“Estandarización de un protocolo de expansión ex vivo de células progenitoras hematopoyéticas aisladas de sangre de cordón umbilical en co-cultivo con células madre mesenquimales de diferentes tejidos”
Umbilical cord blood is used as a source of hematopoietic progenitor cells, for regeneration of the hemopoietic and immune systems in various hematological diseases; despite that, a low cellular dose limits its application in pediatric patients. In this st udy the standardization of cell expansion t...
- Autores:
-
Lara Rodriguez, Ana Milena
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Universidad Antonio Nariño
- Repositorio:
- Repositorio UAN
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uan.edu.co:123456789/7080
- Acceso en línea:
- http://repositorio.uan.edu.co/handle/123456789/7080
- Palabra clave:
- Cordón umbilical
Expansión ex vivo
CD34+
Células madre mesenquimales
Umb ilical cord
Ex vivo expansión
CD34 +
Mesenchymal stem cells
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
id |
UAntonioN2_9a5822592af137d448e616b5c016f1a6 |
---|---|
oai_identifier_str |
oai:repositorio.uan.edu.co:123456789/7080 |
network_acronym_str |
UAntonioN2 |
network_name_str |
Repositorio UAN |
repository_id_str |
|
dc.title.es_ES.fl_str_mv |
“Estandarización de un protocolo de expansión ex vivo de células progenitoras hematopoyéticas aisladas de sangre de cordón umbilical en co-cultivo con células madre mesenquimales de diferentes tejidos” |
title |
“Estandarización de un protocolo de expansión ex vivo de células progenitoras hematopoyéticas aisladas de sangre de cordón umbilical en co-cultivo con células madre mesenquimales de diferentes tejidos” |
spellingShingle |
“Estandarización de un protocolo de expansión ex vivo de células progenitoras hematopoyéticas aisladas de sangre de cordón umbilical en co-cultivo con células madre mesenquimales de diferentes tejidos” Cordón umbilical Expansión ex vivo CD34+ Células madre mesenquimales Umb ilical cord Ex vivo expansión CD34 + Mesenchymal stem cells |
title_short |
“Estandarización de un protocolo de expansión ex vivo de células progenitoras hematopoyéticas aisladas de sangre de cordón umbilical en co-cultivo con células madre mesenquimales de diferentes tejidos” |
title_full |
“Estandarización de un protocolo de expansión ex vivo de células progenitoras hematopoyéticas aisladas de sangre de cordón umbilical en co-cultivo con células madre mesenquimales de diferentes tejidos” |
title_fullStr |
“Estandarización de un protocolo de expansión ex vivo de células progenitoras hematopoyéticas aisladas de sangre de cordón umbilical en co-cultivo con células madre mesenquimales de diferentes tejidos” |
title_full_unstemmed |
“Estandarización de un protocolo de expansión ex vivo de células progenitoras hematopoyéticas aisladas de sangre de cordón umbilical en co-cultivo con células madre mesenquimales de diferentes tejidos” |
title_sort |
“Estandarización de un protocolo de expansión ex vivo de células progenitoras hematopoyéticas aisladas de sangre de cordón umbilical en co-cultivo con células madre mesenquimales de diferentes tejidos” |
dc.creator.fl_str_mv |
Lara Rodriguez, Ana Milena |
dc.contributor.advisor.spa.fl_str_mv |
Arenas Suarez, Nelson Enrique Bonilla, Ximena |
dc.contributor.author.spa.fl_str_mv |
Lara Rodriguez, Ana Milena |
dc.subject.es_ES.fl_str_mv |
Cordón umbilical Expansión ex vivo CD34+ Células madre mesenquimales |
topic |
Cordón umbilical Expansión ex vivo CD34+ Células madre mesenquimales Umb ilical cord Ex vivo expansión CD34 + Mesenchymal stem cells |
dc.subject.keyword.es_ES.fl_str_mv |
Umb ilical cord Ex vivo expansión CD34 + Mesenchymal stem cells |
description |
Umbilical cord blood is used as a source of hematopoietic progenitor cells, for regeneration of the hemopoietic and immune systems in various hematological diseases; despite that, a low cellular dose limits its application in pediatric patients. In this st udy the standardization of cell expansion technique of compensation for the dose infused cells is proposed, through ex vivo manipulation of hematopoietic progenitor cells from umbilical cord blood before transplantation. The expansion model was performed b y coculture with mesenchymal stem cells and bone marrow fetal tissues unexplored. The results show that the mesenchymal stem cells coculture studied allowed to maximize cell dose of hematopoietic progenitor cells between 5 and 16 folds, with high potenti al clonogenic. Moreover, evidence that treatment with gamma irradiation maintains the capacity to support hematopoietic mesenchymal stem cells from the three sources studied regarding the treatments without irradiation, promoting conditions in the ex vivo expansion system in coculture. It is expected that this standardized protocol will contribute to the development of ex vivo expansion larger scale, towards enabling its clinical use and expand further application in adults. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-10-11T22:45:10Z |
dc.date.available.none.fl_str_mv |
2022-10-11T22:45:10Z |
dc.date.issued.spa.fl_str_mv |
2022-07-06 |
dc.type.spa.fl_str_mv |
Trabajo de grado (Pregrado y/o Especialización) |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://repositorio.uan.edu.co/handle/123456789/7080 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Andrzejewska, A., Lukomska, B., & Janowski, M. (2019). Concise Review: Mesenchymal Stem Cells: From Roots to Boost. Stem Cells (Dayton, Ohio), 37(7), 855–864. https://doi.org/10.1002/stem.3016 Belvedere, O., Feruglio, C., Malangone, W., Bonora, M. L., Donini, A., Dorotea, L., Tonutti, E., Rinaldi, C., Pittino, M., Baccarani, M., Del Frate, G., Biffoni, F., Sala, P., Hilbert, D. M., & Degrassi, A. (1999). Phenotypic Characterization of Immunomagnetically Purified Umbilical Cord Blood CD34+ Cells. Blood Cells, Molecules, and Diseases, 25(3), 141–146. https://doi.org/https://doi.org/10.1006/bcmd.1999.0239 Breems, D. A., Blokland, E. A. W., Siebel, K. E., Mayen, A. E. M., Engels, L. J. A., & Ploemacher, R. E. (1998). Stroma-Contact Prevents Loss of Hematopoietic Stem Cell Quality During Ex Vivo Expansion of CD34+ Mobilized Peripheral Blood Stem Cells. Blood, 91(1), 111–117. https://doi.org/https://doi.org/10.1182/blood.V91.1.111 Boulais, P. E., & Frenette, P. S. (2015). Making sense of hematopoietic stem cell niches. Blood, 125(17), 2621–2629. https://doi.org/10.1182/blood-2014-09-570192 Cancelas, J. A., Querol, S., Martín-Henao, G., Canals, C., Azqueta, C., Petriz, J., Inglés-Esteve, J., Amill, B., & Garcia, J. (1996). Isolation of hematopoietic progenitors. An approach to two different immunomagnetic methods at the lab scale. Pure and Applied Chemistry, 68(10), 1897–1901. https://doi.org/10.1351/pac199668101897 Chan, S. L., Choi, M., Wnendt, S., Kraus, M., Teng, E., Leong, H. F., & Merchav, S. (2007). Enhanced In Vivo Homing of Uncultured and Selectively Amplified Cord Blood CD34+ Cells by Cotransplantation with Cord Blood-Derived Unrestricted Somatic Stem Cells. Stem Cells, 25(2), 529–536. https://doi.org/10.1634/stemcells.2005-0639 Cordeiro Gomes, A., Hara, T., Lim, V. Y., Herndler-Brandstetter, D., Nevius, E., Sugiyama, T., Taniichi, S., Schlenner, S., Richie, E., Rodewald, H.-R., Flavell, R. A., Nagasawa, T., Ikuta, K., & Pereira, J. P. (2016). Hematopoietic Stem Cell Niches Produce Lineage-Instructive Signals to Control Multipotent Progenitor Differentiation. Immunity, 45(6), 1219–1231. https://doi.org/https://doi.org/10.1016/j.immuni.2016.11.004 Ding, L., Saunders, T. L., Enikolopov, G., & Morrison, S. J. (2012). Endothelial and perivascular cells maintain haematopoietic stem cells. Nature, 481(7382), 457–462. https://doi.org/10.1038/nature10783 Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. https://doi.org/10.1080/14653240600855905 Emiloju, O. E., Potdar, R., Jorge, V., Gupta, S., & Varadi, G. (2019). Clinical Advancement and Challenges of ex vivo Expansion of Human Cord Blood Cells. Clinical Hematology International, 2(1), 18–26. https://doi.org/10.2991/chi.d.191121.001 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Antonio Nariño |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UAN |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uan.edu.co/ |
