Clasificación morfológica de eritrocitos en imágenes digitales de frotis de sangre periférica mediante deep learning

n hematology, the hemogram is one of the evaluative tests used with greater regularity in medical practice, since it allows to evaluate and quantify the different types of cells present in the blood. However, not all characteristics of blood cells can be detailed with this test, which is why a micro...

Full description

Autores:
Mena Quintero, María Camila
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/5972
Acceso en línea:
http://repositorio.uan.edu.co/handle/123456789/5972
Palabra clave:
Método de clasificación
red neuronal
Deep Learning
clasificación morfológica
Classification method
erythrocytes
morphological classification
Deep Learning
neural network
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
id UAntonioN2_daf2bff5d0ffaf3caa40b5e0373aad12
oai_identifier_str oai:repositorio.uan.edu.co:123456789/5972
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
dc.title.es_ES.fl_str_mv Clasificación morfológica de eritrocitos en imágenes digitales de frotis de sangre periférica mediante deep learning
title Clasificación morfológica de eritrocitos en imágenes digitales de frotis de sangre periférica mediante deep learning
spellingShingle Clasificación morfológica de eritrocitos en imágenes digitales de frotis de sangre periférica mediante deep learning
Método de clasificación
red neuronal
Deep Learning
clasificación morfológica
Classification method
erythrocytes
morphological classification
Deep Learning
neural network
title_short Clasificación morfológica de eritrocitos en imágenes digitales de frotis de sangre periférica mediante deep learning
title_full Clasificación morfológica de eritrocitos en imágenes digitales de frotis de sangre periférica mediante deep learning
title_fullStr Clasificación morfológica de eritrocitos en imágenes digitales de frotis de sangre periférica mediante deep learning
title_full_unstemmed Clasificación morfológica de eritrocitos en imágenes digitales de frotis de sangre periférica mediante deep learning
title_sort Clasificación morfológica de eritrocitos en imágenes digitales de frotis de sangre periférica mediante deep learning
dc.creator.fl_str_mv Mena Quintero, María Camila
dc.contributor.advisor.spa.fl_str_mv Narváez Semanate, José Luis
dc.contributor.author.spa.fl_str_mv Mena Quintero, María Camila
dc.subject.es_ES.fl_str_mv Método de clasificación
red neuronal
Deep Learning
clasificación morfológica
topic Método de clasificación
red neuronal
Deep Learning
clasificación morfológica
Classification method
erythrocytes
morphological classification
Deep Learning
neural network
dc.subject.keyword.es_ES.fl_str_mv Classification method
erythrocytes
morphological classification
Deep Learning
neural network
description n hematology, the hemogram is one of the evaluative tests used with greater regularity in medical practice, since it allows to evaluate and quantify the different types of cells present in the blood. However, not all characteristics of blood cells can be detailed with this test, which is why a microscopic inspection of the peripheral blood smear is required. The manual exploration of the blood smear, allows to extract, among others, qualitative information about the blood cells, by means of a visual inspection with the help of the microscope; The inspection is a detailed and orderly process, which is carried out with the aim of looking for morphological changes that make it possible to establish differences between normality and abnormality. Since it is carried out manually, the results of this type of classification, based on qualitative parameters; they depend on the skill and experience of the evaluator, which can lead to mistakes, time and money. Taking into account the aforementioned, an erythrocyte classification method was implemented in Matlab, based on morphological descriptors (diameter, perimeter, area, solidity, circularity and concavity), from which a neural network was trained, from which a percentage of accuracy of 83.3% is obtained.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-02-21T20:52:36Z
dc.date.available.none.fl_str_mv 2022-02-21T20:52:36Z
dc.date.issued.spa.fl_str_mv 2022-01-27
dc.type.spa.fl_str_mv Trabajo de grado (Pregrado y/o Especialización)
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://repositorio.uan.edu.co/handle/123456789/5972
dc.identifier.bibliographicCitation.spa.fl_str_mv Abdollahi, A., Saffar, H., & Saffar, H. (2014). Types and frequency of errors during different phases of testing at a clinical medical laboratory of a teaching hospital in Tehran, Iran. North American Journal of Medical Sciences, 6(5), 224–228. https://doi.org/10.4103/1947-2714.132941
Acharya, V., & Kumar, P. (2017). Identification and red blood cell classification using computer aided system to diagnose blood disorders. 2017 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2017, 2017-Janua, 2098–2104. https://doi.org/10.1109/ICACCI.2017.8126155
Adewoyin, A. S., & Nwogoh, B. (2014). Peripheral blood film: A review. In Annals of Ibadan postgraduate medicine (Vol. 12, Issue 2, pp. 71–79). http://www.ncbi.nlm.nih.gov/pubmed/25960697%0Ahttp://www.pubmedcentral.nih.gov/articlerender.f cgi?artid=PMC4415389
Adollah, R., Mashor, M. Y., Nasir, N. F. M., Rosline, H., Mahsin, H., & Adilah, H. (2008). Blood cell image segmentation : A review (pp. 141–144).
