman, K. U. (2020). Innovation in the era of IoT and industry 5.0: Absolute innovation management (AIM) framework. Information (Switzerland), 11(2). https://doi.org/10.3390/info11020124Åström, K. J., & Hägglund, T. (2009). Control PID avanzado.Benjamin-c-kuo. (1996). sistemas de control automatico.Carlos, R. J. G., Ramirez, J. L., & Lancheros-Cuesta, D. (2017). Control de posición de motor DC por medio de espacio de estados para plataforma rotativa. Iberian Conference on Information Systems and Technologies, CISTI. https://doi.org/10.23919/CISTI.2017.7975741Chapman, S. J. (2012). Maquinas electricas.Cova, W. J. D. (2005). Control Pid Un Enfoque Descriptivo. 45.Cuero, J. (2018). Prototipo para modelar y controlar un motor DC Prototype for modeling and controling a DC motor. 12(1), 65–72. https://doi.org/10.14483/22484728.13754Demir, K. A. (2017). Research Questions in Roboethics. Mugla Journal of Science and Technology, December 2017, 160–165. https://doi.org/10.22531/muglajsci.359648; https://doi.org/10.1016/j.procs.2019.09.104Dorf, R. C., & Bishop, R. H. (2005). Sistemas de Control Moderno. In Pearson Educación S.A.: Vol. 10 ed. (pp. 1–6).Draft, C. S., & Draft, P. R. (2013). MQTT. July, 1–63.Durdu, A., & Dursun, E. H. (2019). Sliding mode control for position tracking of servo system with a variable loaded DC motor. Elektronika Ir Elektrotechnika, 25(4), 8–16. https://doi.org/10.5755/j01.eie.25.4.23964Elsrogy, W. M., Fkirin, M. A., & Hassan, M. A. M. (2013). Speed control of DC motor using PID controller based on Matlab. 2013 International Conference on Control, Decision and Information Technologies, CoDIT 2013, 4(6), 196–201. https://doi.org/10.1109/CoDIT.2013.6689543Ferheen, A., & Chidambaram, M. (2017). DESIGN OF ROBUST PID CONTROLLER. 2017 Trends in Industrial Measurement and Automation (TIMA), 1–7.Fernando Firmino. (2014). Estudo Comparativo de Métodos de Sintonia de Controladores PID. 90.Fraile-Mora, J. (2003). Máquinas Eléctricas - Jesús Fraile Mora (5ta Edición).pdf. FRDM-K64F | Mbed. (n.d.). Retrieved April 21, 2020, from https://os.mbed.com/platforms/FRDM-K64F/Guia de usuario. (n.d.). Introducción a Android Studio | Desarrolladores de Android. Retrieved May 21, 2020, from https://developer.android.com/studio/intro?hl=es-419Lee, J., Stanley, M., Spanias, A., & Tepedelenlioglu, C. (2017). Integrating machine learning in embedded sensor systems for Internet-of-Things applications. 2016 IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2016, 290–294. https://doi.org/10.1109/ISSPIT.2016.7886051Majumdar, J., C Gupta, S., & Prassanna Prasath, B. (2018). Linear and Non-Linear Control Design of Skid Steer Mobile Robot on an Embedded. IAES International Journal of Robotics and Automation (IJRA), 7(3), 185. https://doi.org/10.11591/ijra.v7i3.pp185-196Maloney, T. J. (1983). Electronica Industrial Dispositivos y Sistemas (p. 586). Martín Rodríguez, J. A. (2012). Sistema de posicionado angular automatizado , configurado y sincronizable para muestras de hormigón.Mayor, U., & Andres, D. E. S. A. N. (2001). Apuntes de control pid. Miawarni, H., Setyawan, D. E., Setijadi, E., Hidayat, M. M., & Sumpeno, S. (2018). Tracking antenna system design for DVB-T2 set top box based on fuzzy inference system. Proceedings of 2018 10th International Conference on Information Technology and Electrical Engineering: Smart Technology for Better Society, ICITEE 2018, 214–219. https://doi.org/10.1109/ICITEED.2018.8534838Nahavandi, S. (2019). Industry 5.0-a human-centric solution. Sustainability (Switzerland), 11(16). https://doi.org/10.3390/su11164371Narendra, A., Naik, N. V. R., Panda, A. K., & Tiwary, N. (2019). A Real Time Implementation of PV Driven DC Motor along with Wireless Control. 