Análisis metagenómico de microorganismos con potencial tolerante y resistente a metales pesados presentes en islas de recursos del Caribe Colombiano.

The bacteria from resource islands can adapt to extreme conditions in semi-arid regions, where concentrations of heavy metals have already been found in the soil. Therefore, the objective of this study is to determine the resistance and tolerance to heavy metals in bacteria under the canopy of resou...

Full description

Autores:
Herrera Calderón, Andrea Carolina
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/8342
Acceso en línea:
http://repositorio.uan.edu.co/handle/123456789/8342
Palabra clave:
Bioquimica
574
38.23 H565a
Biochemistry
Rights
closedAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
id UAntonioN2_b3d470f56d0996c6ef979e8375ee70be
oai_identifier_str oai:repositorio.uan.edu.co:123456789/8342
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
dc.title.es_ES.fl_str_mv Análisis metagenómico de microorganismos con potencial tolerante y resistente a metales pesados presentes en islas de recursos del Caribe Colombiano.
title Análisis metagenómico de microorganismos con potencial tolerante y resistente a metales pesados presentes en islas de recursos del Caribe Colombiano.
spellingShingle Análisis metagenómico de microorganismos con potencial tolerante y resistente a metales pesados presentes en islas de recursos del Caribe Colombiano.
Bioquimica
574
38.23 H565a
Biochemistry
title_short Análisis metagenómico de microorganismos con potencial tolerante y resistente a metales pesados presentes en islas de recursos del Caribe Colombiano.
title_full Análisis metagenómico de microorganismos con potencial tolerante y resistente a metales pesados presentes en islas de recursos del Caribe Colombiano.
title_fullStr Análisis metagenómico de microorganismos con potencial tolerante y resistente a metales pesados presentes en islas de recursos del Caribe Colombiano.
title_full_unstemmed Análisis metagenómico de microorganismos con potencial tolerante y resistente a metales pesados presentes en islas de recursos del Caribe Colombiano.
title_sort Análisis metagenómico de microorganismos con potencial tolerante y resistente a metales pesados presentes en islas de recursos del Caribe Colombiano.
dc.creator.fl_str_mv Herrera Calderón, Andrea Carolina
dc.contributor.advisor.spa.fl_str_mv Vanegas Guerrero, Javier
Arenas Suarez, Nelson
dc.contributor.author.spa.fl_str_mv Herrera Calderón, Andrea Carolina
dc.subject.es_ES.fl_str_mv Bioquimica
topic Bioquimica
574
38.23 H565a
Biochemistry
dc.subject.ddc.es_ES.fl_str_mv 574
38.23 H565a
dc.subject.keyword.es_ES.fl_str_mv Biochemistry
description The bacteria from resource islands can adapt to extreme conditions in semi-arid regions, where concentrations of heavy metals have already been found in the soil. Therefore, the objective of this study is to determine the resistance and tolerance to heavy metals in bacteria under the canopy of resource islands in the Colombian Caribbean. Through a metagenomic approach, genes related to tolerance and resistance to heavy metals were identified in the soil, and it was found that the abundance of these genes was favored by the wet season and the presence of vegetation.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-31T20:01:33Z
dc.date.available.none.fl_str_mv 2023-07-31T20:01:33Z
dc.date.issued.spa.fl_str_mv 2023-05-29
dc.type.spa.fl_str_mv Trabajo de grado (Pregrado y/o Especialización)
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://repositorio.uan.edu.co/handle/123456789/8342
dc.identifier.bibliographicCitation.spa.fl_str_mv Abou-Shanab, R. A. I., van Berkum, P., & Angle, J. S. (2007). Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere, 68(2), 360–367. https://doi.org/10.1016/J.CHEMOSPHERE.2006.12.051
Aguilar-Barajas, E., Jerónimo-Rodríguez, P., Ramírez-Díaz, M. I., Rensing, C., & Cervantes, C. (2012). The ChrA homologue from a sulfur-regulated gene cluster in cyanobacterial plasmid pANL confers chromate resistance. World Journal of Microbiology and Biotechnology, 28,865-869.
Ahemad, M. (2014). Bacterial mechanisms for Cr (VI) resistance and reduction: an overview and recent advances. Folia microbiologica, 59, 321-332.
Azcón, R., Medina, A., Aroca, R., & Ruiz‐Lozano, J. M. (2013). Abiotic stress remediation by the arbuscular mycorrhizal symbiosis and rhizosphere bacteria/yeast interactions. Molecular microbial ecology of the rhizosphere, 1, 991-1002
Bashan, Y., Puente, M. E., de-Bashan, L. E., & Hernandez, J. P. (2008). Environmental uses of plant growth-promoting bacteria. Plant-microbe interactions, 661(2), 69-93.
Borowik, A., & Wyszkowska, J. (2016). Soil moisture as a factor affecting the microbiological and biochemical activity of soil. Plant, Soil and Environment, 62(6), 250-255.
