Efecto de una serie de resorcinarenos solubles en la actividad enzimática de ureasa de Jack Bean (canavalia ensiformis)

The chemical properties and molecular structure of Canavalia ensiformis urease have been extensively studied. Urease is a nickel-dependent metalloenzyme that catalyzes the hydrolysis of urea, allowing nitrogen to be available as a nutrient for plants. In agriculture, volatilization nitrogen losses a...

Full description

Autores:
Paez Pedraza, Leidy Catherine
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/1603
Acceso en línea:
http://repositorio.uan.edu.co/handle/123456789/1603
Palabra clave:
ureasa
resorcinareno
inhibición
No competitiva
actividad
enzimática
Urease
resorcinarene
inhibition
non-competitive
enzimatic
activity
Rights
restrictedAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
id UAntonioN2_a89f86e3692f489e834324f394190515
oai_identifier_str oai:repositorio.uan.edu.co:123456789/1603
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
dc.title.es_ES.fl_str_mv Efecto de una serie de resorcinarenos solubles en la actividad enzimática de ureasa de Jack Bean (canavalia ensiformis)
title Efecto de una serie de resorcinarenos solubles en la actividad enzimática de ureasa de Jack Bean (canavalia ensiformis)
spellingShingle Efecto de una serie de resorcinarenos solubles en la actividad enzimática de ureasa de Jack Bean (canavalia ensiformis)
ureasa
resorcinareno
inhibición
No competitiva
actividad
enzimática
Urease
resorcinarene
inhibition
non-competitive
enzimatic
activity
title_short Efecto de una serie de resorcinarenos solubles en la actividad enzimática de ureasa de Jack Bean (canavalia ensiformis)
title_full Efecto de una serie de resorcinarenos solubles en la actividad enzimática de ureasa de Jack Bean (canavalia ensiformis)
title_fullStr Efecto de una serie de resorcinarenos solubles en la actividad enzimática de ureasa de Jack Bean (canavalia ensiformis)
title_full_unstemmed Efecto de una serie de resorcinarenos solubles en la actividad enzimática de ureasa de Jack Bean (canavalia ensiformis)
title_sort Efecto de una serie de resorcinarenos solubles en la actividad enzimática de ureasa de Jack Bean (canavalia ensiformis)
dc.creator.fl_str_mv Paez Pedraza, Leidy Catherine
dc.contributor.advisor.spa.fl_str_mv Malagon, Edwin
dc.contributor.author.spa.fl_str_mv Paez Pedraza, Leidy Catherine
dc.subject.es_ES.fl_str_mv ureasa
resorcinareno
inhibición
No competitiva
actividad
enzimática
topic ureasa
resorcinareno
inhibición
No competitiva
actividad
enzimática
Urease
resorcinarene
inhibition
non-competitive
enzimatic
activity
dc.subject.keyword.es_ES.fl_str_mv Urease
resorcinarene
inhibition
non-competitive
enzimatic
activity
description The chemical properties and molecular structure of Canavalia ensiformis urease have been extensively studied. Urease is a nickel-dependent metalloenzyme that catalyzes the hydrolysis of urea, allowing nitrogen to be available as a nutrient for plants. In agriculture, volatilization nitrogen losses and in medicine gastrointestinal diseases caused by pathogens have made the study of ureases important in several fields of application. The interaction of Jack Bean urease (JBU) with five soluble sulfonated resorcinarenes with different chemical structure was evaluated in terms of activity, interaction mechanism and simulation of molecular coupling. The results of UV-VIS spectroscopy experiments suggest conformational changes in structure that reflect the decrease in enzyme activity by more than 50%, with the strongest strong inhibitor being c-sulfonatoresorcin [4] arene (Na4ESRA), followed by c-propylsulfonaterosorcin [4] arene (Na4PrRA), c ethylsulfonatoresorcin [4] arene (Na4EtRA), c methylsulfonatoresorcin [4] arene (Na4MeRA) and the weakest inhibitor c-methylthioethylsulfonatoresorcin [4] arene (Na4SRA). Docking calculations suggest non-competitive inhibition and show that resorcinarenes bind through hydrophobic interactions to different enzyme domains and that they do not bind to the catalytic site
publishDate 2020
dc.date.issued.spa.fl_str_mv 2020-07-01
dc.date.accessioned.none.fl_str_mv 2021-02-22T15:25:06Z
dc.date.available.none.fl_str_mv 2021-02-22T15:25:06Z
dc.type.spa.fl_str_mv Trabajo de grado (Pregrado y/o Especialización)
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://repositorio.uan.edu.co/handle/123456789/1603
dc.identifier.bibliographicCitation.spa.fl_str_mv Benini, S. R. (1999). A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. Structure, 7(2), 205-216.