2019 10th International Conference on Computing, Communication and Networking Technologies, ICCCNT 2019, 1–4. https://doi.org/10.1109/ICCCNT45670.2019.8944779Natalia, E., Mendoza, A., Fernando, W., & Suarez, B. (2016). Prototype for Automatic Orientation of Solar Panels. Revista Publicaciones e Investigación, 11, 103–111.Navarro Salas, R. (2017). Máquinas eléctricas y sistemas de potencia - Google Books. https://books.google.com.co/books?id=ehxKXip1j6EC&printsec=frontcover&dq=maquinas+electricas&hl=es-419&sa=X&ved=0ahUKEwi26K6m5MnOAhVFGx4KHaduADkQ6AEIMjAC#v=onepage&q=maquinas electricas&f=falseOgata, K. (2003). Ingenieria de control moderno. Özdemir, V., & Hekim, N. (2018). Birth of Industry 5.0: Making Sense of Big Data with Artificial Intelligence, “the Internet of Things” and Next-Generation Technology Policy. OMICS A Journal of Integrative Biology, 22(1), 65–76. https://doi.org/10.1089/omi.2017.0194Pardo, C. (n.d.). Controlador PID - Control Automático. Retrieved May 21, 2020, from https://www.picuino.com/es/arduprog/control-pid.htmlPathak, P., Pal, P. R., Shrivastava, M., & Ora, P. (2019). Fifth revolution: Applied AI & human intelligence with cyber physical systems. International Journal of Engineering and Advanced Technology, 8(3), 23–27.Quimbita, C., & Sandoval, E. (2018). CONTROL DE VELOCIDAD DE UN MOTOR DC, UTILIZANDO CONTROLADORES PID. Escuela Politócnica Nacional.Rairán-Antolines, J. D., & Fonseca-Gómez, J. M. (2011). Doble lazo de control para regular la posición y la velocidad en un motor de corriente directa. Ingenieria y Universidad, 15(2), 337–357.Shenzhen Anxinke Technology CO;LTD. (2015). ESP-12E WiFi Module. Skobelev, D. S. P. O., & Borovik, D. S. S. Y. (2018). ON THE WAY FROM INDUSTRY 4.0 TO INDUSTRY 5.0: FROM DIGITAL MANUFACTURING TO DIGITAL SOCIETY. In International Scientific Journal I N D U S T R Y 4 . 0 (Issue 5, pp. 307–311).Vilanova, R. (2011). Tutorial Control PID robusto : Una visi ´ on panor ´ amica. 8, 141–158. https://doi.org/10.1016/j.riai.2011.06.003Yao, X., Guo, L., Wu, L., & Dong, H. (2017). Static anti-windup design for nonlinear Markovian jump systems with multiple disturbances. Information Sciences, 418–419, 169–183. https://doi.org/10.1016/j.ins.2017.08.006Yuan, M. (2017). Conociendo MQTT. https://www.ibm.com/developerworks/ssa/library/iot-mqtt-why-good-for-iot/index.htmlZambon, I., Cecchini, M., Egidi, G., Saporito, M. G., & Colantoni, A. (2019). Revolution 4.0: Industry vs. agriculture in a future development for SMEs. Processes, 7(1). https://doi.org/10.3390/pr7010036instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/Throughout the history of humanity, the main objective of technological advances has been to facilitate tasks or processes for human beings, some automatisms are even capable of replacing human labor by one hundred percent, as well as the same It works through collaboration between human capacities with the facilities offered by intelligent machines. One of the most used technologies in all types of assisted, semi-assisted or automatic processes is the PID controller, due to its robustness, efficiency and precision, this combined with other components such as actuators and instrumentation devices, form intelligent mechanisms that now range from hand in hand with the internet of things and wireless communication, thus achieving total control over the machines from every