Using genetic algorithms as a parameter estimation tool for the generalized lambda distribution (gld) family: “methods of moments”

The generalized lambda distribution, λ,λ,λ,λ(GLD ) 1 432 is a four-parameter family that has been used for fitting distributions to a wide variety of data sets. Minimization through traditional calculus-based methods has been implemented with relative success, but due to computational and theoretica...

Full description

Autores:
Moreno Bedoya, David Leonardo
Fino Puerto, Nelson Ricardo
Tipo de recurso:
Article of journal
Fecha de publicación:
2014
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/3892
Acceso en línea:
http://revistas.uan.edu.co/index.php/ingeuan/article/view/212
http://repositorio.uan.edu.co/handle/123456789/3892
Palabra clave:
Data Fitting
Generalized Lambda Distribution
Minimization Method
Moments
Percentiles
Genetic Algorithms
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
id UAntonioN2_b3907ff446c1b638682e101845c983c2
oai_identifier_str oai:repositorio.uan.edu.co:123456789/3892
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
spelling Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Moreno Bedoya, David LeonardoFino Puerto, Nelson Ricardo2021-06-16T13:52:56Z2021-06-16T13:52:56Z2014-03-04http://revistas.uan.edu.co/index.php/ingeuan/article/view/212http://repositorio.uan.edu.co/handle/123456789/3892The generalized lambda distribution, λ,λ,λ,λ(GLD ) 1 432 is a four-parameter family that has been used for fitting distributions to a wide variety of data sets. Minimization through traditional calculus-based methods has been implemented with relative success, but due to computational and theoretical shortcomings of those methods, the moment space has been limited. This paper solve those troubles by using Genetic Algorithms (search algorithms based on the mechanics of natural selection and natural genetics) applied to the methods of moments. Examples of better solutions than the ones find out with traditional calculusbased methods are included.The generalized lambda distribution, λ,λ,λ,λ(GLD ) 1 432 is a four-parameter family that has been used for fitting distributions to a wide variety of data sets. Minimization through traditional calculus-based methods has been implemented with relative success, but due to computational and theoretical shortcomings of those methods, the moment space has been limited. This paper solve those troubles by using Genetic Algorithms (search algorithms based on the mechanics of natural selection and natural genetics) applied to the methods of moments. Examples of better solutions than the ones find out with traditional calculusbased methods are included.application/pdfspaUniversidad Antonio Nariñohttp://revistas.uan.edu.co/index.php/ingeuan/article/view/212/1742346-14462145-0935INGE@UAN - TENDENCIAS EN LA INGENIERÍA; Vol. 1 Núm. 2 (2011)Data FittingGeneralized Lambda DistributionMinimization MethodMomentsPercentilesGenetic AlgorithmsUsing genetic algorithms as a parameter estimation tool for the generalized lambda distribution (gld) family: “methods of moments”Using genetic algorithms as a parameter estimation tool for the generalized lambda distribution (gld) family: “methods of moments”info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85123456789/3892oai:repositorio.uan.edu.co:123456789/38922024-10-09 22:54:59.539https://creativecommons.org/licenses/by-nc-sa/4.0/Acceso abiertometadata.onlyhttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co
dc.title.en-US.fl_str_mv Using genetic algorithms as a parameter estimation tool for the generalized lambda distribution (gld) family: “methods of moments”
dc.title.es-ES.fl_str_mv Using genetic algorithms as a parameter estimation tool for the generalized lambda distribution (gld) family: “methods of moments”
title Using genetic algorithms as a parameter estimation tool for the generalized lambda distribution (gld) family: “methods of moments”
spellingShingle Using genetic algorithms as a parameter estimation tool for the generalized lambda distribution (gld) family: “methods of moments”
Data Fitting
Generalized Lambda Distribution
Minimization Method
Moments
Percentiles
Genetic Algorithms
title_short Using genetic algorithms as a parameter estimation tool for the generalized lambda distribution (gld) family: “methods of moments”
title_full Using genetic algorithms as a parameter estimation tool for the generalized lambda distribution (gld) family: “methods of moments”
title_fullStr Using genetic algorithms as a parameter estimation tool for the generalized lambda distribution (gld) family: “methods of moments”
title_full_unstemmed Using genetic algorithms as a parameter estimation tool for the generalized lambda distribution (gld) family: “methods of moments”
title_sort Using genetic algorithms as a parameter estimation tool for the generalized lambda distribution (gld) family: “methods of moments”
dc.creator.fl_str_mv Moreno Bedoya, David Leonardo
Fino Puerto, Nelson Ricardo
dc.contributor.author.spa.fl_str_mv Moreno Bedoya, David Leonardo
Fino Puerto, Nelson Ricardo
dc.subject.en-US.fl_str_mv Data Fitting
Generalized Lambda Distribution
Minimization Method
Moments
Percentiles
Genetic Algorithms
topic Data Fitting
Generalized Lambda Distribution
Minimization Method
Moments
Percentiles
Genetic Algorithms
description The generalized lambda distribution, λ,λ,λ,λ(GLD ) 1 432 is a four-parameter family that has been used for fitting distributions to a wide variety of data sets. Minimization through traditional calculus-based methods has been implemented with relative success, but due to computational and theoretical shortcomings of those methods, the moment space has been limited. This paper solve those troubles by using Genetic Algorithms (search algorithms based on the mechanics of natural selection and natural genetics) applied to the methods of moments. Examples of better solutions than the ones find out with traditional calculusbased methods are included.
publishDate 2014
dc.date.issued.spa.fl_str_mv 2014-03-04
dc.date.accessioned.none.fl_str_mv 2021-06-16T13:52:56Z
dc.date.available.none.fl_str_mv 2021-06-16T13:52:56Z
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.none.fl_str_mv http://revistas.uan.edu.co/index.php/ingeuan/article/view/212
dc.identifier.uri.none.fl_str_mv http://repositorio.uan.edu.co/handle/123456789/3892
url http://revistas.uan.edu.co/index.php/ingeuan/article/view/212
http://repositorio.uan.edu.co/handle/123456789/3892
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv http://revistas.uan.edu.co/index.php/ingeuan/article/view/212/174
dc.rights.none.fl_str_mv Acceso abierto
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Acceso abierto
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Antonio Nariño
dc.source.none.fl_str_mv 2346-1446
2145-0935
dc.source.es-ES.fl_str_mv INGE@UAN - TENDENCIAS EN LA INGENIERÍA; Vol. 1 Núm. 2 (2011)
institution Universidad Antonio Nariño
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1814300358695976960