Karplus, P. A. (1997). 70 years of crystalline urease: what have we learned? Accounts of Chemical Research, 30(8), 330-337.
Zambelli, B. M. (2011). Chemistry of Ni2+ in urease: sensing, trafficking, and catalysis. Accounts of chemical research, 44(7), 520-530.
Balasubramanian, A. &. (2010). Crystal structure of the first plant urease from jack bean: 83 years of journey from its first crystal to molecular structure. Journal of molecular biology, 400(3), 274-283.
Kutcherlapati, S. R. (2016). Urease immobilized polymer hydrogel: Long-term stability and enhancement of enzymatic activity. Journal of colloid and interface science, 463, 164-172
Nabati, F. H.-R.-M. (2011). Dioxane enhanced immobilization of urease on alkyl modified nano-porous silica using reversible denaturation approach. Journal of Molecular Catalysis B: Enzymatic, 70(1-2), 17-22.
Marshall, B. J. (1990). Urea protects Helicobacter (Campylobacter) pylori from the bactericidal effect of acid. Gastroenterology, 99(3), 697-702.
Kara, F. D. (2006). Immobilization of urease by using chitosan–alginate and poly (acrylamide-co-acrylic acid)/κ-carrageenan supports. Bioprocess and biosystems engineering, 29(3), 207-211.
Liese, A. &. (2013). Evaluation of immobilized enzymes for industrial applications. Chemical Society Reviews, 42(15), 6236-6249.
Sayin, S. Y. (2011). Improvement of catalytic properties of Candida Rugosa lipase by sol–gel encapsulation in the presence of magnetic calix [4] arene nanoparticles. Organic & biomolecular chemistry, 9(11), 4021-4024.
Matos, M. S.-L. (2012). Stabilization of glucose oxidase with cyclodextrin-branched carboxymethylcellulose. Biotechnología Aplicada, 29(1), 29-34.
Baldini, L. C. (2017). Biomacromolecule Recognition by Calixarene Macrocycles. Comprehensive Supramolecular Chemistry II, 371-408.
Jain, V. K. (2011). Chemistry of calix [4] resorcinarenes. Russian Chemical Reviews, 80(1), 75.
Stoikov, I. I. (2016). Systems Based on Calixarenes as the Basis for the Creation of Catalysts and Nanocontainers. In Organic Nanoreactors, (pp. 85-110). Academic Press.
Ozyilmaz, E. C. (2019). Encapsulation of lipase using magnetic fluorescent calix [4] arene derivatives; improvement of enzyme activity and stability. International journal of biological macromolecules, 133, 1042-1050.
Collazos, N. G. (2019). Binding interactions of a series of sulfonated water-soluble resorcinarenes with bovine liver catalase. nternational journal of biological macromolecules. 139, 75-84.
Xiao, Z. P. (2010). The synthesis, structure and activity evaluation of pyrogallol and catechol derivatives as Helicobacter pylori urease inhibitors. European journal of medicinal chemistry, 45(11), 5064-5070.
Amin, M. A. (2013). Anti-Helicobacter pylori and urease inhibition activities of some traditional medicinal plants. Molecules, 18(2), 2135-2149.
Taha, M. U. (2018). Bisindolylmethane thiosemicarbazides as potential inhibitors of urease: Synthesis and molecular modeling studies. Bioorganic & medicinal chemistry, 26(1), 152-160.
Mazzei, L. C. (2019). Insights into urease inhibition by N-(n-butyl) phosphoric triamide through an integrated structural and kinetic approach. Journal of agricultural and food chemistry, 67(8), 2127-2138.