Albertini, M. C., Teodori, L., Piatti, E., Piacentini, M. P., Accorsi, A., & Rocchi, M. B. L. (2003). Automated analysis of morphometric parameters for accurate definition of erythrocyte cell shape. Cytometry Part A, 52(1), 12–18. https://doi.org/10.1002/cyto.a.10019
Aliyu, H. A., Sudirman, R., Abdul Razak, M. A., & Abd Wahab, M. A. (2018). Red blood cell classification: Deep learning architecture versus support vector machine. 2nd International Conference on BioSignal Analysis, Processing and Systems, ICBAPS 2018, February 2019, 142–147. https://doi.org/10.1109/ICBAPS.2018.8527398
Almezhghwi, K., & Serte, S. (2020). Improved classification of white blood cells with the generative adversarial network and Deep convolutional neural network. Computational Intelligence and Neuroscience, 2020. https://doi.org/10.1155/2020/6490479
Alzate, M. (2016). rojos en frotis de sangre periférica Automatic classification of red cells in peripheral blood smears. 48(3), 311–319.
Arquitectura, E. Y., Introducci, T. I., 赫晓霞, Iv, T., Teatinas, L. A. S., Conclusiones, T. V. I. I., Contemporáneo, P. D. E. U. S. O., Evaluaci, T. V, Ai, F., Jakubiec, J. A., Weeks, D. P. C. C. L. E. Y. N. to K. in 20, Mu, A., Inan, T., Sierra Garriga, C., Library, P. Y., Hom, H., Kong, H., Castilla, N., Uzaimi, A., … Bain, B. J. (2016). Khan’s the physics of radiation therapy, 5th edition. Medisur, 15(1), 183–192. https://doi.org/10.4103/2153-3539.129442
Arul, P., Pushparaj, M., Pandian, K., Chennimalai, L., Rajendran, K., Selvaraj, E., & Masilamani, S. (2018). Prevalence and types of preanalytical error in hematology laboratory of a tertiary care hospital in South India. Journal of Laboratory Physicians, 10(02), 237–240. https://doi.org/10.4103/jlp.jlp_98_17 ASH. (1958). American Society of Hematology. https://www.hematology.org/education
dc.identifier.instname.spa.fl_str_mv instname:Universidad Antonio Nariño
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UAN
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uan.edu.co/
url http://repositorio.uan.edu.co/handle/123456789/5972
identifier_str_mv Abdollahi, A., Saffar, H., & Saffar, H. (2014). Types and frequency of errors during different phases of testing at a clinical medical laboratory of a teaching hospital in Tehran, Iran. North American Journal of Medical Sciences, 6(5), 224–228. https://doi.org/10.4103/1947-2714.132941
Acharya, V., & Kumar, P. (2017). Identification and red blood cell classification using computer aided system to diagnose blood disorders. 2017 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2017, 2017-Janua, 2098–2104. https://doi.org/10.1109/ICACCI.2017.8126155
Adewoyin, A. S., & Nwogoh, B. (2014). Peripheral blood film: A review. In Annals of Ibadan postgraduate medicine (Vol. 12, Issue 2, pp. 71–79). http://www.ncbi.nlm.nih.gov/pubmed/25960697%0Ahttp://www.pubmedcentral.nih.gov/articlerender.f cgi?artid=PMC4415389
Adollah, R., Mashor, M. Y., Nasir, N. F. M., Rosline, H., Mahsin, H., & Adilah, H. (2008). Blood cell image segmentation : A review (pp. 141–144).
