Estimación del parámetro soplosidad dentro del método de análisis perceptual de la voz cape-v

The voice is fundamental element of human communication, through it people transmit their feelings, emotions and ideas. In this context, different branches of medicine and engineering have opened upto the study of this phenomenon to explain in a way or other as it originates and the possible alterat...

Full description

Autores:
Rivera Marín, María Alejandra
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/2486
Acceso en línea:
http://repositorio.uan.edu.co/handle/123456789/2486
Palabra clave:
Evaluación perceptual de la voz
Dataset
Regresión
Soplosidad
Perceptual voice note
data set
regression
soplocity
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
id UAntonioN2_b11ec0078691448394daf1ff5e7e8cd8
oai_identifier_str oai:repositorio.uan.edu.co:123456789/2486
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
dc.title.es_ES.fl_str_mv Estimación del parámetro soplosidad dentro del método de análisis perceptual de la voz cape-v
title Estimación del parámetro soplosidad dentro del método de análisis perceptual de la voz cape-v
spellingShingle Estimación del parámetro soplosidad dentro del método de análisis perceptual de la voz cape-v
Evaluación perceptual de la voz
Dataset
Regresión
Soplosidad
Perceptual voice note
data set
regression
soplocity
title_short Estimación del parámetro soplosidad dentro del método de análisis perceptual de la voz cape-v
title_full Estimación del parámetro soplosidad dentro del método de análisis perceptual de la voz cape-v
title_fullStr Estimación del parámetro soplosidad dentro del método de análisis perceptual de la voz cape-v
title_full_unstemmed Estimación del parámetro soplosidad dentro del método de análisis perceptual de la voz cape-v
title_sort Estimación del parámetro soplosidad dentro del método de análisis perceptual de la voz cape-v
dc.creator.fl_str_mv Rivera Marín, María Alejandra
dc.contributor.advisor.spa.fl_str_mv Ramírez Medina, Jesús David
dc.contributor.author.spa.fl_str_mv Rivera Marín, María Alejandra
dc.subject.es_ES.fl_str_mv Evaluación perceptual de la voz
Dataset
Regresión
Soplosidad
topic Evaluación perceptual de la voz
Dataset
Regresión
Soplosidad
Perceptual voice note
data set
regression
soplocity
dc.subject.keyword.es_ES.fl_str_mv Perceptual voice note
data set
regression
soplocity
description The voice is fundamental element of human communication, through it people transmit their feelings, emotions and ideas. In this context, different branches of medicine and engineering have opened upto the study of this phenomenon to explain in a way or other as it originates and the possible alterations, to detect these disorders of the voice the functional evaluation is used, To carry out this evaluation, the speech pathologist must apply different tests and procedures in order to assess each of the elements that intervene in the production of the spoken and sung voice. These elements are evaluated largely through auditory perceptual evaluation, palpation and visual observation, which makes this examination subjective, and with this that the result depends on the experience of the professional I evaluated. There are different scales that seek to standardize the perceptual assessment of the voice, such as GRABS and CAPE-V, but these still have a high level of subjectivity. Several studies have been developed to reduce professional subjectivity in this test, but most are developed around the GRABS scale, which has certain disadvantages. With the purpose of reducing the exam time and the subjectivity of the test, the development of an app that allows predicting the breathiness parameter within the CAPE-V perceptual evaluation method is proposed, through digital processing of acoustic signals and machine learning. To arrive at the final development of the App, a synthetic voice bank was created, which was used to create a dataset, which was implemented in attribute selection and regression models, in the Matlab and Weka softwares, obtaining with this the most optimal regression model for the prediction of soplocity.
publishDate 2020
dc.date.issued.spa.fl_str_mv 2020-06-05
dc.date.accessioned.none.fl_str_mv 2021-03-03T17:05:47Z
dc.date.available.none.fl_str_mv 2021-03-03T17:05:47Z
dc.type.spa.fl_str_mv Trabajo de grado (Pregrado y/o Especialización)
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://repositorio.uan.edu.co/handle/123456789/2486
dc.identifier.bibliographicCitation.spa.fl_str_mv Batalla, D. F. (2015). sociedad española de otorrinolaringologia y cirugia de cabeza y cuello. Obtenido de seorl.net: https://seorl.net/wp-content/uploads/2015/09/CURSO-DE-VOZ.pdf
Botero Tobón, L. M. (2008). Caracterización de los indicadores acústicos. caldas: El artista.