Krajewska, B. (2009). Ureases I. Functional, catalytic and kinetic properties: A review. Journal of Molecular Catalysis B: Enzymatic, 59(1-3), 9-21.
Zhao, J. Y. (2019). Spectroscopic and mechanistic analysis of the interaction between Jack bean urease and polypseudorotaxane fabricated with bis-thiolated poly (ethylene glycol) and α-cyclodextrin. Colloids and Surfaces B: Biointerfaces, 176, 276-287.
Kazakova, E. K. (2000). Novel water-soluble tetrasulfonatomethylcalix [4] resorcinarenes. etrahedron Letters, 41(51), 10111-10115.
Weatherburn, M. W. (1967). Phenol-hypochlorite reaction for determination of ammonia. Analytical chemistry, 39(8), 971-974.
Grosdidier, A. Z. (2011). SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic acids research, 39(suppl_2), W270-W277.
Hanwell, M. D. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of cheminformatics, 4(1), 17.
E.F. Pettersen, T. G. (2004). UCSF Chimera visualization system for exploratory research and analysis. Journal of computational chemistry, 25(13), 1605-1612.
Han, X. P. (2017). A resorcinarene for inhibition of Aβ fibrillation. Chemical science, 8(3), 2003-2009.
Moncrief, M. B. (1995). Urease activity in the crystalline state. Protein Science, 4(10), 2234-2236.
Zhou, J. T., Li, C. L., Tan, L. H., Xu, Y. F., Liu, Y. H., Mo, Z. Z., ... & Xie, J. H. (2017). Inhibition of Helicobacter pylori and its associated urease by palmatine: investigation on the potential mechanism. PLoS one, 12(1).
Mo, Z. Z. (2015). Andrographolide sodium bisulphite-induced inactivation of urease: inhibitory potency, kinetics and mechanism. BMC complementary and alternative medicine, 15(1), 238.
Yu, X. D. (2015). Biological evaluation and molecular docking of baicalin and scutellarin as Helicobacter pylori urease inhibitors. Journal of ethnopharmacology, 62, 69-78.
url http://repositorio.uan.edu.co/handle/123456789/1603
identifier_str_mv Benini, S. R. (1999). A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. Structure, 7(2), 205-216.
Karplus, P. A. (1997). 70 years of crystalline urease: what have we learned? Accounts of Chemical Research, 30(8), 330-337.
Zambelli, B. M. (2011). Chemistry of Ni2+ in urease: sensing, trafficking, and catalysis. Accounts of chemical research, 44(7), 520-530.
Balasubramanian, A. &. (2010). Crystal structure of the first plant urease from jack bean: 83 years of journey from its first crystal to molecular structure. Journal of molecular biology, 400(3), 274-283.
Kutcherlapati, S. R. (2016). Urease immobilized polymer hydrogel: Long-term stability and enhancement of enzymatic activity. Journal of colloid and interface science, 463, 164-172
Nabati, F. H.-R.-M. (2011). Dioxane enhanced immobilization of urease on alkyl modified nano-porous silica using reversible denaturation approach. Journal of Molecular Catalysis B: Enzymatic, 70(1-2), 17-22.
Marshall, B. J. (1990). Urea protects Helicobacter (Campylobacter) pylori from the bactericidal effect of acid. Gastroenterology, 99(3), 697-702.
Kara, F. D. (2006). Immobilization of urease by using chitosan–alginate and poly (acrylamide-co-acrylic acid)/κ-carrageenan supports. Bioprocess and biosystems engineering, 29(3), 207-211.
Liese, A. &. (2013). Evaluation of immobilized enzymes for industrial applications. Chemical Society Reviews, 42(15), 6236-6249.
Sayin, S. Y. (2011). Improvement of catalytic properties of Candida Rugosa lipase by sol–gel encapsulation in the presence of magnetic calix [4] arene nanoparticles. Organic & biomolecular chemistry, 9(11), 4021-4024.
