Identificación por inmunofluorescencia de la expresión de proteínas estructurales del epitelio en células madre del folículo dental prueba piloto
The regeneration of the oral mucosa lost due to oral pathologies is a challenge, since that the affected oral tissues need to be restored to their original architecture. The cells of the dental follicle, are presented as an attractive option for the regeneration of tissues of the oral cavity. Previo...
- Autores:
-
Mayorga Morales, Ana Veronica
Rojas Castro, Yuly Daniela
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2020
- Institución:
- Universidad Antonio Nariño
- Repositorio:
- Repositorio UAN
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uan.edu.co:123456789/2724
- Acceso en línea:
- http://repositorio.uan.edu.co/handle/123456789/2724
- Palabra clave:
- Mucosa Oral
Células Madre
Folículo Dental
Oral Mucosa
Stem cell
Dental Follicle
- Rights
- closedAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
id |
UAntonioN2_bf6707b1c490af89cf7bb1a888a8a187 |
---|---|
oai_identifier_str |
oai:repositorio.uan.edu.co:123456789/2724 |
network_acronym_str |
UAntonioN2 |
network_name_str |
Repositorio UAN |
repository_id_str |
|
dc.title.es_ES.fl_str_mv |
Identificación por inmunofluorescencia de la expresión de proteínas estructurales del epitelio en células madre del folículo dental prueba piloto |
title |
Identificación por inmunofluorescencia de la expresión de proteínas estructurales del epitelio en células madre del folículo dental prueba piloto |
spellingShingle |
Identificación por inmunofluorescencia de la expresión de proteínas estructurales del epitelio en células madre del folículo dental prueba piloto Mucosa Oral Células Madre Folículo Dental Oral Mucosa Stem cell Dental Follicle |
title_short |
Identificación por inmunofluorescencia de la expresión de proteínas estructurales del epitelio en células madre del folículo dental prueba piloto |
title_full |
Identificación por inmunofluorescencia de la expresión de proteínas estructurales del epitelio en células madre del folículo dental prueba piloto |
title_fullStr |
Identificación por inmunofluorescencia de la expresión de proteínas estructurales del epitelio en células madre del folículo dental prueba piloto |
title_full_unstemmed |
Identificación por inmunofluorescencia de la expresión de proteínas estructurales del epitelio en células madre del folículo dental prueba piloto |
title_sort |
Identificación por inmunofluorescencia de la expresión de proteínas estructurales del epitelio en células madre del folículo dental prueba piloto |
dc.creator.fl_str_mv |
Mayorga Morales, Ana Veronica Rojas Castro, Yuly Daniela |
dc.contributor.advisor.spa.fl_str_mv |
Jaimes, Gustavo Alfonso, Camilo |
dc.contributor.author.spa.fl_str_mv |
Mayorga Morales, Ana Veronica Rojas Castro, Yuly Daniela |
dc.subject.es_ES.fl_str_mv |
Mucosa Oral Células Madre Folículo Dental |
topic |
Mucosa Oral Células Madre Folículo Dental Oral Mucosa Stem cell Dental Follicle |
dc.subject.keyword.es_ES.fl_str_mv |
Oral Mucosa Stem cell Dental Follicle |
description |
The regeneration of the oral mucosa lost due to oral pathologies is a challenge, since that the affected oral tissues need to be restored to their original architecture. The cells of the dental follicle, are presented as an attractive option for the regeneration of tissues of the oral cavity. Previously, the authors have used stem cells obtained of oral tissues, investigating their regenerative potential. The purpose of the present study is identify the expression of typical epithelial proteins Cytokeratin 8, Desmoglein, and Desmoplaquin in stem cells obtained from dental follicle and in future studies its potential application in the regeneration of oral mucosa. METHODS Previous consent, informed consent and institutional ethical endorsement, were obtained dental germs of the third molar in the crown formation stage (n = 5), in patients 14 years old) the samples were stored and processed for the application of techniques of cell culture, microscopic analysis evaluating cell viability, flow cytometry to perform the cellular characterization and later the application of immunohistochemistry, for subsequent identification of protein expression profiles typical of the epithelium in dental follicle tissue. RESULTS The dental follicle stem cell cultures showed adherence to the surface of the culture bottle, cell proliferation, allowing