Propuesta Metodológica Para El Cálculo A Gran Escala De Árboles Individuales Mediante El Uso De Datos Lidar (Airborne Light Scanner, Als)
In this study, a methodological alternative was presented for the detection of individual trees through the use of LIDAR point clouds, where the step by step for the calculation of the trees and extraction of the information in shapefile format through the use MicroStation Connect, Terrasolid versio...
- Autores:
-
Gomez Gonzalez, Christian Ricardo
Saenz Blanco, William Alberto
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad Antonio Nariño
- Repositorio:
- Repositorio UAN
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uan.edu.co:123456789/5200
- Acceso en línea:
- http://repositorio.uan.edu.co/handle/123456789/5200
- Palabra clave:
- Agrupación
Árboles
Calidad
Exhaustividad
LIDAR
Sensor remoto
Segmentación
583.749
Grouping
Trees
Quality
Completeness
LIDAR
Remote sensing
Segmentation
- Rights
- openAccess
- License
- Attribution 4.0 International (CC BY 4.0)
id |
UAntonioN2_98b0859343f4d965c79d2937609d18c2 |
---|---|
oai_identifier_str |
oai:repositorio.uan.edu.co:123456789/5200 |
network_acronym_str |
UAntonioN2 |
network_name_str |
Repositorio UAN |
repository_id_str |
|
dc.title.es_ES.fl_str_mv |
Propuesta Metodológica Para El Cálculo A Gran Escala De Árboles Individuales Mediante El Uso De Datos Lidar (Airborne Light Scanner, Als) |
title |
Propuesta Metodológica Para El Cálculo A Gran Escala De Árboles Individuales Mediante El Uso De Datos Lidar (Airborne Light Scanner, Als) |
spellingShingle |
Propuesta Metodológica Para El Cálculo A Gran Escala De Árboles Individuales Mediante El Uso De Datos Lidar (Airborne Light Scanner, Als) Agrupación Árboles Calidad Exhaustividad LIDAR Sensor remoto Segmentación 583.749 Grouping Trees Quality Completeness LIDAR Remote sensing Segmentation |
title_short |
Propuesta Metodológica Para El Cálculo A Gran Escala De Árboles Individuales Mediante El Uso De Datos Lidar (Airborne Light Scanner, Als) |
title_full |
Propuesta Metodológica Para El Cálculo A Gran Escala De Árboles Individuales Mediante El Uso De Datos Lidar (Airborne Light Scanner, Als) |
title_fullStr |
Propuesta Metodológica Para El Cálculo A Gran Escala De Árboles Individuales Mediante El Uso De Datos Lidar (Airborne Light Scanner, Als) |
title_full_unstemmed |
Propuesta Metodológica Para El Cálculo A Gran Escala De Árboles Individuales Mediante El Uso De Datos Lidar (Airborne Light Scanner, Als) |
title_sort |
Propuesta Metodológica Para El Cálculo A Gran Escala De Árboles Individuales Mediante El Uso De Datos Lidar (Airborne Light Scanner, Als) |
dc.creator.fl_str_mv |
Gomez Gonzalez, Christian Ricardo Saenz Blanco, William Alberto |
dc.contributor.advisor.spa.fl_str_mv |
Carvajal Vanegas, Andrés Felipe |
dc.contributor.author.spa.fl_str_mv |
Gomez Gonzalez, Christian Ricardo Saenz Blanco, William Alberto |
dc.subject.es_ES.fl_str_mv |
Agrupación Árboles Calidad Exhaustividad LIDAR Sensor remoto Segmentación |
topic |
Agrupación Árboles Calidad Exhaustividad LIDAR Sensor remoto Segmentación 583.749 Grouping Trees Quality Completeness LIDAR Remote sensing Segmentation |
dc.subject.ddc.es_ES.fl_str_mv |
583.749 |
dc.subject.keyword.es_ES.fl_str_mv |
Grouping Trees Quality Completeness LIDAR Remote sensing Segmentation |
description |
In this study, a methodological alternative was presented for the detection of individual trees through the use of LIDAR point clouds, where the step by step for the calculation of the trees and extraction of the information in shapefile format through the use MicroStation Connect, Terrasolid version 19, Inertial Explorer 8.7, Spatial Explorer was described. Quality control was carried out on the methodology presented using three random areas in which the manual identification of the trees was performed, identifying the sub-segmentation and the over-segmentation, which were compared under a confusion matrix to measure the precision in the performance of the methodology, the information used for this study was taken in China, in the island province Hainan an area of 7.8ha and supplied by the company Ewart aerospace inc, which used a Riegl VUX LR sensor of 820 KHz with an LN200 IMU on a DJI M600- UAV platform |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-11-08T21:01:44Z |