Matos, M. S.-L. (2012). Stabilization of glucose oxidase with cyclodextrin-branched carboxymethylcellulose. Biotechnología Aplicada, 29(1), 29-34.
Baldini, L. C. (2017). Biomacromolecule Recognition by Calixarene Macrocycles. Comprehensive Supramolecular Chemistry II, 371-408.
Jain, V. K. (2011). Chemistry of calix [4] resorcinarenes. Russian Chemical Reviews, 80(1), 75.
Stoikov, I. I. (2016). Systems Based on Calixarenes as the Basis for the Creation of Catalysts and Nanocontainers. In Organic Nanoreactors, (pp. 85-110). Academic Press.
Ozyilmaz, E. C. (2019). Encapsulation of lipase using magnetic fluorescent calix [4] arene derivatives; improvement of enzyme activity and stability. International journal of biological macromolecules, 133, 1042-1050.
Collazos, N. G. (2019). Binding interactions of a series of sulfonated water-soluble resorcinarenes with bovine liver catalase. nternational journal of biological macromolecules. 139, 75-84.
Xiao, Z. P. (2010). The synthesis, structure and activity evaluation of pyrogallol and catechol derivatives as Helicobacter pylori urease inhibitors. European journal of medicinal chemistry, 45(11), 5064-5070.
Amin, M. A. (2013). Anti-Helicobacter pylori and urease inhibition activities of some traditional medicinal plants. Molecules, 18(2), 2135-2149.
Taha, M. U. (2018). Bisindolylmethane thiosemicarbazides as potential inhibitors of urease: Synthesis and molecular modeling studies. Bioorganic & medicinal chemistry, 26(1), 152-160.
Mazzei, L. C. (2019). Insights into urease inhibition by N-(n-butyl) phosphoric triamide through an integrated structural and kinetic approach. Journal of agricultural and food chemistry, 67(8), 2127-2138.
Krajewska, B. (2009). Ureases I. Functional, catalytic and kinetic properties: A review. Journal of Molecular Catalysis B: Enzymatic, 59(1-3), 9-21.
Zhao, J. Y. (2019). Spectroscopic and mechanistic analysis of the interaction between Jack bean urease and polypseudorotaxane fabricated with bis-thiolated poly (ethylene glycol) and α-cyclodextrin. Colloids and Surfaces B: Biointerfaces, 176, 276-287.
Kazakova, E. K. (2000). Novel water-soluble tetrasulfonatomethylcalix [4] resorcinarenes. etrahedron Letters, 41(51), 10111-10115.
Weatherburn, M. W. (1967). Phenol-hypochlorite reaction for determination of ammonia. Analytical chemistry, 39(8), 971-974.
Grosdidier, A. Z. (2011). SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic acids research, 39(suppl_2), W270-W277.
Hanwell, M. D. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of cheminformatics, 4(1), 17.
E.F. Pettersen, T. G. (2004). UCSF Chimera visualization system for exploratory research and analysis. Journal of computational chemistry, 25(13), 1605-1612.
Han, X. P. (2017). A resorcinarene for inhibition of Aβ fibrillation. Chemical science, 8(3), 2003-2009.
Moncrief, M. B. (1995). Urease activity in the crystalline state. Protein Science, 4(10), 2234-2236.
Zhou, J. T., Li, C. L., Tan, L. H., Xu, Y. F., Liu, Y. H., Mo, Z. Z., ... & Xie, J. H. (2017). Inhibition of Helicobacter pylori and its associated urease by palmatine: investigation on the potential mechanism. PLoS one, 12(1).
Mo, Z. Z. (2015). Andrographolide sodium bisulphite-induced inactivation of urease: inhibitory potency, kinetics and mechanism. BMC complementary and alternative medicine, 15(1), 238.
Yu, X. D. (2015). Biological evaluation and molecular docking of baicalin and scutellarin as Helicobacter pylori urease inhibitors. Journal of ethnopharmacology, 62, 69-78.
