Efecto de una serie de resorcinarenos solubles en la actividad enzimática de ureasa de Jack Bean (canavalia ensiformis)

The chemical properties and molecular structure of Canavalia ensiformis urease have been extensively studied. Urease is a nickel-dependent metalloenzyme that catalyzes the hydrolysis of urea, allowing nitrogen to be available as a nutrient for plants. In agriculture, volatilization nitrogen losses a...

Full description

Autores:
Paez Pedraza, Leidy Catherine
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/1603
Acceso en línea:
http://repositorio.uan.edu.co/handle/123456789/1603
Palabra clave:
ureasa
resorcinareno
inhibición
No competitiva
actividad
enzimática
Urease
resorcinarene
inhibition
non-competitive
enzimatic
activity
Rights
restrictedAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Description
Summary:The chemical properties and molecular structure of Canavalia ensiformis urease have been extensively studied. Urease is a nickel-dependent metalloenzyme that catalyzes the hydrolysis of urea, allowing nitrogen to be available as a nutrient for plants. In agriculture, volatilization nitrogen losses and in medicine gastrointestinal diseases caused by pathogens have made the study of ureases important in several fields of application. The interaction of Jack Bean urease (JBU) with five soluble sulfonated resorcinarenes with different chemical structure was evaluated in terms of activity, interaction mechanism and simulation of molecular coupling. The results of UV-VIS spectroscopy experiments suggest conformational changes in structure that reflect the decrease in enzyme activity by more than 50%, with the strongest strong inhibitor being c-sulfonatoresorcin [4] arene (Na4ESRA), followed by c-propylsulfonaterosorcin [4] arene (Na4PrRA), c ethylsulfonatoresorcin [4] arene (Na4EtRA), c methylsulfonatoresorcin [4] arene (Na4MeRA) and the weakest inhibitor c-methylthioethylsulfonatoresorcin [4] arene (Na4SRA). Docking calculations suggest non-competitive inhibition and show that resorcinarenes bind through hydrophobic interactions to different enzyme domains and that they do not bind to the catalytic site