several passages to be made; this allowed evaluate the primary culture obtained, which was characterized by the presentation of several parameters: proliferation rate and expression of typical stromal cell markers mesenchymal (MSC with adequate cell viability, observing in the results the expression of the differentiation markers of the cells and the remarkable expression of the Typical proteins of the epithelium in a greater proportion Desmoglein. CONCLUSIONS The preliminary results obtained in this pilot test provided evidence immunohistochemistry of the expression of typical proteins of the epithelium Cytokeratin 8, Desmoglein and Desmoplaquine, obtained from dental follicle tissue, a result that can be relevant for tissue engineering research, constituting a useful complement for use as a structural alternative for the generation of oral tissues or mucosa oral. |
publishDate |
2020 |
dc.date.issued.spa.fl_str_mv |
2020-05-29 |
dc.date.accessioned.none.fl_str_mv |
2021-03-06T14:49:11Z |
dc.date.available.none.fl_str_mv |
2021-03-06T14:49:11Z |
dc.type.spa.fl_str_mv |
Trabajo de grado (Pregrado y/o Especialización) |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://repositorio.uan.edu.co/handle/123456789/2724 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
1. Menicanin D BP. Identification of a common gene expression signature associated with immature clonal mesenchymal cell populations derived from bone marrow and dental tissues. Stem Cells Dev. 2010 Oct;):1501-10. doi: 10.1089/scd.2009.0492.; 19(10) 1501-1510. 2. Saito MT SK. Tooth-derived stem cells: Update and perspectives. World J Stem. 2015 Julio; (2) 399-407 3. Jurga M LA. Generation of functional neural artificial tissue from human umbilical cord blood stem cells. Tissue Eng Part C Methods. 2009; 15 (365-372)( DOI: 10.1089/ten.tec.2008.0485). 4. Reinke S DA. Qualifying stem cell sources: how to overcome potential pitfalls in regenerative medicine? J Tissue Eng Regen Med. 2014 Junio; 12( DOI: 10.1002/term.1923). 5. Kriegebaum U MM. Tissue engineering of human oral mucosa on different scaffolds: In vitro experiments as a basis for clinical applications. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012; 114(5). 6. Viñuela-Prieto JM SQM. Sequential keratinocytic differentiation and maturation in a three-dimensional model of human artificial oral mucosa. J Periodontal Res. 2014 oct; 50(5). 7. Garzón I MJ. Wharton’s jelly stem cells: a novel cell source for oral mucosa and skin epithelia regeneration. Stem Cells Transl Med. 2013; 2(8). 8. Hayward CJ FJ. Using human umbilical cord cells for tissue engineering: A comparison with skin cells. Differentiation. 2014; 83(7). 9. Heller M FOEV. Tissue engineered pre-vascularized buccal mucosa equivalents utilizing a primary triculture of epithelial cells, endothelial cells and fibroblasts. Biomaterials. 2016; 77(207-215). 10. Gronthos S MM. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA. 2000 May; 97:13625–13630(DOI 10.1073 / pnas.240309797). 11. Iohara K IK. Complete pulp regeneration after pulpectomy by transplantation of CD105+ stem cells with stromal cell-derived factor-1. Tissue Eng Part A. 2011; 17:1911–1920(doi: 10.1089 / ten.TEA.2010.0615.). 12. Silvério KG RT. Mesenchymal stem cell properties of periodontal ligament cells from deciduous and permanent teeth. J Periodontol. 2010 Aug.; 81(8):1207-15( doi: 10.1902/jop.2010.090729). 13. Morsczeck C1 GW. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol. 2005 Apr; 24(2):155-65.(DOI: 10.1016/j.matbio.2004.12.004). 14. Guo L LJ. Comparison of odontogenic differentiation of human dental follicle cells and human dental papilla cells. PLoS One. 2013 19 de abril de 2013; 8 (4): e62332.(doi: 10.1371 / journal.pone.0062332). 15. Wang J LB. Effects of Wnt/β-catenin signalling on proliferation and differentiation of apical papilla stem cells. Cell Prolif. 2012 Abril; 45:121–131.(doi: 10.1111 / j.1365-2184.2012.00806.x). 16. Fu X JL. Allogeneic stem cells from deciduous teeth in treatment for periodontitis in miniature swine. J Periodontol. 2014 Junio; 85:845–851(doi: 10.1902 / jop.2013.130254.). 17. Fukushima H KN. SSEA-4 is a marker of human deciduous periodontal ligament stem cells. J Dent Res. 2012. Octubre; 91:955–960(DOI: 10.1177 / 0022034512458123). 18. Kémoun P,LDS. Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/-7 and enamel matrix derivatives (EMD) in vitro. Cell and Tissue Research. 