Chandrasekaran, A., Ravisankar, R., Harikrishnan, N., Satapathy, K. K., Prasad, M. V. R., & Kanagasabapathy, K. V. (2015). Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India–Spectroscopical approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 589-600.
Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., & Xia, R. (2020). TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular plant, 13(8), 1194-1202.
Dekak, A., Chabi, R., Menasria, T., & Benhizia, Y (2018). Phenotypic characterization of Phenotypic characterization of rhizobia nodulating legumes Genista microcephala and Argyrolobium uniflorum growing under arid conditions. Journal of Advanced Research, 14, 35–42. https://doi.org/10.1016/j.jare.2018.06.001
El Baz, S., Baz, M., Barakate, M., Hassani, L., El Gharmali, A., & Imziln, B. (2015). Resistance to and accumulation of heavy metals by actinobacteria isolated from abandoned mining areas. The Scientific World Journal, 2015.
dc.identifier.instname.spa.fl_str_mv instname:Universidad Antonio Nariño
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UAN
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uan.edu.co/
url http://repositorio.uan.edu.co/handle/123456789/8342
identifier_str_mv Abou-Shanab, R. A. I., van Berkum, P., & Angle, J. S. (2007). Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere, 68(2), 360–367. https://doi.org/10.1016/J.CHEMOSPHERE.2006.12.051
Aguilar-Barajas, E., Jerónimo-Rodríguez, P., Ramírez-Díaz, M. I., Rensing, C., & Cervantes, C. (2012). The ChrA homologue from a sulfur-regulated gene cluster in cyanobacterial plasmid pANL confers chromate resistance. World Journal of Microbiology and Biotechnology, 28,865-869.
Ahemad, M. (2014). Bacterial mechanisms for Cr (VI) resistance and reduction: an overview and recent advances. Folia microbiologica, 59, 321-332.
Azcón, R., Medina, A., Aroca, R., & Ruiz‐Lozano, J. M. (2013). Abiotic stress remediation by the arbuscular mycorrhizal symbiosis and rhizosphere bacteria/yeast interactions. Molecular microbial ecology of the rhizosphere, 1, 991-1002
Bashan, Y., Puente, M. E., de-Bashan, L. E., & Hernandez, J. P. (2008). Environmental uses of plant growth-promoting bacteria. Plant-microbe interactions, 661(2), 69-93.
Borowik, A., & Wyszkowska, J. (2016). Soil moisture as a factor affecting the microbiological and biochemical activity of soil. Plant, Soil and Environment, 62(6), 250-255.
Chandrasekaran, A., Ravisankar, R., Harikrishnan, N., Satapathy, K. K., Prasad, M. V. R., & Kanagasabapathy, K. V. (2015). Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India–Spectroscopical approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 589-600.
Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., & Xia, R. (2020). TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular plant, 13(8), 1194-1202.
Dekak, A., Chabi, R., Menasria, T., & Benhizia, Y (2018). Phenotypic characterization of Phenotypic characterization of rhizobia nodulating legumes Genista microcephala and Argyrolobium uniflorum growing under arid conditions. Journal of Advanced Research, 14, 35–42. https://doi.org/10.1016/j.jare.2018.06.001
El Baz, S., Baz, M., Barakate, M., Hassani, L., El Gharmali, A., & Imziln, B. (2015). Resistance to and accumulation of heavy metals by actinobacteria isolated from abandoned mining areas. The Scientific World Journal, 2015.