Brockmann, M. (2011). Improving jitter and shimmer measurements in normal voices. reino unido: Newcastle University.
Carla Oliveira, C. L. (2013). Vocal Acoustic Analysis - Jitter, Shimmer and HNR Parameters. ELSEVIER, 1112-1122.
Cobeta, I., Núñez, F., & Fernández, S. (2013). Clasificación de las enfermedades neurodegenerativas. En p. d. voz. Barcelona: ICG Marge, SL.
Fang-Ling Lu, S. M. (2014). Tareas del habla y confiabilidad entre evaluadores en la evaluación perceptiva de la voz. Journal of Voice. Elsevier.28(6),, 725-732.
fermino, m. a. (2017). Clasificación de trastornos vocales utilizando redes neurales artificiales. Cornélio Procópio, brasil.
Ford, C., & Bless, D. (1986). Clinical experience with injectable collagen for vocal fold augmentation. Laryngoscope. En C. Ford, & D. Bless.
Galan, M. M. (julio de 2014). Análisis perceptual de la disfonía: adaptación y validación del método CAPE-V al español. oviedo.
García Mario Alejandro, R. A. (2016). Red neuronal profunda para analisis acustico. Red neuronal profunda para analisis acustico. Universidad Tecnológica Nacional Facultad Regional Córdoba.
García Mario Alejandro, R. A. (s.f.). Extracción de Características en Audio con Redes Neuronales convolucionales. Cordoba: Universidad Tecnológica Nacional Facultad Regional Córdoba (UTN FRC).
Gerardo Gutiérrez Gutiérrez, A. R. (2015). centro de ciencias de la computación . Obtenido de Instituto Tecnológico Metropolitano: http://c3.itm.edu.co/~gerardo.gutierrez/machinelearning/Introducci%C3%B3n%20Aprendizaje%20de%20M%C3%A1quina.pdf
Higor E. Pavoni, M. A. (2016). Identificación de parámetros subjetivos de voz utilizando redes neuronales artificiales. Identificación de parámetros subjetivos de voz utilizando redes neuronales artificiales. Cornélio procopio, Brasil.
Ignacio Cobeta, f. n. (2013). patologia de la voz. Marge medica books.
Jaume de Montserrat, A. O. (s.f.). El uso profesional. catalunya: Reversible SCP.
Kreiman, J. &. (2010). Perceptual assessment of voice quality: past,. Perspectives on Voice and Voice Disorders.
Martinez, J. F. (2011). Estimación espectral.
mateos, c. (18 de abril de 2017). sociedad española de otorrinolaringologia. Obtenido de https://seorl.net/wp-content/uploads/2016/05/NP_Dia-Mundial-de-la-Voz.pdf
Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. Londres, Inglaterra: Massachusetts Institute of Technology.
N., M. G. (2016). evaluación funcional de la voz. Artículo de divulgación científica en el área vocal. chile.
Nicolas Viancha, C. M. (2018). studocu. Obtenido de https://www.studocu.com/co/document/universidad-antonio-narino/electronica-analoga/practica/lab-espectro-senalesfinalizadob/4874733/view
Pericas, F. J. (1993). TECNICAS DE PROCESADO Y REPRESENTACION DE LA SEÑAL DE VOZ PARA EL RECONOCIMIENTO DEL HABLA EN AMBIENTES RUIDOSOS. Barcelona.
Polo, N. (2015). sottovoce. Obtenido de https://sottovoce.hypotheses.org/tag/voz-area
Preparadores de Oposiciones para la Enseñanza. (s.f.). Obtenido de La voz humana y su fisiología: https://www.preparadores.eu/secundaria/Musica/Musica-Tema.pdf
R.I. Zraick, G. K. (2011). Establishing validity of the Consensus Auditory-. Journal, 14-22.
Santos, J. f. (2017). Reconocimiento de patrones en medidas acústicas para identificar patologías laríngeas. Curitiba, brasil.
Teixeira, J. P., Oliveira, C., & Lopes, C. (2013). Analisis acustico vocal- Parametros de Jitter, Shimmer y HNR. Conferencia sobre sistemas y tecnologias de la informacion en salud y asistencia social, (págs. 1-2). braganca.
Trinite, B. (2017). Epidemiology of Voice Disorders in Latvian School Teachers. Elsevier , 508.e1-508.e9.
universidad de alcala. (s.f.). Obtenido de departamento de cirugia.