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv Acceso restringido
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Acceso restringido
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.publisher.spa.fl_str_mv Universidad Antonio Nariño
dc.publisher.program.spa.fl_str_mv Bioquímica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.campus.spa.fl_str_mv Bogotá - Circunvalar
institution Universidad Antonio Nariño
bitstream.url.fl_str_mv https://repositorio.uan.edu.co/bitstreams/a8848f28-6271-42c8-848f-551a057dbf3c/download
https://repositorio.uan.edu.co/bitstreams/477c54d0-ca73-4db4-a293-0f5e85b8609c/download
https://repositorio.uan.edu.co/bitstreams/bad96299-44ff-45dc-8d03-c5772bc350b7/download
https://repositorio.uan.edu.co/bitstreams/4168bacf-a7e8-4fe4-831e-a08dc90570ec/download
bitstream.checksum.fl_str_mv f5b6c2ee3946c9069d49bb145050a975
0fa96b6e71d29c6879110e5908cc73d6
9868ccc48a14c8d591352b6eaf7f6239
2e388663398085f69421c9e4c5fcf235
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1814300298878910464
spelling Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Acceso restringidohttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/access_right/c_16ecMalagon, EdwinPaez Pedraza, Leidy Catherine2021-02-22T15:25:06Z2021-02-22T15:25:06Z2020-07-01http://repositorio.uan.edu.co/handle/123456789/1603Benini, S. R. (1999). A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. Structure, 7(2), 205-216.Karplus, P. A. (1997). 70 years of crystalline urease: what have we learned? Accounts of Chemical Research, 30(8), 330-337.Zambelli, B. M. (2011). Chemistry of Ni2+ in urease: sensing, trafficking, and catalysis. Accounts of chemical research, 44(7), 520-530.Balasubramanian, A. &. (2010). Crystal structure of the first plant urease from jack bean: 83 years of journey from its first crystal to molecular structure. Journal of molecular biology, 400(3), 274-283.Kutcherlapati, S. R. (2016). Urease immobilized polymer hydrogel: Long-term stability and enhancement of enzymatic activity. Journal of colloid and interface science, 463, 164-172Nabati, F. H.-R.-M. (2011). Dioxane enhanced immobilization of urease on alkyl modified nano-porous silica using reversible denaturation approach. Journal of Molecular Catalysis B: Enzymatic, 70(1-2), 17-22.Marshall, B. J. (1990). Urea protects Helicobacter (Campylobacter) pylori from the bactericidal effect of acid. Gastroenterology, 99(3), 697-702.Kara, F. D. (2006). Immobilization of urease by using chitosan–alginate and poly (acrylamide-co-acrylic acid)/κ-carrageenan supports. Bioprocess and biosystems engineering, 29(3), 207-211.Liese, A. &. (2013). Evaluation of immobilized enzymes for industrial applications. Chemical Society Reviews, 42(15), 6236-6249.Sayin, S. Y. (2011). Improvement of catalytic properties of Candida Rugosa lipase by sol–gel encapsulation in the presence of magnetic calix [4] arene nanoparticles. Organic & biomolecular chemistry, 9(11), 4021-4024.Matos, M. S.