Albertini, M. C., Teodori, L., Piatti, E., Piacentini, M. P., Accorsi, A., & Rocchi, M. B. L. (2003). Automated analysis of morphometric parameters for accurate definition of erythrocyte cell shape. Cytometry Part A, 52(1), 12–18. https://doi.org/10.1002/cyto.a.10019
Aliyu, H. A., Sudirman, R., Abdul Razak, M. A., & Abd Wahab, M. A. (2018). Red blood cell classification: Deep learning architecture versus support vector machine. 2nd International Conference on BioSignal Analysis, Processing and Systems, ICBAPS 2018, February 2019, 142–147. https://doi.org/10.1109/ICBAPS.2018.8527398
Almezhghwi, K., & Serte, S. (2020). Improved classification of white blood cells with the generative adversarial network and Deep convolutional neural network. Computational Intelligence and Neuroscience, 2020. https://doi.org/10.1155/2020/6490479
Alzate, M. (2016). rojos en frotis de sangre periférica Automatic classification of red cells in peripheral blood smears. 48(3), 311–319.
Arquitectura, E. Y., Introducci, T. I., 赫晓霞, Iv, T., Teatinas, L. A. S., Conclusiones, T. V. I. I., Contemporáneo, P. D. E. U. S. O., Evaluaci, T. V, Ai, F., Jakubiec, J. A., Weeks, D. P. C. C. L. E. Y. N. to K. in 20, Mu, A., Inan, T., Sierra Garriga, C., Library, P. Y., Hom, H., Kong, H., Castilla, N., Uzaimi, A., … Bain, B. J. (2016). Khan’s the physics of radiation therapy, 5th edition. Medisur, 15(1), 183–192. https://doi.org/10.4103/2153-3539.129442
Arul, P., Pushparaj, M., Pandian, K., Chennimalai, L., Rajendran, K., Selvaraj, E., & Masilamani, S. (2018). Prevalence and types of preanalytical error in hematology laboratory of a tertiary care hospital in South India. Journal of Laboratory Physicians, 10(02), 237–240. https://doi.org/10.4103/jlp.jlp_98_17 ASH. (1958). American Society of Hematology. https://www.hematology.org/education
instname:Universidad Antonio Nariño
reponame:Repositorio Institucional UAN
repourl:https://repositorio.uan.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv Acceso abierto
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Acceso abierto
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.coverage.spatial.spa.fl_str_mv Colombia (Popayán, Cauca )
dc.publisher.spa.fl_str_mv Universidad Antonio Nariño
dc.publisher.program.spa.fl_str_mv Ingeniería Biomédica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Mecánica, Electrónica y Biomédica
dc.publisher.campus.spa.fl_str_mv Popayán - Alto Cauca
institution Universidad Antonio Nariño
bitstream.url.fl_str_mv https://repositorio.uan.edu.co/bitstreams/04558592-c8ab-45bd-8fc5-3692854e6574/download
https://repositorio.uan.edu.co/bitstreams/400646c9-f5c4-4f2f-8444-17a1f5040645/download
https://repositorio.uan.edu.co/bitstreams/5703dedd-4f5f-4a2f-9afe-57dacc711232/download
https://repositorio.uan.edu.co/bitstreams/d6382fe2-91cb-410a-a27c-5ce320780679/download
bitstream.checksum.fl_str_mv d926d2dad96e652ceee8b358f92cb5b2
c1eb3da7bb226b3368c022f8778e801b
3abc257c280ace4c11bb369f390e71f1
9868ccc48a14c8d591352b6eaf7f6239
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1814300336776544256
spelling Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Narváez Semanate, José LuisMena Quintero, María Camila20561713428Colombia (Popayán, Cauca )2022-02-21T20:52:36Z2022-02-21T20:52:36Z2022-01-27http://repositorio.uan.edu.co/handle/123456789/5972Abdollahi, A., Saffar, H., & Saffar, H. (2014). Types and frequency of errors during different phases of testing at a clinical medical laboratory of a teaching hospital in Tehran, Iran. North American Journal of Medical Sciences, 6(5), 224–228. https://doi.org/10.4103/1947-2714.132941Acharya, V., & Kumar, P. (2017). Identification and red blood cell classification using computer aided system to diagnose blood disorders. 2017 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2017, 2017-Janua, 2098–2104. https://doi.org/10.1109/ICACCI.2017.8126155Adewoyin, A. S., & Nwogoh, B. (2014). Peripheral blood film: A review. In Annals of Ibadan postgraduate medicine (Vol. 12, Issue 2, pp. 71–79). http://www.ncbi.nlm.nih.gov/pubmed/25960697%0Ahttp://www.pubmedcentral.nih.gov/articlerender.f cgi?artid=PMC4415389Adollah, R., Mashor, M. Y., Nasir, N. F. M., Rosline, H., Mahsin, H., & Adilah, H. (2008). Blood cell image segmentation : A review (pp. 141–144).Albertini, M. C., Teodori, L., Piatti, E., Piacentini, M. P., Accorsi, A., & Rocchi, M. B. L. (2003). Automated analysis of morphometric parameters for accurate definition of erythrocyte cell shape. Cytometry Part A, 52(1), 12–18. https://doi.org/10.1002/cyto.a.10019Aliyu, H. A., Sudirman, R., Abdul Razak, M. A., & Abd Wahab, M. A. (2018). Red blood cell classification: Deep learning architecture versus support vector machine. 2nd International Conference on BioSignal Analysis, Processing and Systems, ICBAPS 2018, February 2019, 142–147. https://doi.org/10.1109/ICBAPS.2018.8527398Almezhghwi, K., & Serte, S. (2020). Improved classification of white blood cells with the generative adversarial network and Deep convolutional neural network. Computational Intelligence and Neuroscience, 2020. https://doi.org/10.1155/2020/6490479Alzate, M. (2016). rojos en frotis de sangre periférica Automatic classification of red cells in peripheral blood smears. 48(3), 311–319.Arquitectura, E. Y., Introducci, T. I., 赫晓霞, Iv, T., Teatinas, L. A. S., Conclusiones, T. V. I. I., Contemporáneo, P. D. E. U. S. O., Evaluaci, T. V, Ai, F., Jakubiec, J. A., Weeks, D. P. C. C. L. E. Y. N. to K. in 20, Mu, A., Inan, T., Sierra Garriga, C., Library, P. Y., Hom, H., Kong, H., Castilla, N., Uzaimi, A., … Bain, B. J. (2016). Khan’s the physics of radiation therapy, 5th edition. Medisur, 15(1), 183–192. https://doi.org/10.4103/2153-3539.129442Arul, P., Pushparaj, M., Pandian, K., Chennimalai, L., Rajendran, K., Selvaraj, E., & Masilamani, S. (2018). Prevalence and types of preanalytical error in hematology laboratory of a tertiary care hospital in South India. Journal of Laboratory Physicians, 10(02), 237–240. https://doi.org/10.4103/jlp.jlp_98_17 ASH. (1958). American Society of Hematology. https://www.hematology.org/educationinstname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/n hematology, the hemogram is one of the evaluative tests used with greater regularity in medical practice, since it allows to evaluate and quantify the different types of cells present in the blood. However, not all characteristics of blood cells can be detailed with this test, which is why a microscopic inspection of the peripheral blood smear is required. The manual exploration of the blood smear, allows to extract, among others, qualitative information about the blood cells, by means of a visual inspection with the help of the microscope; The inspection is a detailed and orderly process, which is carried out with the aim of looking