Williamson, G. (1 de 02 de 2014). Evaluación perceptiva de la voz. Obtenido de SLTinfo: https://www.sltinfo.com/perceptual-assessment-of-voice/
dc.identifier.instname.spa.fl_str_mv instname:Universidad Antonio Nariño
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UAN
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uan.edu.co/
url http://repositorio.uan.edu.co/handle/123456789/2486
identifier_str_mv Batalla, D. F. (2015). sociedad española de otorrinolaringologia y cirugia de cabeza y cuello. Obtenido de seorl.net: https://seorl.net/wp-content/uploads/2015/09/CURSO-DE-VOZ.pdf
Botero Tobón, L. M. (2008). Caracterización de los indicadores acústicos. caldas: El artista.
Brockmann, M. (2011). Improving jitter and shimmer measurements in normal voices. reino unido: Newcastle University.
Carla Oliveira, C. L. (2013). Vocal Acoustic Analysis - Jitter, Shimmer and HNR Parameters. ELSEVIER, 1112-1122.
Cobeta, I., Núñez, F., & Fernández, S. (2013). Clasificación de las enfermedades neurodegenerativas. En p. d. voz. Barcelona: ICG Marge, SL.
Fang-Ling Lu, S. M. (2014). Tareas del habla y confiabilidad entre evaluadores en la evaluación perceptiva de la voz. Journal of Voice. Elsevier.28(6),, 725-732.
fermino, m. a. (2017). Clasificación de trastornos vocales utilizando redes neurales artificiales. Cornélio Procópio, brasil.
Ford, C., & Bless, D. (1986). Clinical experience with injectable collagen for vocal fold augmentation. Laryngoscope. En C. Ford, & D. Bless.
Galan, M. M. (julio de 2014). Análisis perceptual de la disfonía: adaptación y validación del método CAPE-V al español. oviedo.
García Mario Alejandro, R. A. (2016). Red neuronal profunda para analisis acustico. Red neuronal profunda para analisis acustico. Universidad Tecnológica Nacional Facultad Regional Córdoba.
García Mario Alejandro, R. A. (s.f.). Extracción de Características en Audio con Redes Neuronales convolucionales. Cordoba: Universidad Tecnológica Nacional Facultad Regional Córdoba (UTN FRC).
Gerardo Gutiérrez Gutiérrez, A. R. (2015). centro de ciencias de la computación . Obtenido de Instituto Tecnológico Metropolitano: http://c3.itm.edu.co/~gerardo.gutierrez/machinelearning/Introducci%C3%B3n%20Aprendizaje%20de%20M%C3%A1quina.pdf
Higor E. Pavoni, M. A. (2016). Identificación de parámetros subjetivos de voz utilizando redes neuronales artificiales. Identificación de parámetros subjetivos de voz utilizando redes neuronales artificiales. Cornélio procopio, Brasil.
Ignacio Cobeta, f. n. (2013). patologia de la voz. Marge medica books.
Jaume de Montserrat, A. O. (s.f.). El uso profesional. catalunya: Reversible SCP.
Kreiman, J. &. (2010). Perceptual assessment of voice quality: past,. Perspectives on Voice and Voice Disorders.
Martinez, J. F. (2011). Estimación espectral.
mateos, c. (18 de abril de 2017). sociedad española de otorrinolaringologia. Obtenido de https://seorl.net/wp-content/uploads/2016/05/NP_Dia-Mundial-de-la-Voz.pdf
Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. Londres, Inglaterra: Massachusetts Institute of Technology.
N., M. G. (2016). evaluación funcional de la voz. Artículo de divulgación científica en el área vocal. chile.
Nicolas Viancha, C. M. (2018). studocu. Obtenido de https://www.studocu.com/co/document/universidad-antonio-narino/electronica-analoga/practica/lab-espectro-senalesfinalizadob/4874733/view
Pericas, F. J. (1993). TECNICAS DE PROCESADO Y REPRESENTACION DE LA SEÑAL DE VOZ PARA EL RECONOCIMIENTO DEL HABLA EN AMBIENTES RUIDOSOS. Barcelona.
Polo, N. (2015). sottovoce. Obtenido de https://sottovoce.hypotheses.org/tag/voz-area
Preparadores de Oposiciones para la Enseñanza. (s.f.). Obtenido de La voz humana y su fisiología: https://www.preparadores.eu/secundaria/Musica/Musica-Tema.pdf
R.I. Zraick, G. K. (2011). Establishing validity of the Consensus Auditory-. Journal, 14-22.