instname:Universidad Antonio Nariño
reponame:Repositorio Institucional UAN
repourl:https://repositorio.uan.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv Acceso a solo metadatos
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Acceso a solo metadatos
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.publisher.spa.fl_str_mv Universidad Antonio Nariño
dc.publisher.program.spa.fl_str_mv Bioquímica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.campus.spa.fl_str_mv Bogotá - Circunvalar
institution Universidad Antonio Nariño
bitstream.url.fl_str_mv https://repositorio.uan.edu.co/bitstreams/9a98d3cc-5a10-4b15-8404-3266ca825e30/download
https://repositorio.uan.edu.co/bitstreams/59df7481-36c8-4076-a4c4-d0cbb286888e/download
https://repositorio.uan.edu.co/bitstreams/a63f28d7-1136-48ba-a9a8-8804fd3a0976/download
bitstream.checksum.fl_str_mv 853d738286523024345a2a8ee8dc2a7b
bbfe8206bf8e354cbeb38c2702371bcc
8fa4cd9cd300ca6287d78e424c61c8fb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1814300374390013952
spelling Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Acceso a solo metadatoshttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbVanegas Guerrero, JavierArenas Suarez, NelsonHerrera Calderón, Andrea Carolina118219140032023-07-31T20:01:33Z2023-07-31T20:01:33Z2023-05-29http://repositorio.uan.edu.co/handle/123456789/8342Abou-Shanab, R. A. I., van Berkum, P., & Angle, J. S. (2007). Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere, 68(2), 360–367. https://doi.org/10.1016/J.CHEMOSPHERE.2006.12.051Aguilar-Barajas, E., Jerónimo-Rodríguez, P., Ramírez-Díaz, M. I., Rensing, C., & Cervantes, C. (2012). The ChrA homologue from a sulfur-regulated gene cluster in cyanobacterial plasmid pANL confers chromate resistance. World Journal of Microbiology and Biotechnology, 28,865-869.Ahemad, M. (2014). Bacterial mechanisms for Cr (VI) resistance and reduction: an overview and recent advances. Folia microbiologica, 59, 321-332.Azcón, R., Medina, A., Aroca, R., & Ruiz‐Lozano, J. M. (2013). Abiotic stress remediation by the arbuscular mycorrhizal symbiosis and rhizosphere bacteria/yeast interactions. Molecular microbial ecology of the rhizosphere, 1, 991-1002Bashan, Y., Puente, M. E., de-Bashan, L. E., & Hernandez, J. P. (2008). Environmental uses of plant growth-promoting bacteria. Plant-microbe interactions, 661(2), 69-93.Borowik, A., & Wyszkowska, J. (2016). Soil moisture as a factor affecting the microbiological and biochemical activity of soil. Plant, Soil and Environment, 62(6), 250-255.Chandrasekaran, A., Ravisankar, R., Harikrishnan, N., Satapathy, K. K., Prasad, M. V. R., & Kanagasabapathy, K. V. (2015). Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India–Spectroscopical approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 589-600.Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., & Xia, R. (2020). TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular plant, 13(8), 1194-1202.Dekak, A., Chabi, R., Menasria, T., & Benhizia, Y (2018). Phenotypic characterization of Phenotypic characterization of rhizobia nodulating legumes Genista microcephala and Argyrolobium uniflorum growing under arid conditions. Journal of Advanced Research, 14, 35–42. https://doi.org/10.1016/j.jare.2018.06.001El Baz, S., Baz, M., Barakate, M., Hassani, L., El Gharmali, A., & Imziln, B. (2015). Resistance to and accumulation of heavy metals by actinobacteria isolated from abandoned mining areas. The Scientific World Journal, 2015.instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/The bacteria from resource islands can adapt to extreme conditions in semi-arid regions, where concentrations of heavy metals have already been found in the soil. Therefore, the objective of this study is to determine the resistance and tolerance to heavy metals in bacteria under the canopy of resource islands in the Colombian Caribbean. Through a metagenomic approach, genes related to tolerance and resistance to heavy metals were identified in the soil, and it was found that the abundance of these genes was favored by the wet season and the presence of vegetation.Las bacterias de islas de recursos pueden adaptarse a condiciones extremas en regiones semiáridas. Donde además ya han sido encontradas concentraciones de metales pesados en el suelo. Por esto, el objetivo de este trabajo es determinar el potencial resistente y tolerante a metales pesados en bacterias bajo el dosel de islas de recursos en el Caribe colombiano. Mediante un enfoque en metagenómica, se identificaron genes de tolerancia y resistencia a metales pesados en el suelo, encontrando que la abundancia de estos genes se favoreció por la temporada de humedad y la presencia de vegetación.Bioquímico(a)PregradoPresencialInvestigaciónspaUniversidad Antonio NariñoBioquímicaFacultad de CienciasBogotá - CircunvalarBioquimica57438.23 H565aBiochemistryAnálisis metagenómico de microorganismos con potencial tolerante y resistente a metales pesados presentes en islas de recursos del Caribe Colombiano.Trabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85GeneralORIGINAL2023_AndreaCarolinaHerreraCalderón.pdf2023_AndreaCarolinaHerreraCalderón.pdfapplication/pdf1466328https://repositorio.uan.edu.co/bitstreams/9a98d3cc-5a10-4b15-8404-3266ca825e30/download853d738286523024345a2a8ee8dc2a7bMD522023_AndreaCarolinaHerreraCalderón_Acta.pdf2023_AndreaCarolinaHerreraCalderón_Acta.pdfapplication/pdf1597929https://repositorio.uan.edu.co/bitstreams/59df7481-36c8-4076-a4c4-d0cbb286888e/downloadbbfe8206bf8e354cbeb38c2702371bccMD532023_AndreaCarolinaHerreraCalderón_Autorización.pdf2023_AndreaCarolinaHerreraCalderón_Autorización.pdfapplication/pdf9900327https://repositorio.uan.edu.co/bitstreams/a63f28d7-1136-48ba-a9a8-8804fd3a0976/download8fa4cd9cd300ca6287d78e424c61c8fbMD54123456789/8342oai:repositorio.uan.edu.co:123456789/83422024-10-09 23:35:33.311https://creativecommons.org/licenses/by-nc-nd/4.0/Acceso a solo metadatosrestrictedhttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co