2007 Agosto; 329 (2)(DOI: 10.1007/s00441-007-0397-3). 19. G B. Stem cells for tooth engineering. Eur Cell Mater.. 2008 Jul; 31;16:1-9. 20. Bova RRM. Evaluation of bone regeneration potential of dental follicle stem cells for treatment of craniofacial defects. Cytotherapy. 2015 Noviembre; 17 issue 11(doi.org/10.1016/j.jcyt.2015.07.013). 21. Kreb DL BK. Use of cytokeratin 8 immunohistochemistry for assessing cell death after radiofrequency ablation of breast cancers. Biotechnic & Histochemistry. 2011; 86(6). 22. Moll R DM. The human keratins: biology and pathology. Histochem Cell Biol. 2008; 129(6). 23. K. DMLB. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006; 8(4 (315-317). 24. Aonuma H. Ogura N. Characteristics and osteogenic differentiation of stem/progenitor cells in the human dental follicle analized by gene expression profiling. Cell And Tissue Research. 2018; 350(2). 25. Kitajima YR. Cytokeratin expression of engrafted three-dimensonal culture tissues using epithelial cells derived from porcine periodontal ligament. j Oral Pathol Med. 2014; 43(637-645). 26. Blanc DML. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006; 8(4 (315-317). 27. Ti M. Culture and characterization of mesenchymal stem cells from human gingival tissue. J. Periodontol. 2010; 81(6 (917-925)). 28. Hagood RT. Thy-1 as a regulator of cell-cell and cell-matrix interactions in axon regeneration, apoptosis,adhesion,migracion,cancer,and fibrosis. FASEB journal. 2006; 20(1045-1054). 29. Martin-Piedra M GIOARC. Cell viability and proliferation capability of long-term human dental pul stem cell cultures.. Cytotherapy. 2014; 16((2) 266-77). 30. Kawashima. Characterisation of dental pulp stem cells: A new horizon for tissue regeneration? Arch Oral Biol. 2012 Noviembre; 57(11 (1439-58)). 31. Garzón I MM. Human dental pulp stem cells. A promising epithelial-like cell source. Med Hypotheses. 2015; 84(5). 32. K. YRK. Cytokeratin expression of engrafted three-dimensonal culture tissues using epithelial cells derived from porcine periodontal ligament. j Oral Pathol Med. 2014; 43(637-645). 33. Bluteau. Stem cells for tooth engineering. Eur Cell Mater. 2008 Jul; 31;16:1-9. 34. Steimberg NAF. Advanced 3D Models Cultured to Investigate Mesenchymal Stromal Cells of the Human Dental Follicle. TISSUE ENGINEERING: Part C. 2018; Volume 24(3). |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Antonio Nariño |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UAN |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uan.edu.co/ |
url |
http://repositorio.uan.edu.co/handle/123456789/2724 |
identifier_str_mv |
1. Menicanin D BP. Identification of a common gene expression signature associated with immature clonal mesenchymal cell populations derived from bone marrow and dental tissues. Stem Cells Dev. 2010 Oct;):1501-10. doi: 10.1089/scd.2009.0492.; 19(10) 1501-1510. 2. Saito MT SK. Tooth-derived stem cells: Update and perspectives. World J Stem. 2015 Julio; (2) 399-407 3. Jurga M LA. Generation of functional neural artificial tissue from human umbilical cord blood stem cells. Tissue Eng Part C Methods. 2009; 15 (365-372)( DOI: 10.1089/ten.tec.2008.0485). 4. Reinke S DA. Qualifying stem cell sources: how to overcome potential pitfalls in regenerative medicine? J Tissue Eng Regen Med. 2014 Junio; 12( DOI: 10.1002/term.1923). 5. Kriegebaum U MM. Tissue engineering of human oral mucosa on different scaffolds: In vitro experiments as a basis for clinical applications. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012; 114(5). 6. Viñuela-Prieto JM SQM. Sequential keratinocytic differentiation and maturation in a three-dimensional model of human artificial oral mucosa. J Periodontal Res. 2014 oct; 50(5). 7. Garzón I MJ. Wharton’s jelly stem cells: a novel cell source for oral mucosa and skin epithelia regeneration. Stem Cells Transl Med. 2013; 2(8). 8. Hayward CJ FJ. Using human umbilical cord cells for tissue engineering: A comparison with skin cells. Differentiation. 2014; 83(7). 9. Heller M FOEV. Tissue engineered pre-vascularized buccal mucosa equivalents utilizing a primary triculture of epithelial cells, endothelial cells and fibroblasts. Biomaterials. 2016; 77(207-215). 10. Gronthos S MM. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA. 2000 May; 97:13625–13630(DOI 10.1073 / pnas.240309797). 