Santos, J. f. (2017). Reconocimiento de patrones en medidas acústicas para identificar patologías laríngeas. Curitiba, brasil.
Teixeira, J. P., Oliveira, C., & Lopes, C. (2013). Analisis acustico vocal- Parametros de Jitter, Shimmer y HNR. Conferencia sobre sistemas y tecnologias de la informacion en salud y asistencia social, (págs. 1-2). braganca.
Trinite, B. (2017). Epidemiology of Voice Disorders in Latvian School Teachers. Elsevier , 508.e1-508.e9.
universidad de alcala. (s.f.). Obtenido de departamento de cirugia.
Williamson, G. (1 de 02 de 2014). Evaluación perceptiva de la voz. Obtenido de SLTinfo: https://www.sltinfo.com/perceptual-assessment-of-voice/
instname:Universidad Antonio Nariño
reponame:Repositorio Institucional UAN
repourl:https://repositorio.uan.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv Acceso abierto
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Acceso abierto
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad Antonio Nariño
dc.publisher.program.spa.fl_str_mv Ingeniería Biomédica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Mecánica, Electrónica y Biomédica
dc.publisher.campus.spa.fl_str_mv Popayán - Alto Cauca
institution Universidad Antonio Nariño
bitstream.url.fl_str_mv https://repositorio.uan.edu.co/bitstreams/dd9f38ff-7f29-42c2-abbd-b12fbd151c77/download
https://repositorio.uan.edu.co/bitstreams/c41bf371-49cb-45a4-8f97-64c106a22250/download
https://repositorio.uan.edu.co/bitstreams/e8294450-dd17-44db-ad42-eb3909f0cab6/download
https://repositorio.uan.edu.co/bitstreams/ccf0b11d-c9f0-4160-af30-48587308c0de/download
bitstream.checksum.fl_str_mv b9d8bb5349d9fe0db8e47bfa053494be
6b0eb704bf906cd1d32b198ad257b2a3
9868ccc48a14c8d591352b6eaf7f6239
2e388663398085f69421c9e4c5fcf235
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1814300343077437440
spelling Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ramírez Medina, Jesús DavidRivera Marín, María Alejandra2021-03-03T17:05:47Z2021-03-03T17:05:47Z2020-06-05http://repositorio.uan.edu.co/handle/123456789/2486Batalla, D. F. (2015). sociedad española de otorrinolaringologia y cirugia de cabeza y cuello. Obtenido de seorl.net: https://seorl.net/wp-content/uploads/2015/09/CURSO-DE-VOZ.pdfBotero Tobón, L. M. (2008). Caracterización de los indicadores acústicos. caldas: El artista.Brockmann, M. (2011). Improving jitter and shimmer measurements in normal voices. reino unido: Newcastle University.Carla Oliveira, C. L. (2013). Vocal Acoustic Analysis - Jitter, Shimmer and HNR Parameters. ELSEVIER, 1112-1122.Cobeta, I., Núñez, F., & Fernández, S. (2013). Clasificación de las enfermedades neurodegenerativas. En p. d. voz. Barcelona: ICG Marge, SL.Fang-Ling Lu, S. M. (2014). Tareas del habla y confiabilidad entre evaluadores en la evaluación perceptiva de la voz. Journal of Voice. Elsevier.28(6),, 725-732.fermino, m. a. (2017). Clasificación de trastornos vocales utilizando redes neurales artificiales. Cornélio Procópio, brasil.Ford, C., & Bless, D. (1986). Clinical experience with injectable collagen for vocal fold augmentation. Laryngoscope. En C. Ford, & D. Bless.Galan, M. M. (julio de 2014). Análisis perceptual de la disfonía: adaptación y validación del método CAPE-V al español. oviedo.García Mario Alejandro, R. A. (2016). Red neuronal profunda para analisis acustico. Red neuronal profunda para analisis acustico. Universidad Tecnológica Nacional Facultad Regional Córdoba.García Mario Alejandro, R. A. (s.f.). Extracción de Características en Audio con Redes Neuronales convolucionales. Cordoba: Universidad Tecnológica Nacional Facultad Regional Córdoba (UTN FRC).Gerardo Gutiérrez Gutiérrez, A. R. (2015). centro de ciencias de la computación . Obtenido de Instituto Tecnológico Metropolitano: http://c3.itm.edu.co/~gerardo.gutierrez/machinelearning/Introducci%C3%B3n%20Aprendizaje%20de%20M%C3%A1quina.pdfHigor E. Pavoni, M. A. (2016). Identificación de parámetros subjetivos de voz utilizando redes neuronales artificiales. Identificación de parámetros subjetivos de voz utilizando redes neuronales artificiales. Cornélio procopio, Brasil.Ignacio Cobeta, f. n. (2013). patologia de la voz. Marge medica books.Jaume de Montserrat, A. O. (s.f.). El uso profesional. catalunya: Reversible SCP.Kreiman, J. &. (2010). Perceptual assessment of voice quality: past,. Perspectives on Voice and Voice Disorders.Martinez, J. F. (2011). Estimación espectral.mateos, c. (18 de abril de 2017). sociedad española de otorrinolaringologia. Obtenido de https://seorl.net/wp-content/uploads/2016/05/NP_Dia-Mundial-de-la-Voz.pdfMurphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. Londres, Inglaterra: Massachusetts Institute of Technology.N., M. G. (2016). evaluación funcional de la voz. Artículo de divulgación científica en el área vocal. chile.Nicolas Viancha, C. M. (2018). studocu. Obtenido de https://www.studocu.com/co/document/universidad-antonio-narino/electronica-analoga/practica/lab-espectro-senalesfinalizadob/4874733/viewPericas, F. J. (1993). TECNICAS DE PROCESADO Y REPRESENTACION DE LA SEÑAL DE VOZ PARA EL RECONOCIMIENTO DEL HABLA EN AMBIENTES RUIDOSOS. Barcelona.Polo, N. (2015). sottovoce. Obtenido de https://sottovoce.hypotheses.org/tag/voz-areaPreparadores de Oposiciones para la Enseñanza. (s.f.). Obtenido de La voz humana y su fisiología: https://www.preparadores.eu/secundaria/Musica/Musica-Tema.pdfR.I. Zraick, G. K. (2011). Establishing validity of the Consensus Auditory-. Journal, 14-22.Santos, J. f. (2017). Reconocimiento de patrones en medidas acústicas para identificar patologías laríngeas. Curitiba, brasil.Teixeira, J. P., Oliveira, C., & Lopes, C. (2013). Analisis acustico vocal- Parametros de Jitter, Shimmer y HNR. Conferencia sobre sistemas y tecnologias de la informacion en salud y asistencia social, (págs. 1-2). braganca.Trinite, B. (2017). Epidemiology of Voice Disorders in Latvian School Teachers. Elsevier , 508.e1-508.e9.universidad de alcala. (s.f.). Obtenido de departamento de cirugia.Williamson, G. (1 de 02 de 2014). Evaluación perceptiva de la voz. Obtenido de SLTinfo: https://www.sltinfo.com/perceptual-assessment-of-voice/instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/The voice is fundamental element of human communication, through it people transmit their feelings, emotions and ideas. In this context, different branches of medicine and engineering have opened upto the study of this phenomenon to explain in a way or other as it originates and the possible alterations, to detect these disorders of the voice the functional evaluation is used, To carry out this evaluation, the speech pathologist must apply different tests and procedures in order to assess each of the elements that intervene in the production of the spoken and sung voice. These elements are evaluated largely through auditory perceptual evaluation, palpation and visual observation, which makes this examination subjective, and with this that the result depends on the experience of the professional I evaluated. There are different scales that seek to standardize the perceptual assessment of the voice, such as GRABS and CAPE-V, but these still have a high level of subjectivity. Several studies have been developed to reduce