point of view. In this project, a prototype-level design is carried out that complies with what has been described, where together with the automated process by a PID controller, the position in two axes of an object is controlled, in the same way applications are suggested for the prototype together with a bibliographic review accompanied by a proposal for the integration of the prototype designed in the concept of Industry 5.0, in this way you will find a book divided into 5 chapters, the first one refers to the bibliographic review and the conceptualization of the future processes to be used, the second describes the process of designing the PID controller, the third relates the design of an Android application with the communication protocol that the project will involve in the world of IoT. In the fourth chapter, the general implementation of the prototype is described, explaining the components and how the previously mentioned processes were joined, and finally in chapter 5 there are the conclusions and recommendations for future projects.A lo largo de la historia de la humanidad el objetivo principal de los avances tecnológicos ha sido facilitar las tareas o proceso a los seres humanos, algunos automatismos incluso son capaces de reemplazar en un cien por ciento la mano de obra humana, así como otro tanto que funciona a través de la colaboración entre las capacidades humanes con las facilidades que ofrece las maquinas inteligentes. Una de las tecnologías más usadas en todos los tipos de proceso asistidos, semi asistidos o automáticos es el controlador PID, debido a su robustez eficiencia y precisión, esto combinado con demás componentes como actuadores y dispositivos de instrumentación, forman mecanismos inteligentes que ahora van de la mano con el internet de las cosas y la comunicación inalámbrica, logrando así un control total sobre las maquinas desde todo punto de vista. En este proyecto se realiza un diseño a nivel de prototipo que da cumplimiento a lo descrito, donde junto al proceso automatizado por un controlador PID se controla la posición en dos ejes de algún objeto, de igual manera se sugieren aplicaciones para el prototipo junto a una revisión bibliográfica acompañada de una propuesta para la integración del prototipo diseñado en el concepto de Industria 5.0, de esta manera encontrara un libro dividido en 5 capítulos, el primero hace referencia a la revisión bibliográfica y la conceptualización de los procesos futuros a utilizar, el segundo describe el proceso del diseño del controlador PID, el tercero relaciona el diseño de una aplicación Android con el protocolo de comunicación que involucrará el proyecto en el mundo del IoT. En el cuarto capito se describe la implementación general del prototipo explicando los componentes y como se unieron los procesos previamente mencionados y por último en el capítulo 5 se encuentran las conclusiones y recomendaciones para proyectos futuros.Ingeniero(a) Electromecánico(a)PregradoDistanciaspaUniversidad Antonio NariñoIngeniería ElectromecánicaFacultad de Ingeniería Mecánica, Electrónica y BiomédicaVillavicencioPIDMotor DCMBEDIndustria 5.0MQTTPIDDC motorMBEDIndustry 5.0MQTTDiseño de control PID para un mecanismo con movimiento espacial ajustado al IoTTrabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85ORIGINAL2020JoséLuisFrancoMendoza.pdf2020JoséLuisFrancoMendoza.pdfapplication/pdf1807645https://repositorio.uan.edu.co/bitstreams/9296ee12-e498-4334-a60d-95a54719303a/downloade6b62c518baec00a2d49f88a55e9ad46MD512020AutorizacióndeAutores 