11. Iohara K IK. Complete pulp regeneration after pulpectomy by transplantation of CD105+ stem cells with stromal cell-derived factor-1. Tissue Eng Part A. 2011; 17:1911–1920(doi: 10.1089 / ten.TEA.2010.0615.). 12. Silvério KG RT. Mesenchymal stem cell properties of periodontal ligament cells from deciduous and permanent teeth. J Periodontol. 2010 Aug.; 81(8):1207-15( doi: 10.1902/jop.2010.090729). 13. Morsczeck C1 GW. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol. 2005 Apr; 24(2):155-65.(DOI: 10.1016/j.matbio.2004.12.004). 14. Guo L LJ. Comparison of odontogenic differentiation of human dental follicle cells and human dental papilla cells. PLoS One. 2013 19 de abril de 2013; 8 (4): e62332.(doi: 10.1371 / journal.pone.0062332). 15. Wang J LB. Effects of Wnt/β-catenin signalling on proliferation and differentiation of apical papilla stem cells. Cell Prolif. 2012 Abril; 45:121–131.(doi: 10.1111 / j.1365-2184.2012.00806.x). 16. Fu X JL. Allogeneic stem cells from deciduous teeth in treatment for periodontitis in miniature swine. J Periodontol. 2014 Junio; 85:845–851(doi: 10.1902 / jop.2013.130254.). 17. Fukushima H KN. SSEA-4 is a marker of human deciduous periodontal ligament stem cells. J Dent Res. 2012. Octubre; 91:955–960(DOI: 10.1177 / 0022034512458123). 18. Kémoun P,LDS. Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/-7 and enamel matrix derivatives (EMD) in vitro. Cell and Tissue Research. 2007 Agosto; 329 (2)(DOI: 10.1007/s00441-007-0397-3). 19. G B. Stem cells for tooth engineering. Eur Cell Mater.. 2008 Jul; 31;16:1-9. 20. Bova RRM. Evaluation of bone regeneration potential of dental follicle stem cells for treatment of craniofacial defects. Cytotherapy. 2015 Noviembre; 17 issue 11(doi.org/10.1016/j.jcyt.2015.07.013). 21. Kreb DL BK. Use of cytokeratin 8 immunohistochemistry for assessing cell death after radiofrequency ablation of breast cancers. Biotechnic & Histochemistry. 2011; 86(6). 22. Moll R DM. The human keratins: biology and pathology. Histochem Cell Biol. 2008; 129(6). 23. K. DMLB. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006; 8(4 (315-317). 24. Aonuma H. Ogura N. Characteristics and osteogenic differentiation of stem/progenitor cells in the human dental follicle analized by gene expression profiling. Cell And Tissue Research. 2018; 350(2). 25. Kitajima YR. Cytokeratin expression of engrafted three-dimensonal culture tissues using epithelial cells derived from porcine periodontal ligament. j Oral Pathol Med. 2014; 43(637-645). 26. Blanc DML. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006; 8(4 (315-317). 27. Ti M. Culture and characterization of mesenchymal stem cells from human gingival tissue. J. Periodontol. 2010; 81(6 (917-925)). 28. Hagood RT. Thy-1 as a regulator of cell-cell and cell-matrix interactions in axon regeneration, apoptosis,adhesion,migracion,cancer,and fibrosis. FASEB journal. 2006; 20(1045-1054). 29. Martin-Piedra M GIOARC. Cell viability and proliferation capability of long-term human dental pul stem cell cultures.. Cytotherapy. 2014; 16((2) 266-77). 30. Kawashima. Characterisation of dental pulp stem cells: A new horizon for tissue regeneration? Arch Oral Biol. 2012 Noviembre; 57(11 (1439-58)). 31. Garzón I MM. Human dental pulp stem cells. A promising epithelial-like cell source. Med Hypotheses. 2015; 84(5). 32. K. YRK. Cytokeratin expression of engrafted three-dimensonal culture tissues using epithelial cells derived from porcine periodontal ligament. j Oral Pathol Med. 2014; 43(637-645). 33. Bluteau. Stem cells for tooth engineering. Eur Cell Mater. 2008 Jul; 31;16:1-9. 34. Steimberg NAF. Advanced 3D Models Cultured to Investigate Mesenchymal Stromal Cells of the Human Dental Follicle. TISSUE ENGINEERING: Part C. 2018; Volume 24(3). instname:Universidad Antonio Nariño reponame:Repositorio Institucional UAN repourl:https://repositorio.uan.edu.co/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
Acceso a solo metadatos |
dc.rights.license.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Acceso a solo metadatos https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.publisher.spa.fl_str_mv |
Universidad Antonio Nariño |
dc.publisher.program.spa.fl_str_mv |
Especialización en Periodoncia |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Odontología |
dc.publisher.campus.spa.fl_str_mv |
Bogotá - Circunvalar |
institution |
Universidad Antonio Nariño |
bitstream.url.fl_str_mv |