professional subjectivity in this test, but most are developed around the GRABS scale, which has certain disadvantages. With the purpose of reducing the exam time and the subjectivity of the test, the development of an app that allows predicting the breathiness parameter within the CAPE-V perceptual evaluation method is proposed, through digital processing of acoustic signals and machine learning. To arrive at the final development of the App, a synthetic voice bank was created, which was used to create a dataset, which was implemented in attribute selection and regression models, in the Matlab and Weka softwares, obtaining with this the most optimal regression model for the prediction of soplocity.La voz es el elemento fundamental de la comunicación humana, a través de ella las personas transmiten sus sentimientos, emociones e ideas, en este contexto, diferentes ramas de la medicina y la ingeniería se han abierto al estudio de este fenómeno para explicar de un modo u otro cómo se origina y las posibles alteraciones (nódulos, quistes, pólipos, entre otras lesiones patológicas) que se interponen a su producción. Para evaluar la voz y analizar las diferentes patologías vocales, se realiza una evaluación en la que se tiene en cuenta todos los aspectos de la voz, en todo el proceso de producción, este examen es realizado por el fonoaudiólogo y se hace a través de exámenes y pruebas que en su mayoría son perceptuales. Se le pide al paciente realizar diferentes tareas vocales para así poder evaluar todos los aspectos de la voz cuando se habla o se canta, el diagnostico o resultado se da por el fonoaudiólogo en base a su experiencia y conocimientos previos. Existen diferentes escalas que buscan estandarizar la valoración perceptual de la voz, como lo son GRBAS y CAPE-V, pero estas siguen teniendo alto nivel de subjetividad. Diversos estudios se han desarrollado para reducir la subjetividad por parte del profesional en esta prueba, pero la mayoría son desarrollados en torno a la escala GRABS, la cual presenta ciertas desventajas. Con el propósito de reducir el tiempo de examen y la subjetividad de la prueba se plantea el desarrollo, de una app que permite estimar soplosidad dentro del método de evaluación perceptual CAPE-V, mediante procesamiento digital de señales acústicas y aprendizaje de máquina. Para llegar al desarrollo final de la App, se creó un banco de voces sintético, el cual se utilizó para crear un dataset, que se implementó en modelos de selección de atributos y de regresión, en los softwares Matlab y Weka, obteniendo con esto el modelo de regresión más óptimo para la predicción de la soplosidad. En el transcurso del texto se irá proporcionando información detallada sobre el proceso de diseño, implementación y puesta en marcha de la app, observando cómo este aporte puede llegar a ser favorable para el mundo de la salud y la ingeniería.OtroIngeniero(a) Biomédico(a)Pregrado$13.220.000 (de acuerdo a lo reportado en el anteproyecto): $11.020.000 (Propios) $2.200.000 (UAN)PresencialspaUniversidad Antonio NariñoIngeniería BiomédicaFacultad de Ingeniería Mecánica, Electrónica y BiomédicaPopayán - Alto CaucaEvaluación perceptual de la vozDatasetRegresiónSoplosidadPerceptual voice notedata setregressionsoplocityEstimación del parámetro soplosidad dentro del método de análisis perceptual de la voz