22020AutorizacióndeAutores 2application/pdf350490https://repositorio.uan.edu.co/bitstreams/51460589-3aba-44f5-9c5d-479924a1597b/download6f5cee247140348bf582d32e61b0ea20MD532020AutorizacióndeAutores 12020AutorizacióndeAutores 1application/pdf510630https://repositorio.uan.edu.co/bitstreams/402ffdb2-9c0a-4f3f-b23c-75cd45e9c2e6/downloade26d2cd9a199f0ee50274e7b9d582a28MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82710https://repositorio.uan.edu.co/bitstreams/4d6701f2-7e8c-4bb6-a8ba-268e0ea24094/download2e388663398085f69421c9e4c5fcf235MD55123456789/2540oai:repositorio.uan.edu.co:123456789/25402024-10-09 23:27:28.843https://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertoopen.accesshttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.coQWwgaW5jbHVpciBpbmZvcm1hY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSAgVU5JVkVSU0lEQUQgQU5UT05JTyBOQVJJw5FPLCBlbCBhdXRvcihlcykgYXV0b3JpemEgYWwgU2lzdGVtYSBOYWNpb25hbCBkZSBCaWJsaW90ZWNhcyBwYXJhIGFsbWFjZW5hciB5IG1hbnRlbmVyIGxhIGluZm9ybWFjacOzbiAsIGNvbiBmaW5lcyBhY2Fkw6ltaWNvcyB5IGRlIG1hbmVyYSBncmF0dWl0YSwgIHBvbmdhIGEgZGlzcG9zaWNpw7NuIGRlIGxhIGNvbXVuaWRhZCBzdXMgY29udGVuaWRvcyBkw6FuZG9sZSB2aXNpYmlsaWRhZCBhIGxvcyBtaXNtb3MsIHNlIGVudGllbmRlIHF1ZSBlbChsb3MpIGF1dG9yKGVzKSBhY2VwdGEobik6IAoKMS4JUXVlIGxvcyB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBwdWVkYW4gY29uc3VsdGFyIGVsIGNvbnRlbmlkbyBkZSBlc3RlIHRyYWJham8gZW4gbG9zIHNpdGlvcyB3ZWIgcXVlIGFkbWluaXN0cmEgbGEgVW5pdmVyc2lkYWQgQW50b25pbyBOYXJpw7FvLCBlbiBCYXNlIGRlIERhdG9zLCBlbiBvdHJvcyBDYXTDoWxvZ29zIHkgZW4gb3Ryb3Mgc2l0aW9zIFdlYiwgUmVkZXMgeSBTaXN0ZW1hcyBkZSBJbmZvcm1hY2nDs24gbmFjaW9uYWxlcyBlIGludGVybmFjaW9uYWxlcyDigJxPcGVuIEFjY2Vzc+KAnSB5IGVuIGxhcyByZWRlcyBkZSBpbmZvcm1hY2nDs24gZGVsIHBhw61zIHkgZGVsIGV4dGVyaW9yLCBjb24gbGFzIGN1YWxlcyB0ZW5nYSBjb252ZW5pbyBsYSBVbml2ZXJzaWRhZCBBbnRvbmlvIE5hcmnDsW8uCgoyLglRdWUgc2UgcGVybWl0ZSBsYSBjb25zdWx0YSBhIGxvcyB1c3VhcmlvcyBpbnRlcmVzYWRvcyBlbiBlbCBjb250ZW5pZG8gZGUgZXN0ZSB0cmFiYWpvLCBjb24gZmluYWxpZGFkIGFjYWTDqW1pY2EsIG51bmNhIHBhcmEgdXNvcyBjb21lcmNpYWxlcywgc2llbXByZSB5IGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyB5IGEgc3UgYXV0b3IuIEVzdG8gaW5jbHV5ZSBjdWFscXVpZXIgZm9ybWF0byBkaXNwb25pYmxlIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuCgozLglRdWUgbG9zIGRlcmVjaG9zIHNvYnJlIGxvcyBkb2N1bWVudG9zIHNvbiBwcm9waWVkYWQgZGVsIGF1dG9yIG8gZGUgbG9zIGF1dG9yZXMgeSB0aWVuZW4gc29icmUgc3Ugb2JyYSwgZW50cmUgb3Ryb3MsIGxvcyBkZXJlY2hvcyBtb3JhbGVzIGEgcXVlIGhhY2VuIHJlZmVyZW5jaWEgY29uc2VydmFuZG8gbG9zIGNvcnJlc3BvbmRpZW50ZXMgZGVyZWNob3Mgc2luIG1vZGlmaWNhY2nDs24gbyByZXN0cmljY2nDs24gYWxndW5hIHB1ZXN0byBxdWUsIGRlIGFjdWVyZG8gY29uIGxhIGxlZ2lzbGFjacOzbiBjb2xvbWJpYW5hIGFwbGljYWJsZSwgZWwgcHJlc2VudGUgZXMgdW5hIGF1dG9yaXphY2nDs24gcXVlIGVuIG5pbmfDum4gY2FzbyBjb25sbGV2YSBsYSBlbmFqZW5hY2nDs24gZGVsIGRlcmVjaG8gZGUgYXV0b3IgeSBzdXMgY29uZXhvcy4KCjQuCVF1ZSBlbCBTaXN0ZW1hIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIEFudG9uaW8gTmFyacOxbyBwdWVkYSBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBwYXJhIHByb3DDs3NpdG9zIGRlIHByZXNlcnZhY2nDs24gZGlnaXRhbC4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgeSB1c2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiBkZSBsYSBpbmZvcm1hY2nDs24gaW5jbHVpZGEgZW4gZXN0ZSByZXBvc2l0b3Jpby4KCjUuCVF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIGVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvciBsbyB0YW50byBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgVW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZTsgYXPDrSBtaXNtbyBlbCBhY8OhIGZpcm1hbnRlIGRlamFyw6EgaW5kZW1uZSBhIGxhIFVuaXZlcnNpZGFkIGRlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBwZXJqdWljaW8uCg==