https://repositorio.uan.edu.co/bitstreams/10a07698-891f-4b94-9a12-11ffdbb067a1/download https://repositorio.uan.edu.co/bitstreams/02cd3162-a3d4-4dda-af22-ea3bfff8b76a/download https://repositorio.uan.edu.co/bitstreams/7874d93f-27a4-45f2-8fe8-a9487393b5db/download https://repositorio.uan.edu.co/bitstreams/f1563789-9c34-483e-97a6-cb672087e1bb/download https://repositorio.uan.edu.co/bitstreams/b1eb77d8-a5e1-48b1-a983-ae8962cb2d89/download https://repositorio.uan.edu.co/bitstreams/fa416d53-26ec-4056-9975-fdcf0a01bf1c/download https://repositorio.uan.edu.co/bitstreams/cdbb2cd5-a284-4e39-bc5e-0560f5df0e90/download https://repositorio.uan.edu.co/bitstreams/238261b6-7354-4080-8f65-9d25c6854597/download https://repositorio.uan.edu.co/bitstreams/bad5fbf5-7606-4972-9362-7444e9bf7117/download https://repositorio.uan.edu.co/bitstreams/dfc7cce0-7b96-4c88-833f-cd8a8efed159/download https://repositorio.uan.edu.co/bitstreams/a3a45d22-9748-4b7e-bcf8-1f3666dc1f99/download |
bitstream.checksum.fl_str_mv |
0ead28629a149f3ae98a367594950077 27c05241ca4da5ddb990879da4f291d7 fc126998b804e752aa2b4cc670d6fd3b 9868ccc48a14c8d591352b6eaf7f6239 2e388663398085f69421c9e4c5fcf235 c1729800b94b8dd79d1a86643291beb5 e1c06d85ae7b8b032bef47e42e4c08f9 e1c06d85ae7b8b032bef47e42e4c08f9 1ffe0ec050e68217b11f541f2bef673a c199f6c7e31da48f67cb3b7695c75de2 d87bb9aedee648f239787181b4e7bb72 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UAN |
repository.mail.fl_str_mv |
alertas.repositorio@uan.edu.co |
_version_ |
1814300422092881920 |
spelling |
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Acceso a solo metadatoshttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbJaimes, GustavoAlfonso, CamiloMayorga Morales, Ana VeronicaRojas Castro, Yuly Daniela2021-03-06T14:49:11Z2021-03-06T14:49:11Z2020-05-29http://repositorio.uan.edu.co/handle/123456789/27241. Menicanin D BP. Identification of a common gene expression signature associated with immature clonal mesenchymal cell populations derived from bone marrow and dental tissues. Stem Cells Dev. 2010 Oct;):1501-10. doi: 10.1089/scd.2009.0492.; 19(10) 1501-1510.2. Saito MT SK. Tooth-derived stem cells: Update and perspectives. World J Stem. 2015 Julio; (2) 399-4073. Jurga M LA. Generation of functional neural artificial tissue from human umbilical cord blood stem cells. Tissue Eng Part C Methods. 2009; 15 (365-372)( DOI: 10.1089/ten.tec.2008.0485).4. Reinke S DA. Qualifying stem cell sources: how to overcome potential pitfalls in regenerative medicine? J Tissue Eng Regen Med. 2014 Junio; 12( DOI: 10.1002/term.1923).5. Kriegebaum U MM. Tissue engineering of human oral mucosa on different scaffolds: In vitro experiments as a basis for clinical applications. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012; 114(5).6. Viñuela-Prieto JM SQM. Sequential keratinocytic differentiation and maturation in a three-dimensional model of human artificial oral mucosa. J Periodontal Res. 2014 oct; 50(5).7. Garzón I MJ. Wharton’s jelly stem cells: a novel cell source for oral mucosa and skin epithelia regeneration. Stem Cells Transl Med. 2013; 2(8).8. Hayward CJ FJ. Using human umbilical cord cells for tissue engineering: A comparison with skin cells. Differentiation. 2014; 83(7).9. Heller M FOEV. Tissue engineered pre-vascularized buccal mucosa equivalents utilizing a primary triculture of epithelial cells, endothelial cells and fibroblasts. Biomaterials. 2016; 77(207-215).10. Gronthos S MM. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA. 2000 May; 97:13625–13630(DOI 10.1073 / pnas.240309797).11. Iohara K IK. Complete pulp regeneration after pulpectomy by transplantation of CD105+ stem cells with stromal cell-derived factor-1. Tissue Eng Part A. 2011; 17:1911–1920(doi: 10.1089 / ten.TEA.2010.0615.).12. Silvério KG RT. Mesenchymal stem cell properties of periodontal ligament cells from deciduous and permanent teeth. J Periodontol. 2010 Aug.; 81(8):1207-15( doi: 10.1902/jop.2010.090729).13. Morsczeck C1 GW. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol. 2005 Apr; 24(2):155-65.(DOI: 10.1016/j.matbio.2004.12.004).14. Guo L LJ. Comparison of odontogenic differentiation of human dental follicle cells and human dental papilla cells. PLoS One. 2013 19 de abril de 2013; 8 (4): e62332.(doi: 10.1371 / journal.pone.0062332).15. Wang J LB. Effects of Wnt/β-catenin signalling on proliferation and differentiation of apical papilla stem cells. Cell Prolif. 2012 Abril; 45:121–131.(doi: 10.1111 / j.1365-2184.2012.00806.x).16. Fu X JL. Allogeneic stem cells from deciduous teeth in treatment for periodontitis in miniature swine. J Periodontol. 2014 Junio; 85:845–851(doi: 10.1902 / jop.2013.130254.).17. Fukushima H KN. SSEA-4 is a marker of human deciduous periodontal ligament stem cells. J Dent Res. 2012. Octubre; 91:955–960(DOI: 10.1177 / 0022034512458123).18. Kémoun P,LDS. Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/-7 and enamel matrix derivatives (EMD) in vitro. Cell and Tissue Research. 2007 Agosto; 329 (2)(DOI: 10.1007/s00441-007-0397-3).19. G B. Stem cells for tooth engineering. Eur Cell Mater.. 2008 Jul; 31;16:1-9.20. Bova RRM. Evaluation of bone regeneration potential of dental follicle stem cells for treatment of craniofacial defects. Cytotherapy. 2015 Noviembre; 17 issue 11(doi.org/10.1016/j.jcyt.2015.07.013).21. Kreb DL BK. Use of cytokeratin 8 immunohistochemistry for assessing cell death after radiofrequency ablation of breast cancers. Biotechnic & Histochemistry. 2011; 86(6).22. Moll R DM. The human keratins: biology and pathology. Histochem Cell Biol. 2008; 129(6).23. K. DMLB. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006; 8(4 (315-317).24. Aonuma H. Ogura N. Characteristics and osteogenic differentiation of stem/progenitor cells in the human dental follicle analized by gene expression profiling. Cell And Tissue Research. 2018; 350(2).25. Kitajima YR. Cytokeratin expression of engrafted three-dimensonal culture tissues using epithelial cells derived from porcine periodontal ligament. j Oral Pathol Med. 2014; 43(637-645).26. Blanc DML. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006; 8(4 (315-317).27. Ti M. Culture and characterization of mesenchymal stem cells from human gingival tissue. J. Periodontol. 2010; 81(6 (917-925)).28. Hagood RT. Thy-1 as a regulator of cell-cell and cell-matrix interactions in axon regeneration, apoptosis,adhesion,migracion,cancer,and fibrosis. FASEB journal. 2006; 20(1045-1054).29. Martin-Piedra M GIOARC. Cell viability and proliferation capability of long-term human dental pul stem cell cultures.. Cytotherapy. 2014; 16((2) 266-77).30. Kawashima. Characterisation of dental pulp stem cells: A new horizon for tissue regeneration? Arch Oral Biol. 2012 Noviembre; 57(11 (1439-58)).31. Garzón I MM. Human dental pulp stem cells. A promising epithelial-like cell source. Med Hypotheses. 2015; 84(5).32. K. YRK. Cytokeratin expression of engrafted three-dimensonal culture tissues using epithelial cells derived from porcine periodontal ligament. j Oral Pathol Med. 2014; 43(637-645).33. Bluteau. Stem cells for tooth engineering. Eur Cell Mater. 2008 Jul; 31;16:1-9.34. Steimberg NAF. Advanced 3D Models Cultured to Investigate Mesenchymal Stromal Cells of the Human Dental Follicle. TISSUE ENGINEERING: Part C. 2018; Volume 24(3).instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/The regeneration of the oral mucosa lost due to oral pathologies is a challenge, since that the affected oral tissues need to be restored to their original architecture. The cells of the dental follicle, are presented as an attractive option for the regeneration of tissues of the oral cavity. Previously, the authors have used stem cells obtained of oral tissues, investigating their regenerative potential. The purpose of the present study is identify the expression of typical epithelial proteins Cytokeratin 8, Desmoglein, and Desmoplaquin in stem cells obtained from dental follicle and in future studies its potential application in the regeneration of oral mucosa. METHODS Previous consent, informed consent and institutional ethical endorsement, were obtained dental germs of the third molar in the crown formation stage (n = 5), in patients 14 years old) the samples were stored and processed for the application of techniques of cell culture, microscopic analysis evaluating cell viability, flow cytometry to perform the cellular characterization and later the application of immunohistochemistry, for subsequent identification of protein expression profiles typical of the epithelium in dental follicle tissue. RESULTS The dental follicle stem cell cultures showed adherence to the surface of the culture bottle, cell proliferation, allowing several passages to be made; this allowed evaluate the primary culture obtained, which was characterized by the presentation of several parameters: proliferation rate and expression of typical stromal cell markers mesenchymal (MSC with adequate