dc.date.available.none.fl_str_mv |
2021-11-08T21:01:44Z |
dc.date.issued.spa.fl_str_mv |
2021-07-08 |
dc.type.spa.fl_str_mv |
Trabajo de grado (Pregrado y/o Especialización) |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://repositorio.uan.edu.co/handle/123456789/5200 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Aguilar, F. J., & Mills, J. P. (2008). Accuracy assessment of lidar-derived digital elevation models. The Photogrammetric Record, 23(122), 148-169. https://doi.org/10.1111/j.1477-9730.2008.00476.x Aguilar, F. J., & Mills, J. P. (2008). Accuracy assessment of lidar-derived digital elevation models. The Photogrammetric Record, 23(122), 148-169. https://doi.org/10.1111/j.1477-9730.2008.00476.x Coordinate Systems and Conventions. (2017). Performance of the Jet Transport Airplane: Analysis Methods, Flight Operations and Regulations, 597-600. https://doi.org/10.1002/9781118534786.app3 Gobakken, Terje & Næsset, Erik. (2009). Assessing effects of positioning errors and sample plot size on biophysical stand properties derived from airborne laser scanner data. Canadian Journal of Forest Research. 39. 1036-1052. 10.1139/X09-025. Mongus, D., & Žalik, B. (2015). An efficient approach to 3D single tree-crown delineation in LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 219– 233. https://doi.org/10.1016/j.isprsjprs.2015.08.004 Ronald E. McRoberts, Warren B. Cohen, Erik Næsset, Stephen V. Stehman & Erkki O. Tomppo (2010) Using remotely sensed data to construct and assess forest attribute maps and related spatial products, Scandinavian Journal of Forest Research, 25:4, 340-367, DOI: 10.1080/02827581.2010.497496 Scandinavian Journal of Forest Research, (27 de Abril 2010)25: 4 , 340-367, DOI: 10.1080 / 02827581.2010.497496 SIAC. (s. f.). www.siac.gov.co. Recuperado 20 de febrero de 2021 de http://www.siac.gov.co/inventario-forestal-nacional Terrasolid. (s. f.). Terrasolid - Software For Point Cloud and Image Processing. Recuperado 16 de marzo de 2021 de https://terrasolid.com/ |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Antonio Nariño |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UAN |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uan.edu.co/ |
url |
http://repositorio.uan.edu.co/handle/123456789/5200 |
identifier_str_mv |
Aguilar, F. J., & Mills, J. P. (2008). Accuracy assessment of lidar-derived digital elevation models. The Photogrammetric Record, 23(122), 148-169. https://doi.org/10.1111/j.1477-9730.2008.00476.x Coordinate Systems and Conventions. (2017). Performance of the Jet Transport Airplane: Analysis Methods, Flight Operations and Regulations, 597-600. https://doi.org/10.1002/9781118534786.app3 Gobakken, Terje & Næsset, Erik. (2009). Assessing effects of positioning errors and sample plot size on biophysical stand properties derived from airborne laser scanner data. Canadian Journal of Forest Research. 39. 1036-1052. 10.1139/X09-025. Mongus, D., & Žalik, B. (2015). An efficient approach to 3D single tree-crown delineation in LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 219– 233. https://doi.org/10.1016/j.isprsjprs.2015.08.004 Ronald E. McRoberts, Warren B. Cohen, Erik Næsset, Stephen V. Stehman & Erkki O. Tomppo (2010) Using remotely sensed data to construct and assess forest attribute maps and related spatial products, Scandinavian Journal of Forest Research, 25:4, 340-367, DOI: 10.1080/02827581.2010.497496 Scandinavian Journal of Forest Research, (27 de Abril 2010)25: 4 , 340-367, DOI: 10.1080 / 02827581.2010.497496 SIAC. (s. f.). www.siac.gov.co. Recuperado 20 de febrero de 2021 de http://www.siac.gov.co/inventario-forestal-nacional Terrasolid. (s. f.). Terrasolid - Software For Point Cloud and Image Processing. Recuperado 16 de marzo de 2021 de https://terrasolid.com/ instname:Universidad Antonio Nariño reponame:Repositorio Institucional UAN repourl:https://repositorio.uan.edu.co/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
Acceso abierto |
dc.rights.license.spa.fl_str_mv |
Attribution 4.0 International (CC BY 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution 4.0 International (CC BY 4.0) Acceso abierto https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad Antonio Nariño |
dc.publisher.program.spa.fl_str_mv |
Especialización en Sistemas de Información Geográfica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería Ambiental |
dc.publisher.campus.spa.fl_str_mv |
Bogotá - Federmán |
institution |
Universidad Antonio Nariño |
bitstream.url.fl_str_mv |
https://repositorio.uan.edu.co/bitstreams/a5a7d420-a8f5-4f59-9be3-68af70d264f3/download https://repositorio.uan.edu.co/bitstreams/3a45c4cc-bdcc-4dfd-b277-7ea1a0a5176a/download https://repositorio.uan.edu.co/bitstreams/f32e8d52-fb2f-470b-b351-15cbbb642c47/download https://repositorio.uan.edu.co/bitstreams/3daa7cf9-cf98-4f4d-8b64-12651f119c84/download https://repositorio.uan.edu.co/bitstreams/2cd34e6c-f59c-4c29-a1bc-e89a14e19771/download https://repositorio.uan.edu.co/bitstreams/df94ecce-8b1c-4285-a392-2c18d99e409c/download https://repositorio.uan.edu.co/bitstreams/60242207-faf1-482b-9f93-34ee17a1c7ff/download https://repositorio.uan.edu.co/bitstreams/94c35c3c-4b29-424d-9155-bc7bf92ccb1d/download https://repositorio.uan.edu.co/bitstreams/52d8d149-0e78-4dbd-9397-80144a5a1fab/download https://repositorio.uan.edu.co/bitstreams/f8b74f64-f5fe-4ed8-9a0e-7f2261a75d6b/download |
bitstream.checksum.fl_str_mv |
f2543405161a3e47959882226be5cb56 18f9f9dc3dd598a1851c953b08ea95d6 3aa43aeb46f38cce36f387aaea225000 2b2ab6ec8a6a222739b9c0e57c635c2e f0ee4d8f8f7a9f7c82d4df385572d449 b9b4d46a9113779f471a9b05b147a802 8d1b69dd9bdc9df4a8073c7a8193c7af d339bf613b112f82536262794e2ea0ab 7e7fc4e050827ffb65e586e930108fe4 7924956adefb30f3809ffee79773355b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UAN |
repository.mail.fl_str_mv |
alertas.repositorio@uan.edu.co |
_version_ |
1814300392714928128 |
spelling |
Attribution 4.0 International (CC BY 4.0)Acceso abiertohttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Carvajal Vanegas, Andrés FelipeGomez Gonzalez, Christian RicardoSaenz Blanco, William Alberto11792111433117920234112021-11-08T21:01:44Z2021-11-08T21:01:44Z2021-07-08http://repositorio.uan.edu.co/handle/123456789/5200Aguilar, F. J., & Mills, J. P. (2008). Accuracy assessment of lidar-derived digital elevation models. The Photogrammetric Record, 23(122), 148-169. https://doi.org/10.1111/j.1477-9730.2008.00476.xAguilar, F. J., & Mills, J. P. (2008). Accuracy assessment of lidar-derived digital elevation models. The Photogrammetric Record, 23(122), 148-169. https://doi.org/10.1111/j.1477-9730.2008.00476.xCoordinate Systems and Conventions. (2017). Performance of the Jet Transport Airplane: Analysis Methods, Flight Operations and Regulations, 597-600. https://doi.org/10.1002/9781118534786.app3Gobakken, Terje & Næsset, Erik. (2009). Assessing effects of positioning errors and sample plot size on biophysical stand properties derived from airborne laser scanner data. Canadian Journal of Forest Research. 39. 1036-1052. 10.1139/X09-025.Mongus, D., & Žalik, B. (2015). An efficient approach to 3D single tree-crown delineation in LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 219– 233. https://doi.org/10.1016/j.isprsjprs.2015.08.004Ronald E. McRoberts, Warren B. Cohen, Erik Næsset, Stephen V. Stehman & Erkki O. Tomppo (2010) Using remotely sensed data to construct and assess forest attribute maps and related spatial products, Scandinavian Journal of Forest Research, 25:4, 340-367, DOI: 10.1080/02827581.2010.497496Scandinavian Journal of Forest Research, (27 de Abril 2010)25: 4 , 340-367, DOI: 10.1080 / 02827581.2010.497496SIAC. (s. f.). www.siac.gov.co. Recuperado 20 de febrero de 2021 de http://www.siac.gov.co/inventario-forestal-nacionalTerrasolid. (s. f.). Terrasolid - Software For Point Cloud and Image Processing. Recuperado 16 de marzo de 2021 de https://terrasolid.com/instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/In this study, a methodological alternative was presented for the detection of individual trees through the use of LIDAR point clouds, where the step by step for the calculation of the trees and extraction of the information in shapefile format through the use MicroStation Connect, Terrasolid version 19, Inertial Explorer 8.7, Spatial Explorer was described. Quality control was carried out on the methodology presented using three random areas in which the manual identification of the