Segmentation and classification of SAR imagery on flood zones in Colombia, a computing tool for disaster prevention

In order to prevent natural flood disasters it important to identify the flood areas. In Colombia, there is space to develop automatic tools able to detect and study flood areas. For this reason, in this work we propose a computational tool in MATLAB, able to detect and classify Colombia’s flood zon...

Full description

Autores:
Tipo de recurso:
Article of journal
Fecha de publicación:
2014
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/10441
Acceso en línea:
https://revistas.uan.edu.co/index.php/ingeuan/article/view/365
https://repositorio.uan.edu.co/handle/123456789/10441
Palabra clave:
SAR
Clasificación
Segmentación
imágenes de zonas de inundación
SAR
Classification
Segmentation
flood areas imagery
Rights
License
https://creativecommons.org/licenses/by-nc-sa/4.0
id UAntonioN2_ba211f1ae8efc579700478bca046af17
oai_identifier_str oai:repositorio.uan.edu.co:123456789/10441
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
spelling 2014-09-082024-10-10T02:25:06Z2024-10-10T02:25:06Zhttps://revistas.uan.edu.co/index.php/ingeuan/article/view/365https://repositorio.uan.edu.co/handle/123456789/10441In order to prevent natural flood disasters it important to identify the flood areas. In Colombia, there is space to develop automatic tools able to detect and study flood areas. For this reason, in this work we propose a computational tool in MATLAB, able to detect and classify Colombia’s flood zones in SAR imager. In particular, we used different classifiers, and according to the performance we selected the best. The training database was generated with the results of Fuzzy Clustering, K -means and Region -Growing segmentations on flood zones in SAR imagery. We used two different classifiers: the first one is a Bayes classifier, while the second one is a Support Vector Machine (SVM). In order to evaluate the performance, we used indices such as the overall accuracy, user accuracy and Kappa index. According to the results, the SVM classifier presents better accuracy. However, the Bayes classifier had better results classifying pixels corresponding to populations even with little training data.La detección de zonas de inundación es fundamental para la prevención de desastres, por este motivo en este trabajo se presenta una herramienta computacional desarrollada en MATLAB que ofrece una alternativa a las existentes en el mercado para la clasificación supervisada de imágenes SAR (Synthetic Aperture Radar) de zonas de inundación. En particular se usaron diferentes métodos de clasificación para seleccionar de acuerdo al desempeño el mejor para el estudio de zonas de inundación en Colombia.Los datos de entrenamiento fueron generados con los resultados de las segmentaciones Fuzzy-Clustering, K-means y Region-Growing sobre imágenes SAR de zonas de inundación. Los métodos de clasificación implementados fueron un clasificador basado en el método Bayesiano y un clasificador basado en máquinas de vectores de soporte (SVM). Para evaluar el desempeño de los clasificadores se utilizaron índices como la exactitud total, la exactitud dependiendo del usuario, el índice Kappay R’. De acuerdo a los resultados el clasificador basado en máquinas de soporte presenta mayor exactitud; sin embargo, el clasificador bayesiano se desempeña mejor clasificando pixeles que corresponden a poblaciones, aun con pocos datos de entrenamiento.application/pdfspaUNIVERSIDAD ANTONIO NARIÑOhttps://revistas.uan.edu.co/index.php/ingeuan/article/view/365/305https://creativecommons.org/licenses/by-nc-sa/4.0http://purl.org/coar/access_right/c_abf2INGE@UAN - TENDENCIAS EN LA INGENIERÍA; Vol. 4 Núm. 8 (2014)2346-14462145-0935SARClasificaciónSegmentaciónimágenes de zonas de inundaciónSARClassificationSegmentationflood areas imagerySegmentation and classification of SAR imagery on flood zones in Colombia, a computing tool for disaster preventionSegmentación y clasificación de imágenes SAR en zonas de inundación en Colombia, una herramienta computacional para prevención de desastresinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Avendaño Pérez, JonathanParra Plazas, Jaime AlbertoBayona, Jhon Fredy123456789/10441oai:repositorio.uan.edu.co:123456789/104412024-10-14 03:49:56.064metadata.onlyhttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co
dc.title.en-US.fl_str_mv Segmentation and classification of SAR imagery on flood zones in Colombia, a computing tool for disaster prevention
dc.title.es-ES.fl_str_mv Segmentación y clasificación de imágenes SAR en zonas de inundación en Colombia, una herramienta computacional para prevención de desastres
title Segmentation and classification of SAR imagery on flood zones in Colombia, a computing tool for disaster prevention
spellingShingle Segmentation and classification of SAR imagery on flood zones in Colombia, a computing tool for disaster prevention
SAR
Clasificación
Segmentación
imágenes de zonas de inundación
SAR
Classification
Segmentation
flood areas imagery
title_short Segmentation and classification of SAR imagery on flood zones in Colombia, a computing tool for disaster prevention
title_full Segmentation and classification of SAR imagery on flood zones in Colombia, a computing tool for disaster prevention
title_fullStr Segmentation and classification of SAR imagery on flood zones in Colombia, a computing tool for disaster prevention
title_full_unstemmed Segmentation and classification of SAR imagery on flood zones in Colombia, a computing tool for disaster prevention
title_sort Segmentation and classification of SAR imagery on flood zones in Colombia, a computing tool for disaster prevention
dc.subject.es-ES.fl_str_mv SAR
Clasificación
Segmentación
imágenes de zonas de inundación
topic SAR
Clasificación
Segmentación
imágenes de zonas de inundación
SAR
Classification
Segmentation
flood areas imagery
dc.subject.en-US.fl_str_mv SAR
Classification
Segmentation
flood areas imagery
description In order to prevent natural flood disasters it important to identify the flood areas. In Colombia, there is space to develop automatic tools able to detect and study flood areas. For this reason, in this work we propose a computational tool in MATLAB, able to detect and classify Colombia’s flood zones in SAR imager. In particular, we used different classifiers, and according to the performance we selected the best. The training database was generated with the results of Fuzzy Clustering, K -means and Region -Growing segmentations on flood zones in SAR imagery. We used two different classifiers: the first one is a Bayes classifier, while the second one is a Support Vector Machine (SVM). In order to evaluate the performance, we used indices such as the overall accuracy, user accuracy and Kappa index. According to the results, the SVM classifier presents better accuracy. However, the Bayes classifier had better results classifying pixels corresponding to populations even with little training data.
publishDate 2014
dc.date.accessioned.none.fl_str_mv 2024-10-10T02:25:06Z
dc.date.available.none.fl_str_mv 2024-10-10T02:25:06Z
dc.date.none.fl_str_mv 2014-09-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uan.edu.co/index.php/ingeuan/article/view/365
dc.identifier.uri.none.fl_str_mv https://repositorio.uan.edu.co/handle/123456789/10441
url https://revistas.uan.edu.co/index.php/ingeuan/article/view/365
https://repositorio.uan.edu.co/handle/123456789/10441
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uan.edu.co/index.php/ingeuan/article/view/365/305
dc.rights.es-ES.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.publisher.es-ES.fl_str_mv UNIVERSIDAD ANTONIO NARIÑO
dc.source.es-ES.fl_str_mv INGE@UAN - TENDENCIAS EN LA INGENIERÍA; Vol. 4 Núm. 8 (2014)
dc.source.none.fl_str_mv 2346-1446
2145-0935
institution Universidad Antonio Nariño
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1814300427181621248