cell viability, observing in the results the expression of the differentiation markers of the cells and the remarkable expression of the Typical proteins of the epithelium in a greater proportion Desmoglein. CONCLUSIONS The preliminary results obtained in this pilot test provided evidence immunohistochemistry of the expression of typical proteins of the epithelium Cytokeratin 8, Desmoglein and Desmoplaquine, obtained from dental follicle tissue, a result that can be relevant for tissue engineering research, constituting a useful complement for use as a structural alternative for the generation of oral tissues or mucosa oral.ANTECEDENTES La regeneración de la mucosa oral perdida a causa de las patologías orales es un desafío, ya que los tejidos orales afectados necesitan ser restaurados a su arquitectura original. Las células madre del folículo dental, se presentan como una opción atractiva para la regeneración de los tejidos de la cavidad bucal. Anteriormente, los autores han utilizado células madre obtenidas de tejidos orales, investigando su potencial regenerativo. El propósito del presente estudio es identificar la expresión de las proteínas típicas del epitelio Citoqueratina 8, Desmogleína, y Desmoplaquina en células madre obtenidas a partir de folículo dental y en estudios futuros su potencial aplicación en la regeneración de mucosa oral. MÉTODOS Previo consentimiento, asentimiento informado y aval ético institucional, se obtuvieron gérmenes dentales del tercer molar en la etapa de formación de la corona (n = 5), en pacientes de 14 años de edad) las muestras fueron almacenadas y procesadas, para aplicación de técnicas de cultivo celular, análisis microscópico evaluando la viabilidad celular, citometría de flujo para realizar la caracterización celular y posteriormente la aplicación de técnicas de inmunohistoquímica, para posterior identificación de los perfiles de expresión de las proteínas típicas del epitelio en tejido folículo dental. RESULTADOS Los cultivos de células madre de folículo dental presentaron adherencia a la superficie del frasco de cultivo, proliferación celular, permitiendo realizar varios pasajes; esto permitió evaluar el cultivo primario obtenido, que se caracterizó por la presentación de varios parámetros: tasa de proliferación y expresión de los marcadores típicos de células del estroma mesenquimatoso (MSC con adecuada viabilidad celular, observándose en los resultados la expresión de los marcadores de diferenciación de las células y la expresión notable de la proteínas típicas del epitelio en mayor proporción Desmogleína. CONCLUSIONES Los resultados preliminares obtenidos en esta prueba piloto proporcionaron evidencia inmunohistoquímica de la expresión de las proteínas típicas del epitelio Citoqueratina 8, Desmogleína y Desmoplaquina, obtenidas de tejido folículo dental, resultado que puede ser relevante para las investigaciones de ingeniería tisular, constituyendo un complemento útil para su utilización como alternativa estructural para la generación de tejidos orales o mucosa oral.Odontólogo(a)EspecializaciónPresencialspaUniversidad Antonio NariñoEspecialización en PeriodonciaFacultad de OdontologíaBogotá - CircunvalarMucosa OralCélulas MadreFolículo DentalOral MucosaStem cellDental FollicleIdentificación por inmunofluorescencia de la expresión de proteínas estructurales del epitelio en células madre del folículo dental prueba pilotoTrabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85ORIGINAL2020AnaVeronicaMayorgaRojas.pdf2020AnaVeronicaMayorgaRojas.pdfTrabajo de Gradoapplication/pdf881174https://repositorio.uan.edu.co/bitstreams/10a07698-891f-4b94-9a12-11ffdbb067a1/download0ead28629a149f3ae98a367594950077MD512020AutorizacióndeAutores1.pdf2020AutorizacióndeAutores1.pdfAutorización de autor 1application/pdf148843https://repositorio.uan.edu.co/bitstreams/02cd3162-a3d4-4dda-af22-ea3bfff8b76a/download27c05241ca4da5ddb990879da4f291d7MD522020AutorizacióndeAutores2.pdf2020AutorizacióndeAutores2.pdfAutorización de autor 2application/pdf1029058https://repositorio.uan.edu.co/bitstreams/7874d93f-27a4-45f2-8fe8-a9487393b5db/downloadfc126998b804e752aa2b4cc670d6fd3bMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.uan.edu.co/bitstreams/f1563789-9c34-483e-97a6-cb672087e1bb/download9868ccc48a14c8d591352b6eaf7f6239MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82710https://repositorio.uan.edu.co/bitstreams/b1eb77d8-a5e1-48b1-a983-ae8962cb2d89/download2e388663398085f69421c9e4c5fcf235MD55TEXT2020AnaVeronicaMayorgaRojas.pdf.txt2020AnaVeronicaMayorgaRojas.pdf.txtExtracted