Guía para la identificación de las áreas sembradas en palma de aceite, a partir del uso de la plataforma de Google Earth Engine (Estudio de caso: municipio de Maní – Casanare)
This document provides a comprehensive overview of the JavaScript code used within the Google Earth Engine (GEE) platform and serves as a Methodological Guide for the Identification of Oil Palm cultivation areas using supervised classification methods with Random Forest. The guide outlines detailed...
- Autores:
-
Mera Garzón, Diana Patricia
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad Antonio Nariño
- Repositorio:
- Repositorio UAN
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uan.edu.co:123456789/9095
- Acceso en línea:
- http://repositorio.uan.edu.co/handle/123456789/9095
- Palabra clave:
- JavaScript
Random Forest
Sentinel
Planet Scope
Inteligencia Artificial (IA)
JavaScript
Random Forest
Sentinel
Planet Scope
Artificial Intelligence (AI)
- Rights
- openAccess
- License
- Attribution 4.0 International (CC BY 4.0)
id |
UAntonioN2_947838f00e42393e3948defa8765ce21 |
---|---|
oai_identifier_str |
oai:repositorio.uan.edu.co:123456789/9095 |
network_acronym_str |
UAntonioN2 |
network_name_str |
Repositorio UAN |
repository_id_str |
|
dc.title.es_ES.fl_str_mv |
Guía para la identificación de las áreas sembradas en palma de aceite, a partir del uso de la plataforma de Google Earth Engine (Estudio de caso: municipio de Maní – Casanare) |
title |
Guía para la identificación de las áreas sembradas en palma de aceite, a partir del uso de la plataforma de Google Earth Engine (Estudio de caso: municipio de Maní – Casanare) |
spellingShingle |
Guía para la identificación de las áreas sembradas en palma de aceite, a partir del uso de la plataforma de Google Earth Engine (Estudio de caso: municipio de Maní – Casanare) JavaScript Random Forest Sentinel Planet Scope Inteligencia Artificial (IA) JavaScript Random Forest Sentinel Planet Scope Artificial Intelligence (AI) |
title_short |
Guía para la identificación de las áreas sembradas en palma de aceite, a partir del uso de la plataforma de Google Earth Engine (Estudio de caso: municipio de Maní – Casanare) |
title_full |
Guía para la identificación de las áreas sembradas en palma de aceite, a partir del uso de la plataforma de Google Earth Engine (Estudio de caso: municipio de Maní – Casanare) |
title_fullStr |
Guía para la identificación de las áreas sembradas en palma de aceite, a partir del uso de la plataforma de Google Earth Engine (Estudio de caso: municipio de Maní – Casanare) |
title_full_unstemmed |
Guía para la identificación de las áreas sembradas en palma de aceite, a partir del uso de la plataforma de Google Earth Engine (Estudio de caso: municipio de Maní – Casanare) |
title_sort |
Guía para la identificación de las áreas sembradas en palma de aceite, a partir del uso de la plataforma de Google Earth Engine (Estudio de caso: municipio de Maní – Casanare) |
dc.creator.fl_str_mv |
Mera Garzón, Diana Patricia |
dc.contributor.advisor.spa.fl_str_mv |
Carvajal Vanegas, Andrés Felipe |
dc.contributor.author.spa.fl_str_mv |
Mera Garzón, Diana Patricia |
dc.subject.es_ES.fl_str_mv |
JavaScript Random Forest Sentinel Planet Scope Inteligencia Artificial (IA) |
topic |
JavaScript Random Forest Sentinel Planet Scope Inteligencia Artificial (IA) JavaScript Random Forest Sentinel Planet Scope Artificial Intelligence (AI) |
dc.subject.keyword.es_ES.fl_str_mv |
JavaScript Random Forest Sentinel Planet Scope Artificial Intelligence (AI) |
description |
This document provides a comprehensive overview of the JavaScript code used within the Google Earth Engine (GEE) platform and serves as a Methodological Guide for the Identification of Oil Palm cultivation areas using supervised classification methods with Random Forest. The guide outlines detailed step-by-step procedures and recommends specific functions. Furthermore, the source code is made available to the public, simplifying access and enabling reproduction by other users of Geographic Information Systems (GIS). |
publishDate |
2023 |
dc.date.issued.spa.fl_str_mv |
2023-11-25 |
dc.date.accessioned.none.fl_str_mv |
2024-01-30T14:33:05Z |
dc.date.available.none.fl_str_mv |
2024-01-30T14:33:05Z |
dc.type.spa.fl_str_mv |
Trabajo de grado (Pregrado y/o Especialización) |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://repositorio.uan.edu.co/handle/123456789/9095 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Adepoju, K. A., & Adelabu, S. A. (2020). Improving accuracy evaluation of Landsat-8 OLI using image composite and multisource data with Google Earth Engine. Remote Sensing Letters, 11(2), 107–116. https://doi.org/10.1080/2150704X.2019.1690792 Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q., & Brisco, B. (2020). Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326–5350. https://doi.org/10.1109/JSTARS.2020.3021052 Amani, M., Mahdavi, S., Afshar, M., Brisco, B., Huang, W., Mirzadeh, S. M. J., White, L., Banks, S., Montgomery, J., & Hopkinson, C. (2019). Canadian wetland inventory using Google Earth Engine: The first map and preliminary results. Remote Sensing, 11(7). https://doi.org/10.3390/RS11070842 Ang, Y., Shafri, H. Z. M., Lee, Y. P., Bakar, S. A., Abidin, H., Mohd Junaidi, M. U. U., Hashim, S. J., Che’Ya, N. N., Hassan, M. R., Lim, H. S., Abdullah, R., Yusup, Y., Muhammad, S. A., Teh, S. Y., & Samad, M. N. (2022). Oil palm yield prediction across blocks from multisource data using machine learning and deep learning. Earth Science Informatics, 15(4), 2349–2367. https://doi.org/10.1007/S12145-022-00882-9/METRICS Arias, A., Darghan, N. A. ;, Rivera, A. E. ; Beltran, C. ; Typology, J. A., Martínez-Arteaga, D., Atanasio, N., Darghan, A. E., Rivera, C., & Beltran, J. A. (2023). Typology of Irrigation Technology Adopters in Oil Palm Production: A Categorical Principal Components and Fuzzy Logic Approach. Sustainability 2023, Vol. 15, Page 9944, 15(13), 9944. https://doi.org/10.3390/SU15139944 Asming, M. A. A., Ibrahim, A. M., & Abir, I. M. (2022). Processing and classification of landsat and sentinel images for oil palm plantation detection. Remote Sensing Applications: Society and Environment, 26, 100747. https://doi.org/10.1016/J.RSASE.2022.100747 Azhar, B., Saadun, N., Prideaux, M., & Lindenmayer, D. B. (2017). The global palm oil sector must change to save biodiversity and improve food security in the tropics. In Journal of Environmental Management (Vol. 203, pp. 457–466). Academic Press. https://doi.org/10.1016/j.jenvman.2017.08.021 Basiron, Y. (2007). Palm oil production through sustainable plantations. European Journal of Lipid Science and Technology, 109(4), 289–295. https://doi.org/10.1002/ejlt.200600223 Belgiu, M., & Drăgu, L. (2016). Random forest in remote sensing: A review of applications and future directions. In ISPRS Journal of Photogrammetry and Remote Sensing (Vol. 114, pp. 24–31). Elsevier B.V. https://doi.org/10.1016/j.isprsjprs.2016.01.011 Breiman, L. (2001). Random Forests (Vol. 45) Carlson, K. M., Curran, L. M., Asner, G. P., Pittman, A. M. D., Trigg, S. N., & Marion Adeney, J. (2013). Carbon emissions from forest conversion by Kalimantan oil palm plantations. Nature Climate Change, 3(3), 283–287. https://doi.org/10.1038/nclimate1702 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Antonio Nariño |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UAN |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uan.edu.co/ |
url |
http://repositorio.uan.edu.co/handle/123456789/9095 |
identifier_str_mv |
Adepoju, K. A., & Adelabu, S. A. (2020). Improving accuracy evaluation of Landsat-8 OLI using image composite and multisource data with Google Earth Engine. Remote Sensing Letters, 11(2), 107–116. https://doi.org/10.1080/2150704X.2019.1690792 Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q., & Brisco, B. (2020). Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326–5350. https://doi.org/10.1109/JSTARS.2020.3021052 Amani, M., Mahdavi, S., Afshar, M., Brisco, B., Huang, W., Mirzadeh, S. M. J., White, L., