“Estandarización de un protocolo de expansión ex vivo de células progenitoras hematopoyéticas aisladas de sangre de cordón umbilical en co-cultivo con células madre mesenquimales de diferentes tejidos”

Umbilical cord blood is used as a source of hematopoietic progenitor cells, for regeneration of the hemopoietic and immune systems in various hematological diseases; despite that, a low cellular dose limits its application in pediatric patients. In this st udy the standardization of cell expansion t...

Full description

Autores:
Lara Rodriguez, Ana Milena
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/7080
Acceso en línea:
http://repositorio.uan.edu.co/handle/123456789/7080
Palabra clave:
Cordón umbilical
Expansión ex vivo
CD34+
Células madre mesenquimales
Umb ilical cord
Ex vivo expansión
CD34 +
Mesenchymal stem cells
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
id UAntonioN2_9a5822592af137d448e616b5c016f1a6
oai_identifier_str oai:repositorio.uan.edu.co:123456789/7080
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
dc.title.es_ES.fl_str_mv “Estandarización de un protocolo de expansión ex vivo de células progenitoras hematopoyéticas aisladas de sangre de cordón umbilical en co-cultivo con células madre mesenquimales de diferentes tejidos”
title “Estandarización de un protocolo de expansión ex vivo de células progenitoras hematopoyéticas aisladas de sangre de cordón umbilical en co-cultivo con células madre mesenquimales de diferentes tejidos”
spellingShingle “Estandarización de un protocolo de expansión ex vivo de células progenitoras hematopoyéticas aisladas de sangre de cordón umbilical en co-cultivo con células madre mesenquimales de diferentes tejidos”
Cordón umbilical
Expansión ex vivo
CD34+
Células madre mesenquimales
Umb ilical cord
Ex vivo expansión
CD34 +
Mesenchymal stem cells
title_short “Estandarización de un protocolo de expansión ex vivo de células progenitoras hematopoyéticas aisladas de sangre de cordón umbilical en co-cultivo con células madre mesenquimales de diferentes tejidos”
title_full “Estandarización de un protocolo de expansión ex vivo de células progenitoras hematopoyéticas aisladas de sangre de cordón umbilical en co-cultivo con células madre mesenquimales de diferentes tejidos”
title_fullStr “Estandarización de un protocolo de expansión ex vivo de células progenitoras hematopoyéticas aisladas de sangre de cordón umbilical en co-cultivo con células madre mesenquimales de diferentes tejidos”
title_full_unstemmed “Estandarización de un protocolo de expansión ex vivo de células progenitoras hematopoyéticas aisladas de sangre de cordón umbilical en co-cultivo con células madre mesenquimales de diferentes tejidos”
title_sort “Estandarización de un protocolo de expansión ex vivo de células progenitoras hematopoyéticas aisladas de sangre de cordón umbilical en co-cultivo con células madre mesenquimales de diferentes tejidos”
dc.creator.fl_str_mv Lara Rodriguez, Ana Milena
dc.contributor.advisor.spa.fl_str_mv Arenas Suarez, Nelson Enrique
Bonilla, Ximena
dc.contributor.author.spa.fl_str_mv Lara Rodriguez, Ana Milena
dc.subject.es_ES.fl_str_mv Cordón umbilical
Expansión ex vivo
CD34+
Células madre mesenquimales
topic Cordón umbilical
Expansión ex vivo
CD34+
Células madre mesenquimales
Umb ilical cord
Ex vivo expansión
CD34 +
Mesenchymal stem cells
dc.subject.keyword.es_ES.fl_str_mv Umb ilical cord
Ex vivo expansión
CD34 +
Mesenchymal stem cells
description Umbilical cord blood is used as a source of hematopoietic progenitor cells, for regeneration of the hemopoietic and immune systems in various hematological diseases; despite that, a low cellular dose limits its application in pediatric patients. In this st udy the standardization of cell expansion technique of compensation for the dose infused cells is proposed, through ex vivo manipulation of hematopoietic progenitor cells from umbilical cord blood before transplantation. The expansion model was performed b y coculture with mesenchymal stem cells and bone marrow fetal tissues unexplored. The results show that the mesenchymal stem cells coculture studied allowed to maximize cell dose of hematopoietic progenitor cells between 5 and 16 folds, with high potenti al clonogenic. Moreover, evidence that treatment with gamma irradiation maintains the capacity to support hematopoietic mesenchymal stem cells from the three sources studied regarding the treatments without irradiation, promoting conditions in the ex vivo expansion system in coculture. It is expected that this standardized protocol will contribute to the development of ex vivo expansion larger scale, towards enabling its clinical use and expand further application in adults.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-10-11T22:45:10Z
dc.date.available.none.fl_str_mv 2022-10-11T22:45:10Z
dc.date.issued.spa.fl_str_mv 2022-07-06
dc.type.spa.fl_str_mv Trabajo de grado (Pregrado y/o Especialización)
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://repositorio.uan.edu.co/handle/123456789/7080
dc.identifier.bibliographicCitation.spa.fl_str_mv Andrzejewska, A., Lukomska, B., & Janowski, M. (2019). Concise Review: Mesenchymal Stem Cells: From Roots to Boost. Stem Cells (Dayton, Ohio), 37(7), 855–864. https://doi.org/10.1002/stem.3016
Belvedere, O., Feruglio, C., Malangone, W., Bonora, M. L., Donini, A., Dorotea, L., Tonutti, E., Rinaldi, C., Pittino, M., Baccarani, M., Del Frate, G., Biffoni, F., Sala, P., Hilbert, D. M., & Degrassi, A. (1999). Phenotypic Characterization of Immunomagnetically Purified Umbilical Cord Blood CD34+ Cells. Blood Cells, Molecules, and Diseases, 25(3), 141–146. https://doi.org/https://doi.org/10.1006/bcmd.1999.0239
Breems, D. A., Blokland, E. A. W., Siebel, K. E., Mayen, A. E. M., Engels, L. J. A., & Ploemacher, R. E. (1998). Stroma-Contact Prevents Loss of Hematopoietic Stem Cell Quality During Ex Vivo Expansion of CD34+ Mobilized Peripheral Blood Stem Cells. Blood, 91(1), 111–117. https://doi.org/https://doi.org/10.1182/blood.V91.1.111
Boulais, P. E., & Frenette, P. S. (2015). Making sense of hematopoietic stem cell niches. Blood, 125(17), 2621–2629. https://doi.org/10.1182/blood-2014-09-570192
Cancelas, J. A., Querol, S., Martín-Henao, G., Canals, C., Azqueta, C., Petriz, J., Inglés-Esteve, J., Amill, B., & Garcia, J. (1996). Isolation of hematopoietic progenitors. An approach to two different immunomagnetic methods at the lab scale. Pure and Applied Chemistry, 68(10), 1897–1901. https://doi.org/10.1351/pac199668101897
Chan, S. L., Choi, M., Wnendt, S., Kraus, M., Teng, E., Leong, H. F., & Merchav, S. (2007). Enhanced In Vivo Homing of Uncultured and Selectively Amplified Cord Blood CD34+ Cells by Cotransplantation with Cord Blood-Derived Unrestricted Somatic Stem Cells. Stem Cells, 25(2), 529–536. https://doi.org/10.1634/stemcells.2005-0639
Cordeiro Gomes, A., Hara, T., Lim, V. Y., Herndler-Brandstetter, D., Nevius, E., Sugiyama, T., Taniichi, S., Schlenner, S., Richie, E., Rodewald, H.-R., Flavell, R. A., Nagasawa, T., Ikuta, K., & Pereira, J. P. (2016). Hematopoietic Stem Cell Niches Produce Lineage-Instructive Signals to Control Multipotent Progenitor Differentiation. Immunity, 45(6), 1219–1231. https://doi.org/https://doi.org/10.1016/j.immuni.2016.11.004
Ding, L., Saunders, T. L., Enikolopov, G., & Morrison, S. J. (2012). Endothelial and perivascular cells maintain haematopoietic stem cells. Nature, 481(7382), 457–462. https://doi.org/10.1038/nature10783
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. https://doi.org/10.1080/14653240600855905
Emiloju, O. E., Potdar, R., Jorge, V., Gupta, S., & Varadi, G. (2019). Clinical Advancement and Challenges of ex vivo Expansion of Human Cord Blood Cells. Clinical Hematology International, 2(1), 18–26. https://doi.org/10.2991/chi.d.191121.001
dc.identifier.instname.spa.fl_str_mv instname:Universidad Antonio Nariño
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UAN
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uan.edu.co/
url http://repositorio.uan.edu.co/handle/123456789/7080
identifier_str_mv Andrzejewska, A., Lukomska, B., & Janowski, M. (2019). Concise Review: Mesenchymal Stem Cells: From Roots to Boost. Stem Cells (Dayton, Ohio), 37(7), 855–864. https://doi.org/10.1002/stem.3016
Belvedere, O., Feruglio, C., Malangone, W., Bonora, M. L., Donini, A., Dorotea, L., Tonutti, E., Rinaldi, C., Pittino, M., Baccarani, M., Del Frate, G., Biffoni, F., Sala, P., Hilbert, D. M., & Degrassi, A. (1999). Phenotypic Characterization of Immunomagnetically Purified Umbilical Cord Blood CD34+ Cells. Blood Cells, Molecules, and Diseases, 25(3), 141–146. https://doi.org/https://doi.org/10.1006/bcmd.1999.0239
Breems, D. A., Blokland, E. A. W., Siebel, K. E., Mayen, A. E. M., Engels, L. J. A., & Ploemacher, R. E. (1998). Stroma-Contact Prevents Loss of Hematopoietic Stem Cell Quality During Ex Vivo Expansion of CD34+ Mobilized Peripheral Blood Stem Cells. Blood, 91(1), 111–117. https://doi.org/https://doi.org/10.1182/blood.V91.1.111
Boulais, P. E., & Frenette, P. S. (2015). Making sense of hematopoietic stem cell niches. Blood, 125(17), 2621–2629. https://doi.org/10.1182/blood-2014-09-570192
Cancelas, J. A., Querol, S., Martín-Henao, G., Canals, C., Azqueta, C., Petriz, J., Inglés-Esteve, J., Amill, B., & Garcia, J. (1996). Isolation of hematopoietic progenitors. An approach to two different immunomagnetic methods at the lab scale. Pure and Applied Chemistry, 68(10), 1897–1901. https://doi.org/10.1351/pac199668101897
Chan, S. L., Choi, M., Wnendt, S., Kraus, M., Teng, E., Leong, H. F., & Merchav, S. (2007). Enhanced In Vivo Homing of Uncultured and Selectively Amplified Cord Blood CD34+ Cells by Cotransplantation with Cord Blood-Derived Unrestricted Somatic Stem Cells. Stem Cells, 25(2), 529–536. https://doi.org/10.1634/stemcells.2005-0639
Cordeiro Gomes, A., Hara, T., Lim, V. Y., Herndler-Brandstetter, D., Nevius, E., Sugiyama, T., Taniichi, S., Schlenner, S., Richie, E., Rodewald, H.-R., Flavell, R. A., Nagasawa, T., Ikuta, K., & Pereira, J. P. (2016). Hematopoietic Stem Cell Niches Produce Lineage-Instructive Signals to Control Multipotent Progenitor Differentiation. Immunity, 45(6), 1219–1231. https://doi.org/https://doi.org/10.1016/j.immuni.2016.11.004
Ding, L., Saunders, T. L., Enikolopov, G., & Morrison, S. J. (2012). Endothelial and perivascular cells maintain haematopoietic stem cells. Nature, 481(7382), 457–462. https://doi.org/10.1038/nature10783
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. https://doi.org/10.1080/14653240600855905
Emiloju, O. E., Potdar, R., Jorge, V., Gupta, S., & Varadi, G. (2019). Clinical Advancement and Challenges of ex vivo Expansion of Human Cord Blood Cells. Clinical Hematology International, 2(1), 18–26. https://doi.org/10.2991/chi.d.191121.001
instname:Universidad Antonio Nariño
reponame:Repositorio Institucional UAN
repourl:https://repositorio.uan.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv Acceso abierto
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Acceso abierto
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad Antonio Nariño
dc.publisher.program.spa.fl_str_mv Bioquímica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.campus.spa.fl_str_mv Bogotá - Circunvalar
institution Universidad Antonio Nariño
bitstream.url.fl_str_mv https://repositorio.uan.edu.co/bitstreams/7438287a-a8a9-4d36-9633-39f2f454b7e6/download
https://repositorio.uan.edu.co/bitstreams/8618d57d-2a40-4e3b-b273-10dee56f70f8/download
https://repositorio.uan.edu.co/bitstreams/d43dedba-ec36-4d3e-9c07-2aaaa792de17/download
https://repositorio.uan.edu.co/bitstreams/1d3b320a-11b8-4c07-8a32-74f6acffbf7b/download
bitstream.checksum.fl_str_mv 9868ccc48a14c8d591352b6eaf7f6239
92d5c59a09710e7c236c5a82bc55671c
badd54d3fb7640cbbaf355c4dfc15a84
a669bd659e3d0471e27361d6d2003d45
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1812928365349306368
spelling Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Arenas Suarez, Nelson EnriqueBonilla, XimenaLara Rodriguez, Ana Milena118217242362022-10-11T22:45:10Z2022-10-11T22:45:10Z2022-07-06http://repositorio.uan.edu.co/handle/123456789/7080Andrzejewska, A., Lukomska, B., & Janowski, M. (2019). Concise Review: Mesenchymal Stem Cells: From Roots to Boost. Stem Cells (Dayton, Ohio), 37(7), 855–864. https://doi.org/10.1002/stem.3016Belvedere, O., Feruglio, C., Malangone, W., Bonora, M. L., Donini, A., Dorotea, L., Tonutti, E., Rinaldi, C., Pittino, M., Baccarani, M., Del Frate, G., Biffoni, F., Sala, P., Hilbert, D. M., & Degrassi, A. (1999). Phenotypic Characterization of Immunomagnetically Purified Umbilical Cord Blood CD34+ Cells. Blood Cells, Molecules, and Diseases, 25(3), 141–146. https://doi.org/https://doi.org/10.1006/bcmd.1999.0239Breems, D. A., Blokland, E. A. W., Siebel, K. E., Mayen, A. E. M., Engels, L. J. A., & Ploemacher, R. E. (1998). Stroma-Contact Prevents Loss of Hematopoietic Stem Cell Quality During Ex Vivo Expansion of CD34+ Mobilized Peripheral Blood Stem Cells. Blood, 91(1), 111–117. https://doi.org/https://doi.org/10.1182/blood.V91.1.111Boulais, P. E., & Frenette, P. S. (2015). Making sense of hematopoietic stem cell niches. Blood, 125(17), 2621–2629. https://doi.org/10.1182/blood-2014-09-570192Cancelas, J. A., Querol, S., Martín-Henao, G., Canals, C., Azqueta, C., Petriz, J., Inglés-Esteve, J., Amill, B., & Garcia, J. (1996). Isolation of hematopoietic progenitors. An approach to two different immunomagnetic methods at the lab scale. Pure and Applied Chemistry, 68(10), 1897–1901. https://doi.org/10.1351/pac199668101897Chan, S. L., Choi, M., Wnendt, S., Kraus, M., Teng, E., Leong, H. F., & Merchav, S. (2007). Enhanced In Vivo Homing of Uncultured and Selectively Amplified Cord Blood CD34+ Cells by Cotransplantation with Cord Blood-Derived Unrestricted Somatic Stem Cells. Stem Cells, 25(2), 529–536. https://doi.org/10.1634/stemcells.2005-0639Cordeiro Gomes, A., Hara, T., Lim, V. Y., Herndler-Brandstetter, D., Nevius, E., Sugiyama, T., Taniichi, S., Schlenner, S., Richie, E., Rodewald, H.-R., Flavell, R. A., Nagasawa, T., Ikuta, K., & Pereira, J. P. (2016). Hematopoietic Stem Cell Niches Produce Lineage-Instructive Signals to Control Multipotent Progenitor Differentiation. Immunity, 45(6), 1219–1231. https://doi.org/https://doi.org/10.1016/j.immuni.2016.11.004Ding, L., Saunders, T. L., Enikolopov, G., & Morrison, S. J. (2012). Endothelial and perivascular cells maintain haematopoietic stem cells. Nature, 481(7382), 457–462. https://doi.org/10.1038/nature10783Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. https://doi.org/10.1080/14653240600855905Emiloju, O. E., Potdar, R., Jorge, V., Gupta, S., & Varadi, G. (2019). Clinical Advancement and Challenges of ex vivo Expansion of Human Cord Blood Cells. Clinical Hematology International, 2(1), 18–26. https://doi.org/10.2991/chi.d.191121.001instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/Umbilical cord blood is used as a source of hematopoietic progenitor cells, for regeneration of the hemopoietic and immune systems in various hematological diseases; despite that, a low cellular dose limits its application in pediatric patients. In this st udy the standardization of cell expansion technique of compensation for the