texttext/plain31393https://repositorio.uan.edu.co/bitstreams/fa416d53-26ec-4056-9975-fdcf0a01bf1c/downloadc1729800b94b8dd79d1a86643291beb5MD562020AutorizacióndeAutores1.pdf.txt2020AutorizacióndeAutores1.pdf.txtExtracted texttext/plain2https://repositorio.uan.edu.co/bitstreams/cdbb2cd5-a284-4e39-bc5e-0560f5df0e90/downloade1c06d85ae7b8b032bef47e42e4c08f9MD582020AutorizacióndeAutores2.pdf.txt2020AutorizacióndeAutores2.pdf.txtExtracted texttext/plain2https://repositorio.uan.edu.co/bitstreams/238261b6-7354-4080-8f65-9d25c6854597/downloade1c06d85ae7b8b032bef47e42e4c08f9MD510THUMBNAIL2020AnaVeronicaMayorgaRojas.pdf.jpg2020AnaVeronicaMayorgaRojas.pdf.jpgGenerated Thumbnailimage/jpeg19624https://repositorio.uan.edu.co/bitstreams/bad5fbf5-7606-4972-9362-7444e9bf7117/download1ffe0ec050e68217b11f541f2bef673aMD572020AutorizacióndeAutores1.pdf.jpg2020AutorizacióndeAutores1.pdf.jpgGenerated Thumbnailimage/jpeg20269https://repositorio.uan.edu.co/bitstreams/dfc7cce0-7b96-4c88-833f-cd8a8efed159/downloadc199f6c7e31da48f67cb3b7695c75de2MD592020AutorizacióndeAutores2.pdf.jpg2020AutorizacióndeAutores2.pdf.jpgGenerated Thumbnailimage/jpeg20832https://repositorio.uan.edu.co/bitstreams/a3a45d22-9748-4b7e-bcf8-1f3666dc1f99/downloadd87bb9aedee648f239787181b4e7bb72MD511123456789/2724oai:repositorio.uan.edu.co:123456789/27242024-10-21 12:36:01.199https://creativecommons.org/licenses/by-nc-nd/4.0/Acceso a solo metadatosopen.accesshttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.coQWwgaW5jbHVpciBpbmZvcm1hY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSAgVU5JVkVSU0lEQUQgQU5UT05JTyBOQVJJw5FPLCBlbCBhdXRvcihlcykgYXV0b3JpemEgYWwgU2lzdGVtYSBOYWNpb25hbCBkZSBCaWJsaW90ZWNhcyBwYXJhIGFsbWFjZW5hciB5IG1hbnRlbmVyIGxhIGluZm9ybWFjacOzbiAsIGNvbiBmaW5lcyBhY2Fkw6ltaWNvcyB5IGRlIG1hbmVyYSBncmF0dWl0YSwgIHBvbmdhIGEgZGlzcG9zaWNpw7NuIGRlIGxhIGNvbXVuaWRhZCBzdXMgY29udGVuaWRvcyBkw6FuZG9sZSB2aXNpYmlsaWRhZCBhIGxvcyBtaXNtb3MsIHNlIGVudGllbmRlIHF1ZSBlbChsb3MpIGF1dG9yKGVzKSBhY2VwdGEobik6IAoKMS4JUXVlIGxvcyB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBwdWVkYW4gY29uc3VsdGFyIGVsIGNvbnRlbmlkbyBkZSBlc3RlIHRyYWJham8gZW4gbG9zIHNpdGlvcyB3ZWIgcXVlIGFkbWluaXN0cmEgbGEgVW5pdmVyc2lkYWQgQW50b25pbyBOYXJpw7FvLCBlbiBCYXNlIGRlIERhdG9zLCBlbiBvdHJvcyBDYXTDoWxvZ29zIHkgZW4gb3Ryb3Mgc2l0aW9zIFdlYiwgUmVkZXMgeSBTaXN0ZW1hcyBkZSBJbmZvcm1hY2nDs24gbmFjaW9uYWxlcyBlIGludGVybmFjaW9uYWxlcyDigJxPcGVuIEFjY2Vzc+KAnSB5IGVuIGxhcyByZWRlcyBkZSBpbmZvcm1hY2nDs24gZGVsIHBhw61zIHkgZGVsIGV4dGVyaW9yLCBjb24gbGFzIGN1YWxlcyB0ZW5nYSBjb252ZW5pbyBsYSBVbml2ZXJzaWRhZCBBbnRvbmlvIE5hcmnDsW8uCgoyLglRdWUgc2UgcGVybWl0ZSBsYSBjb25zdWx0YSBhIGxvcyB1c3VhcmlvcyBpbnRlcmVzYWRvcyBlbiBlbCBjb250ZW5pZG8gZGUgZXN0ZSB0cmFiYWpvLCBjb24gZmluYWxpZGFkIGFjYWTDqW1pY2EsIG51bmNhIHBhcmEgdXNvcyBjb21lcmNpYWxlcywgc2llbXByZSB5IGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyB5IGEgc3UgYXV0b3IuIEVzdG8gaW5jbHV5ZSBjdWFscXVpZXIgZm9ybWF0byBkaXNwb25pYmxlIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuCgozLglRdWUgbG9zIGRlcmVjaG9zIHNvYnJlIGxvcyBkb2N1bWVudG9zIHNvbiBwcm9waWVkYWQgZGVsIGF1dG9yIG8gZGUgbG9zIGF1dG9yZXMgeSB0aWVuZW4gc29icmUgc3Ugb2JyYSwgZW50cmUgb3Ryb3MsIGxvcyBkZXJlY2hvcyBtb3JhbGVzIGEgcXVlIGhhY2VuIHJlZmVyZW5jaWEgY29uc2VydmFuZG8gbG9zIGNvcnJlc3BvbmRpZW50ZXMgZGVyZWNob3Mgc2luIG1vZGlmaWNhY2nDs24gbyByZXN0cmljY2nDs24gYWxndW5hIHB1ZXN0byBxdWUsIGRlIGFjdWVyZG8gY29uIGxhIGxlZ2lzbGFjacOzbiBjb2xvbWJpYW5hIGFwbGljYWJsZSwgZWwgcHJlc2VudGUgZXMgdW5hIGF1dG9yaXphY2nDs24gcXVlIGVuIG5pbmfDum4gY2FzbyBjb25sbGV2YSBsYSBlbmFqZW5hY2nDs24gZGVsIGRlcmVjaG8gZGUgYXV0b3IgeSBzdXMgY29uZXhvcy4KCjQuCVF1ZSBlbCBTaXN0ZW1hIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIEFudG9uaW8gTmFyacOxbyBwdWVkYSBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBwYXJhIHByb3DDs3NpdG9zIGRlIHByZXNlcnZhY2nDs24gZGlnaXRhbC4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgeSB1c2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiBkZSBsYSBpbmZvcm1hY2nDs24gaW5jbHVpZGEgZW4gZXN0ZSByZXBvc2l0b3Jpby4KCjUuCVF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIGVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvciBsbyB0YW50byBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgVW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZTsgYXPDrSBtaXNtbyBlbCBhY8OhIGZpcm1hbnRlIGRlamFyw6EgaW5kZW1uZSBhIGxhIFVuaXZlcnNpZGFkIGRlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBwZXJqdWljaW8uCg== |