trees was performed, identifying the sub-segmentation and the over-segmentation, which were compared under a confusion matrix to measure the precision in the performance of the methodology, the information used for this study was taken in China, in the island province Hainan an area of 7.8ha and supplied by the company Ewart aerospace inc, which used a Riegl VUX LR sensor of 820 KHz with an LN200 IMU on a DJI M600- UAV platformEn este estudio se presentó una alternativa metodológica para la detección de árboles individuales mediante el uso de nubes de puntos LIDAR, donde se describió el paso a paso para el cálculo de los árboles y extracción de la información en formato shapefile con los softwares MicroStation Connect, terrasolid version 19, Inertial Explorer 8.7, Spatial Explorer. Se realizó un control de calidad a la metodología presentada usando tres áreas al azar en las cuales se ejecutó la identificación manual de los árboles identificando la sub segmentación y la sobre segmentación, los cuales se compararon bajo una matriz de confusión para medir la precisión en el rendimiento de la metodología, la información utilizada para este estudio fue tomada en China, en la provincia insular Hainan un área de 7,8ha y suministrada por la compañía Ewatt aerospace inc, la cual utilizo para la captura de información un sensor Riegl VUX LR de 820 KHz con una IMU LN200 en una plataforma M600-UAV de la casa DJIEspecialista en Sistemas de Información GeográficaEspecializaciónPresencialMonografíaspaUniversidad Antonio NariñoEspecialización en Sistemas de Información GeográficaFacultad de Ingeniería AmbientalBogotá - FedermánAgrupaciónÁrbolesCalidadExhaustividadLIDARSensor remotoSegmentación583.749GroupingTreesQualityCompletenessLIDARRemote sensingSegmentationPropuesta Metodológica Para El Cálculo A Gran Escala De Árboles Individuales Mediante El Uso De Datos Lidar (Airborne Light Scanner, Als)Trabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85EspecializadaORIGINAL2021WilliamSaenz.pdf2021WilliamSaenz.pdfDocumento en la versión finalapplication/pdf1820437https://repositorio.uan.edu.co/bitstreams/a5a7d420-a8f5-4f59-9be3-68af70d264f3/downloadf2543405161a3e47959882226be5cb56MD512021Acta.pdf2021Acta.pdfActa de sustentación del trabajoapplication/pdf146293https://repositorio.uan.edu.co/bitstreams/3a45c4cc-bdcc-4dfd-b277-7ea1a0a5176a/download18f9f9dc3dd598a1851c953b08ea95d6MD522021AutorizaciondeAutores.pdf2021AutorizaciondeAutores.pdfAutorización para consulta, publicación y reproducción electrónica del trabajoapplication/pdf628661https://repositorio.uan.edu.co/bitstreams/f32e8d52-fb2f-470b-b351-15cbbb642c47/download3aa43aeb46f38cce36f387aaea225000MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uan.edu.co/bitstreams/3daa7cf9-cf98-4f4d-8b64-12651f119c84/download2b2ab6ec8a6a222739b9c0e57c635c2eMD54TEXT2021WilliamSaenz.pdf.txt2021WilliamSaenz.pdf.txtExtracted texttext/plain54667https://repositorio.uan.edu.co/bitstreams/2cd34e6c-f59c-4c29-a1bc-e89a14e19771/downloadf0ee4d8f8f7a9f7c82d4df385572d449MD552021Acta.pdf.txt2021Acta.pdf.txtExtracted texttext/plain1669https://repositorio.uan.edu.co/bitstreams/df94ecce-8b1c-4285-a392-2c18d99e409c/downloadb9b4d46a9113779f471a9b05b147a802MD572021AutorizaciondeAutores.pdf.txt2021AutorizaciondeAutores.pdf.txtExtracted texttext/plain8https://repositorio.uan.edu.co/bitstreams/60242207-faf1-482b-9f93-34ee17a1c7ff/download8d1b69dd9bdc9df4a8073c7a8193c7afMD59THUMBNAIL2021WilliamSaenz.pdf.jpg2021WilliamSaenz.pdf.jpgGenerated Thumbnailimage/jpeg7383https://repositorio.uan.edu.co/bitstreams/94c35c3c-4b29-424d-9155-bc7bf92ccb1d/downloadd339bf613b112f82536262794e2ea0abMD562021Acta.pdf.jpg2021Acta.pdf.jpgGenerated Thumbnailimage/jpeg12435https://repositorio.uan.edu.co/bitstreams/52d8d149-0e78-4dbd-9397-80144a5a1fab/download7e7fc4e050827ffb65e586e930108fe4MD582021AutorizaciondeAutores.pdf.jpg2021AutorizaciondeAutores.pdf.jpgGenerated Thumbnailimage/jpeg18674https://repositorio.uan.edu.co/bitstreams/f8b74f64-f5fe-4ed8-9a0e-7f2261a75d6b/download7924956adefb30f3809ffee79773355bMD510123456789/5200oai:repositorio.uan.edu.co:123456789/52002024-10-21 12:42:51.782https://creativecommons.org/licenses/by/4.0/Acceso abiertoopen.accesshttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co |