Using genetic algorithms as a parameter estimation tool for the generalized lambda distribution (gld) family: “methods of moments”
The generalized lambda distribution, λ,λ,λ,λ(GLD ) 1 432 is a four-parameter family that has been used for fitting distributions to a wide variety of data sets. Minimization through traditional calculus-based methods has been implemented with relative success, but due to computational and theoretica...
- Autores:
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2014
- Institución:
- Universidad Antonio Nariño
- Repositorio:
- Repositorio UAN
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uan.edu.co:123456789/10397
- Acceso en línea:
- https://revistas.uan.edu.co/index.php/ingeuan/article/view/212
https://repositorio.uan.edu.co/handle/123456789/10397
- Palabra clave:
- Data Fitting
Generalized Lambda Distribution
Minimization Method
Moments
Percentiles
Genetic Algorithms
- Rights
- License
- https://creativecommons.org/licenses/by-nc-sa/4.0
id |
UAntonioN2_d3803fcaa1de0cf8e76631edba8b3438 |
---|---|
oai_identifier_str |
oai:repositorio.uan.edu.co:123456789/10397 |
network_acronym_str |
UAntonioN2 |
network_name_str |
Repositorio UAN |
repository_id_str |
|
spelling |
2014-03-042024-10-10T02:24:28Z2024-10-10T02:24:28Zhttps://revistas.uan.edu.co/index.php/ingeuan/article/view/212https://repositorio.uan.edu.co/handle/123456789/10397The generalized lambda distribution, λ,λ,λ,λ(GLD ) 1 432 is a four-parameter family that has been used for fitting distributions to a wide variety of data sets. Minimization through traditional calculus-based methods has been implemented with relative success, but due to computational and theoretical shortcomings of those methods, the moment space has been limited. This paper solve those troubles by using Genetic Algorithms (search algorithms based on the mechanics of natural selection and natural genetics) applied to the methods of moments. Examples of better solutions than the ones find out with traditional calculusbased methods are included.The generalized lambda distribution, λ,λ,λ,λ(GLD ) 1 432 is a four-parameter family that has been used for fitting distributions to a wide variety of data sets. Minimization through traditional calculus-based methods has been implemented with relative success, but due to computational and theoretical shortcomings of those methods, the moment space has been limited. This paper solve those troubles by using Genetic Algorithms (search algorithms based on the mechanics of natural selection and natural genetics) applied to the methods of moments. Examples of better solutions than the ones find out with traditional calculusbased methods are included.application/pdfspaUNIVERSIDAD ANTONIO NARIÑOhttps://revistas.uan.edu.co/index.php/ingeuan/article/view/212/174https://creativecommons.org/licenses/by-nc-sa/4.0http://purl.org/coar/access_right/c_abf2INGE@UAN - TENDENCIAS EN LA INGENIERÍA; Vol. 1 Núm. 2 (2011)2346-14462145-0935Data FittingGeneralized Lambda DistributionMinimization MethodMomentsPercentilesGenetic AlgorithmsUsing genetic algorithms as a parameter estimation tool for the generalized lambda distribution (gld) family: “methods of moments”Using genetic algorithms as a parameter estimation tool for the generalized lambda distribution (gld) family: “methods of moments”info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Moreno Bedoya, David LeonardoFino Puerto, Nelson Ricardo123456789/10397oai:repositorio.uan.edu.co:123456789/103972024-10-14 03:48:48.457metadata.onlyhttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co |
dc.title.en-US.fl_str_mv |
Using genetic algorithms as a parameter estimation tool for the generalized lambda distribution (gld) family: “methods of moments” |
dc.title.es-ES.fl_str_mv |
Using genetic algorithms as a parameter estimation tool for the generalized lambda distribution (gld) family: “methods of moments” |
title |
Using genetic algorithms as a parameter estimation tool for the generalized lambda distribution (gld) family: “methods of moments” |
spellingShingle |
Using genetic algorithms as a parameter estimation tool for the generalized lambda distribution (gld) family: “methods of moments” Data Fitting Generalized Lambda Distribution Minimization Method Moments Percentiles Genetic Algorithms |
title_short |
Using genetic algorithms as a parameter estimation tool for the generalized lambda distribution (gld) family: “methods of moments” |
title_full |
Using genetic algorithms as a parameter estimation tool for the generalized lambda distribution (gld) family: “methods of moments” |
title_fullStr |
Using genetic algorithms as a parameter estimation tool for the generalized lambda distribution (gld) family: “methods of moments” |
title_full_unstemmed |
Using genetic algorithms as a parameter estimation tool for the generalized lambda distribution (gld) family: “methods of moments” |
title_sort |
Using genetic algorithms as a parameter estimation tool for the generalized lambda distribution (gld) family: “methods of moments” |
dc.subject.en-US.fl_str_mv |
Data Fitting Generalized Lambda Distribution Minimization Method Moments Percentiles Genetic Algorithms |
topic |
Data Fitting Generalized Lambda Distribution Minimization Method Moments Percentiles Genetic Algorithms |
description |
The generalized lambda distribution, λ,λ,λ,λ(GLD ) 1 432 is a four-parameter family that has been used for fitting distributions to a wide variety of data sets. Minimization through traditional calculus-based methods has been implemented with relative success, but due to computational and theoretical shortcomings of those methods, the moment space has been limited. This paper solve those troubles by using Genetic Algorithms (search algorithms based on the mechanics of natural selection and natural genetics) applied to the methods of moments. Examples of better solutions than the ones find out with traditional calculusbased methods are included. |
publishDate |
2014 |
dc.date.accessioned.none.fl_str_mv |
2024-10-10T02:24:28Z |
dc.date.available.none.fl_str_mv |
2024-10-10T02:24:28Z |
dc.date.none.fl_str_mv |
2014-03-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.uan.edu.co/index.php/ingeuan/article/view/212 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uan.edu.co/handle/123456789/10397 |
url |
https://revistas.uan.edu.co/index.php/ingeuan/article/view/212 https://repositorio.uan.edu.co/handle/123456789/10397 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.uan.edu.co/index.php/ingeuan/article/view/212/174 |
dc.rights.es-ES.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0 |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0 http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.es-ES.fl_str_mv |
UNIVERSIDAD ANTONIO NARIÑO |
dc.source.es-ES.fl_str_mv |
INGE@UAN - TENDENCIAS EN LA INGENIERÍA; Vol. 1 Núm. 2 (2011) |
dc.source.none.fl_str_mv |
2346-1446 2145-0935 |
institution |
Universidad Antonio Nariño |
repository.name.fl_str_mv |
Repositorio Institucional UAN |
repository.mail.fl_str_mv |
alertas.repositorio@uan.edu.co |
_version_ |
1814300387603120128 |