-L. (2012). Stabilization of glucose oxidase with cyclodextrin-branched carboxymethylcellulose. Biotechnología Aplicada, 29(1), 29-34.Baldini, L. C. (2017). Biomacromolecule Recognition by Calixarene Macrocycles. Comprehensive Supramolecular Chemistry II, 371-408.Jain, V. K. (2011). Chemistry of calix [4] resorcinarenes. Russian Chemical Reviews, 80(1), 75.Stoikov, I. I. (2016). Systems Based on Calixarenes as the Basis for the Creation of Catalysts and Nanocontainers. In Organic Nanoreactors, (pp. 85-110). Academic Press.Ozyilmaz, E. C. (2019). Encapsulation of lipase using magnetic fluorescent calix [4] arene derivatives; improvement of enzyme activity and stability. International journal of biological macromolecules, 133, 1042-1050.Collazos, N. G. (2019). Binding interactions of a series of sulfonated water-soluble resorcinarenes with bovine liver catalase. nternational journal of biological macromolecules. 139, 75-84.Xiao, Z. P. (2010). The synthesis, structure and activity evaluation of pyrogallol and catechol derivatives as Helicobacter pylori urease inhibitors. European journal of medicinal chemistry, 45(11), 5064-5070.Amin, M. A. (2013). Anti-Helicobacter pylori and urease inhibition activities of some traditional medicinal plants. Molecules, 18(2), 2135-2149.Taha, M. U. (2018). Bisindolylmethane thiosemicarbazides as potential inhibitors of urease: Synthesis and molecular modeling studies. Bioorganic & medicinal chemistry, 26(1), 152-160.Mazzei, L. C. (2019). Insights into urease inhibition by N-(n-butyl) phosphoric triamide through an integrated structural and kinetic approach. Journal of agricultural and food chemistry, 67(8), 2127-2138.Krajewska, B. (2009). Ureases I. Functional, catalytic and kinetic properties: A review. Journal of Molecular Catalysis B: Enzymatic, 59(1-3), 9-21.Zhao, J. Y. (2019). Spectroscopic and mechanistic analysis of the interaction between Jack bean urease and polypseudorotaxane fabricated with bis-thiolated poly (ethylene glycol) and α-cyclodextrin. Colloids and Surfaces B: Biointerfaces, 176, 276-287.Kazakova, E. K. (2000). Novel water-soluble tetrasulfonatomethylcalix [4] resorcinarenes. etrahedron Letters, 41(51), 10111-10115.Weatherburn, M. W. (1967). Phenol-hypochlorite reaction for determination of ammonia. Analytical chemistry, 39(8), 971-974.Grosdidier, A. Z. (2011). SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic acids research, 39(suppl_2), W270-W277.Hanwell, M. D. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of cheminformatics, 4(1), 17.E.F. Pettersen, T. G. (2004). UCSF Chimera visualization system for exploratory research and analysis. Journal of computational chemistry, 25(13), 1605-1612.Han, X. P. (2017). A resorcinarene for inhibition of Aβ fibrillation. Chemical science, 8(3), 2003-2009.Moncrief, M. B. (1995). Urease activity in the crystalline state. Protein Science, 4(10), 2234-2236.Zhou, J. T., Li, C. L., Tan, L. H., Xu, Y. F., Liu, Y. H., Mo, Z. Z., ... & Xie, J. H. (2017). Inhibition of Helicobacter pylori and its associated urease by palmatine: investigation on the potential mechanism. PLoS one, 12(1).Mo, Z. Z. (2015). Andrographolide sodium bisulphite-induced inactivation of urease: inhibitory potency, kinetics and mechanism. BMC complementary and alternative medicine, 15(1), 238.Yu, X. D. (2015). Biological evaluation and molecular docking of baicalin and scutellarin as Helicobacter pylori urease inhibitors. Journal of ethnopharmacology, 62, 69-78.The chemical properties and molecular structure of Canavalia ensiformis urease have been extensively studied. Urease is a nickel-dependent metalloenzyme that catalyzes the hydrolysis of urea, allowing nitrogen to be available as a nutrient for plants. In