url |
http://repositorio.uan.edu.co/handle/123456789/7080 |
identifier_str_mv |
Andrzejewska, A., Lukomska, B., & Janowski, M. (2019). Concise Review: Mesenchymal Stem Cells: From Roots to Boost. Stem Cells (Dayton, Ohio), 37(7), 855–864. https://doi.org/10.1002/stem.3016 Belvedere, O., Feruglio, C., Malangone, W., Bonora, M. L., Donini, A., Dorotea, L., Tonutti, E., Rinaldi, C., Pittino, M., Baccarani, M., Del Frate, G., Biffoni, F., Sala, P., Hilbert, D. M., & Degrassi, A. (1999). Phenotypic Characterization of Immunomagnetically Purified Umbilical Cord Blood CD34+ Cells. Blood Cells, Molecules, and Diseases, 25(3), 141–146. https://doi.org/https://doi.org/10.1006/bcmd.1999.0239 Breems, D. A., Blokland, E. A. W., Siebel, K. E., Mayen, A. E. M., Engels, L. J. A., & Ploemacher, R. E. (1998). Stroma-Contact Prevents Loss of Hematopoietic Stem Cell Quality During Ex Vivo Expansion of CD34+ Mobilized Peripheral Blood Stem Cells. Blood, 91(1), 111–117. https://doi.org/https://doi.org/10.1182/blood.V91.1.111 Boulais, P. E., & Frenette, P. S. (2015). Making sense of hematopoietic stem cell niches. Blood, 125(17), 2621–2629. https://doi.org/10.1182/blood-2014-09-570192 Cancelas, J. A., Querol, S., Martín-Henao, G., Canals, C., Azqueta, C., Petriz, J., Inglés-Esteve, J., Amill, B., & Garcia, J. (1996). Isolation of hematopoietic progenitors. An approach to two different immunomagnetic methods at the lab scale. Pure and Applied Chemistry, 68(10), 1897–1901. https://doi.org/10.1351/pac199668101897 Chan, S. L., Choi, M., Wnendt, S., Kraus, M., Teng, E., Leong, H. F., & Merchav, S. (2007). Enhanced In Vivo Homing of Uncultured and Selectively Amplified Cord Blood CD34+ Cells by Cotransplantation with Cord Blood-Derived Unrestricted Somatic Stem Cells. Stem Cells, 25(2), 529–536. https://doi.org/10.1634/stemcells.2005-0639 Cordeiro Gomes, A., Hara, T., Lim, V. Y., Herndler-Brandstetter, D., Nevius, E., Sugiyama, T., Taniichi, S., Schlenner, S., Richie, E., Rodewald, H.-R., Flavell, R. A., Nagasawa, T., Ikuta, K., & Pereira, J. P. (2016). Hematopoietic Stem Cell Niches Produce Lineage-Instructive Signals to Control Multipotent Progenitor Differentiation. Immunity, 45(6), 1219–1231. https://doi.org/https://doi.org/10.1016/j.immuni.2016.11.004 Ding, L., Saunders, T. L., Enikolopov, G., & Morrison, S. J. (2012). Endothelial and perivascular cells maintain haematopoietic stem cells. Nature, 481(7382), 457–462. https://doi.org/10.1038/nature10783 Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. https://doi.org/10.1080/14653240600855905 Emiloju, O. E., Potdar, R., Jorge, V., Gupta, S., & Varadi, G. (2019). Clinical Advancement and Challenges of ex vivo Expansion of Human Cord Blood Cells. Clinical Hematology International, 2(1), 18–26. https://doi.org/10.2991/chi.d.191121.001 instname:Universidad Antonio Nariño reponame:Repositorio Institucional UAN repourl:https://repositorio.uan.edu.co/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
Acceso abierto |
dc.rights.license.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Acceso abierto https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad Antonio Nariño |
dc.publisher.program.spa.fl_str_mv |
Bioquímica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.campus.spa.fl_str_mv |
Bogotá - Circunvalar |
institution |
Universidad Antonio Nariño |
bitstream.url.fl_str_mv |
https://repositorio.uan.edu.co/bitstreams/7438287a-a8a9-4d36-9633-39f2f454b7e6/download https://repositorio.uan.edu.co/bitstreams/8618d57d-2a40-4e3b-b273-10dee56f70f8/download https://repositorio.uan.edu.co/bitstreams/d43dedba-ec36-4d3e-9c07-2aaaa792de17/download https://repositorio.uan.edu.co/bitstreams/1d3b320a-11b8-4c07-8a32-74f6acffbf7b/download |
bitstream.checksum.fl_str_mv |
9868ccc48a14c8d591352b6eaf7f6239 92d5c59a09710e7c236c5a82bc55671c badd54d3fb7640cbbaf355c4dfc15a84 a669bd659e3d0471e27361d6d2003d45 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UAN |
repository.mail.fl_str_mv |
alertas.repositorio@uan.edu.co |
_version_ |
1814300419775528960 |
spelling |
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Arenas Suarez, Nelson EnriqueBonilla, XimenaLara Rodriguez, Ana Milena118217242362022-10-11T22:45:10Z2022-10-11T22:45:10Z2022-07-06http://repositorio.uan.edu.co/handle/123456789/7080Andrzejewska, A., Lukomska, B., & Janowski, M. (2019). Concise Review: Mesenchymal Stem Cells: From Roots to Boost. Stem Cells (Dayton, Ohio), 37(7), 855–864. https://doi.org/10.1002/stem.3016Belvedere, O., Feruglio, C., Malangone, W., Bonora, M. L., Donini, A., Dorotea, L., Tonutti, E., Rinaldi, C., Pittino, M., Baccarani, M., Del Frate, G., Biffoni, F., Sala, P., Hilbert, D. M., & Degrassi, A. (1999). Phenotypic Characterization of Immunomagnetically Purified Umbilical Cord Blood CD34+ Cells. Blood Cells, Molecules, and Diseases, 25(3), 141–146. https://doi.org/https://doi.org/10.1006/bcmd.1999.0239Breems, D. A., Blokland, E. A. W., Siebel, K. E., Mayen, A. E. M., Engels, L. J. A., & Ploemacher, R. E. (1998). Stroma-Contact Prevents Loss of Hematopoietic Stem Cell Quality During Ex Vivo Expansion of CD34+ Mobilized Peripheral Blood Stem Cells. Blood, 91(1), 111–117. https://doi.org/https://doi.org/10.1182/blood.V91.1.111Boulais, P. E., & Frenette, P. S. (2015). Making sense of hematopoietic stem cell niches. Blood, 125(17), 2621–2629. https://doi.org/10.1182/blood-2014-09-570192Cancelas, J. A., Querol, S., Martín-Henao, G., Canals, C., Azqueta, C., Petriz, J., Inglés-Esteve, J., Amill, B., & Garcia, J. (1996). Isolation of hematopoietic progenitors. An approach to two different immunomagnetic methods at the lab scale. Pure and Applied Chemistry, 68(10), 1897–1901. https://doi.org/10.1351/pac199668101897Chan, S. L., Choi, M., Wnendt, S., Kraus, M., Teng, E., Leong, H. F., & Merchav, S. (2007). Enhanced In Vivo Homing of Uncultured and Selectively Amplified Cord Blood CD34+ Cells by Cotransplantation with Cord Blood-Derived Unrestricted Somatic Stem Cells. Stem Cells, 25(2), 529–536. https://doi.org/10.1634/stemcells.2005-0639Cordeiro Gomes, A., Hara, T., Lim, V. Y., Herndler-Brandstetter, D., Nevius, E., Sugiyama, T., Taniichi, S., Schlenner, S., Richie, E., Rodewald, H.-R., Flavell, R. A., Nagasawa, T., Ikuta, K., & Pereira, J. P. (2016). Hematopoietic Stem Cell Niches Produce Lineage-Instructive Signals to Control Multipotent Progenitor Differentiation. Immunity, 45(6), 1219–1231. https://doi.org/https://doi.org/10.1016/j.immuni.2016.11.004Ding, L., Saunders, T. L., Enikolopov, G., & Morrison, S. J. (2012). Endothelial and perivascular cells maintain haematopoietic stem cells. Nature, 481(7382), 457–462. https://doi.org/10.1038/nature10783Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. https://doi.org/10.1080/14653240600855905Emiloju, O. E., Potdar, R., Jorge, V., Gupta, S., & Varadi, G. (2019). Clinical Advancement and Challenges of ex vivo Expansion of Human Cord Blood Cells. Clinical Hematology International, 2(1), 18–26. https://doi.org/10.2991/chi.d.191121.001instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/Umbilical cord blood is used as a source of hematopoietic progenitor cells, for regeneration of the hemopoietic and immune systems in various hematological diseases; despite that, a low cellular dose limits its application in pediatric patients. In this st udy the standardization of cell expansion technique of compensation for the dose infused cells is proposed, through ex vivo manipulation of hematopoietic progenitor cells from umbilical cord blood before transplantation. The expansion model was performed b y coculture with mesenchymal stem cells and bone marrow fetal tissues unexplored. The results show that the mesenchymal stem cells coculture studied allowed to maximize cell dose of hematopoietic progenitor cells between 5 and 16 folds, with high potenti al clonogenic. Moreover, evidence that treatment with gamma irradiation maintains the capacity to support hematopoietic mesenchymal stem cells from the three sources studied regarding the treatments without irradiation, promoting conditions in the ex vivo expansion system in coculture. It is expected that this standardized protocol will contribute to the development of ex vivo expansion larger scale, towards enabling its clinical use and expand further application in adults.La sangre de cordón umbilical es empleada como fuente de células progenitoras hematopoyéticas, para la regeneración de los sistemas hematopoyético e inmunológico en diversas enfermedades hematológicas; sin embargo, su baja dosis celular limita su uso a pacientes pediátricos. En este trabajo se propone la estandarización de una técnica de expansión celular para compensar la dosis de células infundidas, a través de la manipulación ex vivo de células progenitoras hematopoyéticas de sangre de cordón umbilical antes del trasplante. El modelo de expansión se realizó mediante un co-cultivo con células madre mesenquimales de médula ósea y de tejidos fetales poco explorados. Los resultados demuestran que el co-cultivo con las células madre mesenquimales estudiadas permite maximizar la dosis celular de células progenitoras hematopoyéticas entre 5 y 16 veces, con un alto potencial clonogénico. Además, se evidenció que el tratamiento con irradiación gamma, mantiene la capacidad de soporte hematopoyético de las células madre mesenquimales de las tres fuentes estudiadas respecto a los tratamientos sin irradiación, favoreciendo las condiciones en el sistema de expansión ex vivo en co-cultivo. Se espera que este protocolo estandarizado contribuya al desarrollo de la expansión ex vivo a mayor escala, posibilitando su uso clínico y ampliando su aplicación en adultos.Bioquímico(a)PregradoPresencialMonografíaspaUniversidad Antonio NariñoBioquímicaFacultad de CienciasBogotá - CircunvalarCordón umbilicalExpansión ex vivoCD34+Células madre mesenquimalesUmb ilical cordEx vivo expansiónCD34 +Mesenchymal stem cells“Estandarización de un protocolo de expansión ex vivo de células progenitoras hematopoyéticas aisladas de sangre de cordón umbilical en co-cultivo con células madre mesenquimales de diferentes tejidos”Trabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85EspecializadaCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.uan.edu.co/bitstreams/7438287a-a8a9-4d36-9633-39f2f454b7e6/download9868ccc48a14c8d591352b6eaf7f6239MD56ORIGINAL2022_LaraRodriguez.pdf2022_LaraRodriguez.pdfTrabajo de Gradoapplication/pdf1072267https://repositorio.uan.edu.co/bitstreams/8618d57d-2a40-4e3b-b273-10dee56f70f8/download92d5c59a09710e7c236c5a82bc55671cMD512022_LaraRodriguez_Acta.pdf2022_LaraRodriguez_Acta.pdfActaapplication/pdf6826675https://repositorio.uan.edu.co/bitstreams/d43dedba-ec36-4d3e-9c07-2aaaa792de17/downloadbadd54d3fb7640cbbaf355c4dfc15a84MD532022_LaraRodriguez_Autorización.pdf2022_LaraRodriguez_Autorización.pdfautorización autorapplication/pdf364479https://repositorio.uan.edu.co/bitstreams/1d3b320a-11b8-4c07-8a32-74f6acffbf7b/downloada669bd659e3d0471e27361d6d2003d45MD55123456789/7080oai:repositorio.uan.edu.co:123456789/70802024-10-09 23:17:24.454https://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertoopen.accesshttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co |