for morphological changes that make it possible to establish differences between normality and abnormality. Since it is carried out manually, the results of this type of classification, based on qualitative parameters; they depend on the skill and experience of the evaluator, which can lead to mistakes, time and money. Taking into account the aforementioned, an erythrocyte classification method was implemented in Matlab, based on morphological descriptors (diameter, perimeter, area, solidity, circularity and concavity), from which a neural network was trained, from which a percentage of accuracy of 83.3% is obtained.En hematología, el hemograma es una de las pruebas valorativas empleadas con mayor regularidad en la praxis médica, ya que permite evaluar y cuantificar los diferentes tipos de células presentes en la sangre. Sin embargo, no todas las características de las células sanguíneas pueden detallarse con esta prueba, razón por la cual, se requiere realizar una inspección microscópica del extendido de sangre periférica. La exploración manual del frotis de sangre, permite extraer entre otros, información cualitativa acerca de las células sanguíneas, por medio de una inspección visual con ayuda del microscopio; la inspección es un proceso detallado y ordenado, que se realiza con el objetivo de buscar cambios morfológicos que permitan establecer diferencias entre normalidad y anormalidad. Dado que se realiza de manera manual, los resultados de este tipo de clasificación, basada en parámetros cualitativos; dependen de la habilidad y experiencia del evaluador, lo que puede implicar errores, gasto de tiempo y dinero. Teniendo en cuenta lo mencionado, se implementó en Matlab un método de clasificación eritrocitaria, basado en descriptores morfológicos (diámetro, perímetro, área, solidez, circularidad y concavidad), a partir de los cuales se entrenó una red neuronal, a partir de la cual se obtiene un porcentaje de exactitud del 83.3%.Ingeniero(a) Biomédico(a)PregradoPresencialMonografíaspaUniversidad Antonio NariñoIngeniería BiomédicaFacultad de Ingeniería Mecánica, Electrónica y BiomédicaPopayán - Alto CaucaMétodo de clasificaciónred neuronalDeep Learningclasificación morfológicaClassification methoderythrocytesmorphological classificationDeep Learningneural networkClasificación morfológica de eritrocitos en imágenes digitales de frotis de sangre periférica mediante deep learningTrabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85GeneralORIGINAL2021_MariaMena2021_MariaMenaapplication/pdf2008121https://repositorio.uan.edu.co/bitstreams/04558592-c8ab-45bd-8fc5-3692854e6574/downloadd926d2dad96e652ceee8b358f92cb5b2MD532021_MariaMena_Acta2021_MariaMena_Actaapplication/pdf149488https://repositorio.uan.edu.co/bitstreams/400646c9-f5c4-4f2f-8444-17a1f5040645/downloadc1eb3da7bb226b3368c022f8778e801bMD522021_MariaMena_Autorización2021_MariaMena_Autorizaciónapplication/pdf1952383https://repositorio.uan.edu.co/bitstreams/5703dedd-4f5f-4a2f-9afe-57dacc711232/download3abc257c280ace4c11bb369f390e71f1MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.uan.edu.co/bitstreams/d6382fe2-91cb-410a-a27c-5ce320780679/download9868ccc48a14c8d591352b6eaf7f6239MD54123456789/5972oai:repositorio.uan.edu.co:123456789/59722024-10-09 22:48:36.943https://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertoopen.accesshttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co