dose infused cells is proposed, through ex vivo manipulation of hematopoietic progenitor cells from umbilical cord blood before transplantation. The expansion model was performed b y coculture with mesenchymal stem cells and bone marrow fetal tissues unexplored. The results show that the mesenchymal stem cells coculture studied allowed to maximize cell dose of hematopoietic progenitor cells between 5 and 16 folds, with high potenti al clonogenic. Moreover, evidence that treatment with gamma irradiation maintains the capacity to support hematopoietic mesenchymal stem cells from the three sources studied regarding the treatments without irradiation, promoting conditions in the ex vivo expansion system in coculture. It is expected that this standardized protocol will contribute to the development of ex vivo expansion larger scale, towards enabling its clinical use and expand further application in adults.La sangre de cordón umbilical es empleada como fuente de células progenitoras hematopoyéticas, para la regeneración de los sistemas hematopoyético e inmunológico en diversas enfermedades hematológicas; sin embargo, su baja dosis celular limita su uso a pacientes pediátricos. En este trabajo se propone la estandarización de una técnica de expansión celular para compensar la dosis de células infundidas, a través de la manipulación ex vivo de células progenitoras hematopoyéticas de sangre de cordón umbilical antes del trasplante. El modelo de expansión se realizó mediante un co-cultivo con células madre mesenquimales de médula ósea y de tejidos fetales poco explorados. Los resultados demuestran que el co-cultivo con las células madre mesenquimales estudiadas permite maximizar la dosis celular de células progenitoras hematopoyéticas entre 5 y 16 veces, con un alto potencial clonogénico. Además, se evidenció que el tratamiento con irradiación gamma, mantiene la capacidad de soporte hematopoyético de las células madre mesenquimales de las tres fuentes estudiadas respecto a los tratamientos sin irradiación, favoreciendo las condiciones en el sistema de expansión ex vivo en co-cultivo. Se espera que este protocolo estandarizado contribuya al desarrollo de la expansión ex vivo a mayor escala, posibilitando su uso clínico y ampliando su aplicación en adultos.Bioquímico(a)PregradoPresencialMonografíaspaUniversidad Antonio NariñoBioquímicaFacultad de CienciasBogotá - CircunvalarCordón umbilicalExpansión ex vivoCD34+Células madre mesenquimalesUmb ilical cordEx vivo expansiónCD34 +Mesenchymal stem cells“Estandarización de un protocolo de expansión ex vivo de células progenitoras hematopoyéticas aisladas de sangre de cordón umbilical en co-cultivo con células madre mesenquimales de diferentes tejidos”Trabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85EspecializadaCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.uan.edu.co/bitstreams/7438287a-a8a9-4d36-9633-39f2f454b7e6/download9868ccc48a14c8d591352b6eaf7f6239MD56ORIGINAL2022_LaraRodriguez.pdf2022_LaraRodriguez.pdfTrabajo de Gradoapplication/pdf1072267https://repositorio.uan.edu.co/bitstreams/8618d57d-2a40-4e3b-b273-10dee56f70f8/download92d5c59a09710e7c236c5a82bc55671cMD512022_LaraRodriguez_Acta.pdf2022_LaraRodriguez_Acta.pdfActaapplication/pdf6826675https://repositorio.uan.edu.co/bitstreams/d43dedba-ec36-4d3e-9c07-2aaaa792de17/downloadbadd54d3fb7640cbbaf355c4dfc15a84MD532022_LaraRodriguez_Autorización.pdf2022_LaraRodriguez_Autorización.pdfautorización autorapplication/pdf364479https://repositorio.uan.edu.co/bitstreams/1d3b320a-11b8-4c07-8a32-74f6acffbf7b/downloada669bd659e3d0471e27361d6d2003d45MD55123456789/7080oai:repositorio.uan.edu.co:123456789/70802024-10-09 23:17:24.454https://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertoopen.accesshttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co