cape-vTrabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85ORIGINAL2020_MariaRivera2020_MariaRivera2020MariaAlejandraRiveraMarin.pdfapplication/pdf5037738https://repositorio.uan.edu.co/bitstreams/dd9f38ff-7f29-42c2-abbd-b12fbd151c77/downloadb9d8bb5349d9fe0db8e47bfa053494beMD522020_MariaRivera_Autorización2020_MariaRivera_Autorización2020AutorizacióndeAutores.pdfapplication/pdf797686https://repositorio.uan.edu.co/bitstreams/c41bf371-49cb-45a4-8f97-64c106a22250/download6b0eb704bf906cd1d32b198ad257b2a3MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.uan.edu.co/bitstreams/e8294450-dd17-44db-ad42-eb3909f0cab6/download9868ccc48a14c8d591352b6eaf7f6239MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82710https://repositorio.uan.edu.co/bitstreams/ccf0b11d-c9f0-4160-af30-48587308c0de/download2e388663398085f69421c9e4c5fcf235MD55123456789/2486oai:repositorio.uan.edu.co:123456789/24862024-10-09 22:50:12.491https://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertoopen.accesshttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.coQWwgaW5jbHVpciBpbmZvcm1hY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSAgVU5JVkVSU0lEQUQgQU5UT05JTyBOQVJJw5FPLCBlbCBhdXRvcihlcykgYXV0b3JpemEgYWwgU2lzdGVtYSBOYWNpb25hbCBkZSBCaWJsaW90ZWNhcyBwYXJhIGFsbWFjZW5hciB5IG1hbnRlbmVyIGxhIGluZm9ybWFjacOzbiAsIGNvbiBmaW5lcyBhY2Fkw6ltaWNvcyB5IGRlIG1hbmVyYSBncmF0dWl0YSwgIHBvbmdhIGEgZGlzcG9zaWNpw7NuIGRlIGxhIGNvbXVuaWRhZCBzdXMgY29udGVuaWRvcyBkw6FuZG9sZSB2aXNpYmlsaWRhZCBhIGxvcyBtaXNtb3MsIHNlIGVudGllbmRlIHF1ZSBlbChsb3MpIGF1dG9yKGVzKSBhY2VwdGEobik6IAoKMS4JUXVlIGxvcyB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBwdWVkYW4gY29uc3VsdGFyIGVsIGNvbnRlbmlkbyBkZSBlc3RlIHRyYWJham8gZW4gbG9zIHNpdGlvcyB3ZWIgcXVlIGFkbWluaXN0cmEgbGEgVW5pdmVyc2lkYWQgQW50b25pbyBOYXJpw7FvLCBlbiBCYXNlIGRlIERhdG9zLCBlbiBvdHJvcyBDYXTDoWxvZ29zIHkgZW4gb3Ryb3Mgc2l0aW9zIFdlYiwgUmVkZXMgeSBTaXN0ZW1hcyBkZSBJbmZvcm1hY2nDs24gbmFjaW9uYWxlcyBlIGludGVybmFjaW9uYWxlcyDigJxPcGVuIEFjY2Vzc+KAnSB5IGVuIGxhcyByZWRlcyBkZSBpbmZvcm1hY2nDs24gZGVsIHBhw61zIHkgZGVsIGV4dGVyaW9yLCBjb24gbGFzIGN1YWxlcyB0ZW5nYSBjb252ZW5pbyBsYSBVbml2ZXJzaWRhZCBBbnRvbmlvIE5hcmnDsW8uCgoyLglRdWUgc2UgcGVybWl0ZSBsYSBjb25zdWx0YSBhIGxvcyB1c3VhcmlvcyBpbnRlcmVzYWRvcyBlbiBlbCBjb250ZW5pZG8gZGUgZXN0ZSB0cmFiYWpvLCBjb24gZmluYWxpZGFkIGFjYWTDqW1pY2EsIG51bmNhIHBhcmEgdXNvcyBjb21lcmNpYWxlcywgc2llbXByZSB5IGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyB5IGEgc3UgYXV0b3IuIEVzdG8gaW5jbHV5ZSBjdWFscXVpZXIgZm9ybWF0byBkaXNwb25pYmxlIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuCgozLglRdWUgbG9zIGRlcmVjaG9zIHNvYnJlIGxvcyBkb2N1bWVudG9zIHNvbiBwcm9waWVkYWQgZGVsIGF1dG9yIG8gZGUgbG9zIGF1dG9yZXMgeSB0aWVuZW4gc29icmUgc3Ugb2JyYSwgZW50cmUgb3Ryb3MsIGxvcyBkZXJlY2hvcyBtb3JhbGVzIGEgcXVlIGhhY2VuIHJlZmVyZW5jaWEgY29uc2VydmFuZG8gbG9zIGNvcnJlc3BvbmRpZW50ZXMgZGVyZWNob3Mgc2luIG1vZGlmaWNhY2nDs24gbyByZXN0cmljY2nDs24gYWxndW5hIHB1ZXN0byBxdWUsIGRlIGFjdWVyZG8gY29uIGxhIGxlZ2lzbGFjacOzbiBjb2xvbWJpYW5hIGFwbGljYWJsZSwgZWwgcHJlc2VudGUgZXMgdW5hIGF1dG9yaXphY2nDs24gcXVlIGVuIG5pbmfDum4gY2FzbyBjb25sbGV2YSBsYSBlbmFqZW5hY2nDs24gZGVsIGRlcmVjaG8gZGUgYXV0b3IgeSBzdXMgY29uZXhvcy4KCjQuCVF1ZSBlbCBTaXN0ZW1hIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIEFudG9uaW8gTmFyacOxbyBwdWVkYSBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBwYXJhIHByb3DDs3NpdG9zIGRlIHByZXNlcnZhY2nDs24gZGlnaXRhbC4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgeSB1c2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiBkZSBsYSBpbmZvcm1hY2nDs24gaW5jbHVpZGEgZW4gZXN0ZSByZXBvc2l0b3Jpby4KCjUuCVF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIGVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvciBsbyB0YW50byBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgVW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZTsgYXPDrSBtaXNtbyBlbCBhY8OhIGZpcm1hbnRlIGRlamFyw6EgaW5kZW1uZSBhIGxhIFVuaXZlcnNpZGFkIGRlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBwZXJqdWljaW8uCg==