agriculture, volatilization nitrogen losses and in medicine gastrointestinal diseases caused by pathogens have made the study of ureases important in several fields of application. The interaction of Jack Bean urease (JBU) with five soluble sulfonated resorcinarenes with different chemical structure was evaluated in terms of activity, interaction mechanism and simulation of molecular coupling. The results of UV-VIS spectroscopy experiments suggest conformational changes in structure that reflect the decrease in enzyme activity by more than 50%, with the strongest strong inhibitor being c-sulfonatoresorcin [4] arene (Na4ESRA), followed by c-propylsulfonaterosorcin [4] arene (Na4PrRA), c ethylsulfonatoresorcin [4] arene (Na4EtRA), c methylsulfonatoresorcin [4] arene (Na4MeRA) and the weakest inhibitor c-methylthioethylsulfonatoresorcin [4] arene (Na4SRA). Docking calculations suggest non-competitive inhibition and show that resorcinarenes bind through hydrophobic interactions to different enzyme domains and that they do not bind to the catalytic siteLas propiedades químicas y la estructura molecular de la ureasa de Canavalia ensiformis han sido estudiadas ampliamente. La ureasa es una metaloenzima dependiente de níquel que cataliza la hidrólisis de la urea, permitiendo que el nitrógeno esté disponible como nutriente para las plantas. En la agricultura, las pérdidas de nitrógeno por volatilización y en la medicina las enfermedades gastrointestinales causadas por patógenos han hecho que el estudio de las ureasas sea importante en varios campos de aplicación. La interacción de la ureasa de Jack Bean (JBU) con cinco resorcinarenos sulfonados solubles con diferente estructura química se evaluó en términos de actividad , mecanismo de interacción y simulación de acoplamiento molecular. Los resultados de los experimentos de espectroscopia UV-VIS sugieren cambios conformacionales en la estructura que reflejan la disminucion de la actividad de la enzima en más del 50%, siendo el inhibidor mas fuerte fuerte c-sulfonatoresorcin[4]areno (Na4ESRA), seguido por c-propilsulfonaterosorcin[4]areno (Na4PrRA), c-ethylsulfonatoresorcin[4]areno (Na4EtRA), c-methylsulfonatoresorcin[4]areno (Na4MeRA) y el inhibidor más débil c-metiltioetilsulfonatoresorcin[4]areno (Na4SRA). Los cálculos de acoplamiento sugieren una inhibicion no competitiva y muestran que los resorcinarenos se unen mediante interacciones hidrofóbicas a diferentes dominios de la enzima y que no se unen al sitio catalítico.Bioquímico(a)PregradoPresencialspaUniversidad Antonio NariñoBioquímicaFacultad de CienciasBogotá - CircunvalarureasaresorcinarenoinhibiciónNo competitivaactividadenzimáticaUreaseresorcinareneinhibitionnon-competitiveenzimaticactivityEfecto de una serie de resorcinarenos solubles en la actividad enzimática de ureasa de Jack Bean (canavalia ensiformis)Trabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85ORIGINAL2020Leidy Catherine Páez Pedraza.pdf2020Leidy Catherine Páez Pedraza.pdfTrabajo de gradoapplication/pdf1386628https://repositorio.uan.edu.co/bitstreams/a8848f28-6271-42c8-848f-551a057dbf3c/downloadf5b6c2ee3946c9069d49bb145050a975MD512020AutorizacióndeAutores.pdf2020AutorizacióndeAutores.pdfAutorizaciónapplication/pdf546966https://repositorio.uan.edu.co/bitstreams/477c54d0-ca73-4db4-a293-0f5e85b8609c/download0fa96b6e71d29c6879110e5908cc73d6MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.uan.edu.co/bitstreams/bad96299-44ff-45dc-8d03-c5772bc350b7/download9868ccc48a14c8d591352b6eaf7f6239MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82710https://repositorio.uan.edu.co/bitstreams/4168bacf-a7e8-4fe4-831e-a08dc90570ec/download2e388663398085f69421c9e4c5fcf235MD54123456789/1603oai:repositorio.uan.edu.co:123456789/16032024-10-09 23:38:03.448https://creativecommons.org/licenses/by-nc-nd/4.0/Acceso restringidoopen.accesshttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.coQWwgaW5jbHVpciBpbmZvcm1hY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSAgVU5JVkVSU0lEQUQgQU5UT05JTyBOQVJJw5FPLCBlbCBhdXRvcihlcykgYXV0b3JpemEgYWwgU2lzdGVtYSBOYWNpb25hbCBkZSBCaWJsaW90ZWNhcyBwYXJhIGFsbWFjZW5hciB5IG1hbnRlbmVyIGxhIGluZm9ybWFjacOzbiAsIGNvbiBmaW5lcyBhY2Fkw6ltaWNvcyB5IGRlIG1hbmVyYSBncmF0dWl0YSwgIHBvbmdhIGEgZGlzcG9zaWNpw7NuIGRlIGxhIGNvbXVuaWRhZCBzdXMgY29udGVuaWRvcyBkw6FuZG9sZSB2aXNpYmlsaWRhZCBhIGxvcyBtaXNtb3MsIHNlIGVudGllbmRlIHF1ZSBlbChsb3MpIGF1dG9yKGVzKSBhY2VwdGEobik6IAoKMS4JUXVlIGxvcyB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBwdWVkYW4gY29uc3VsdGFyIGVsIGNvbnRlbmlkbyBkZSBlc3RlIHRyYWJham8gZW4gbG9zIHNpdGlvcyB3ZWIgcXVlIGFkbWluaXN0cmEgbGEgVW5pdmVyc2lkYWQgQW50b25pbyBOYXJpw7FvLCBlbiBCYXNlIGRlIERhdG9zLCBlbiBvdHJvcyBDYXTDoWxvZ29zIHkgZW4gb3Ryb3Mgc2l0aW9zIFdlYiwgUmVkZXMgeSBTaXN0ZW1hcyBkZSBJbmZvcm1hY2nDs24gbmFjaW9uYWxlcyBlIGludGVybmFjaW9uYWxlcyDigJxPcGVuIEFjY2Vzc+KAnSB5IGVuIGxhcyByZWRlcyBkZSBpbmZvcm1hY2nDs24gZGVsIHBhw61zIHkgZGVsIGV4dGVyaW9yLCBjb24gbGFzIGN1YWxlcyB0ZW5nYSBjb252ZW5pbyBsYSBVbml2ZXJzaWRhZCBBbnRvbmlvIE5hcmnDsW8uCgoyLglRdWUgc2UgcGVybWl0ZSBsYSBjb25zdWx0YSBhIGxvcyB1c3VhcmlvcyBpbnRlcmVzYWRvcyBlbiBlbCBjb250ZW5pZG8gZGUgZXN0ZSB0cmFiYWpvLCBjb24gZmluYWxpZGFkIGFjYWTDqW1pY2EsIG51bmNhIHBhcmEgdXNvcyBjb21lcmNpYWxlcywgc2llbXByZSB5IGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyB5IGEgc3UgYXV0b3IuIEVzdG8gaW5jbHV5ZSBjdWFscXVpZXIgZm9ybWF0byBkaXNwb25pYmxlIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuCgozLglRdWUgbG9zIGRlcmVjaG9zIHNvYnJlIGxvcyBkb2N1bWVudG9zIHNvbiBwcm9waWVkYWQgZGVsIGF1dG9yIG8gZGUgbG9zIGF1dG9yZXMgeSB0aWVuZW4gc29icmUgc3Ugb2JyYSwgZW50cmUgb3Ryb3MsIGxvcyBkZXJlY2hvcyBtb3JhbGVzIGEgcXVlIGhhY2VuIHJlZmVyZW5jaWEgY29uc2VydmFuZG8gbG9zIGNvcnJlc3BvbmRpZW50ZXMgZGVyZWNob3Mgc2luIG1vZGlmaWNhY2nDs24gbyByZXN0cmljY2nDs24gYWxndW5hIHB1ZXN0byBxdWUsIGRlIGFjdWVyZG8gY29uIGxhIGxlZ2lzbGFjacOzbiBjb2xvbWJpYW5hIGFwbGljYWJsZSwgZWwgcHJlc2VudGUgZXMgdW5hIGF1dG9yaXphY2nDs24gcXVlIGVuIG5pbmfDum4gY2FzbyBjb25sbGV2YSBsYSBlbmFqZW5hY2nDs24gZGVsIGRlcmVjaG8gZGUgYXV0b3IgeSBzdXMgY29uZXhvcy4KCjQuCVF1ZSBlbCBTaXN0ZW1hIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIEFudG9uaW8gTmFyacOxbyBwdWVkYSBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBwYXJhIHByb3DDs3NpdG9zIGRlIHByZXNlcnZhY2nDs24gZGlnaXRhbC4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgeSB1c2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiBkZSBsYSBpbmZvcm1hY2nDs24gaW5jbHVpZGEgZW4gZXN0ZSByZXBvc2l0b3Jpby4KCjUuCVF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIGVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvciBsbyB0YW50byBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgVW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZTsgYXPDrSBtaXNtbyBlbCBhY8OhIGZpcm1hbnRlIGRlamFyw6EgaW5kZW1uZSBhIGxhIFVuaXZlcnNpZGFkIGRlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBwZXJqdWljaW8uCg==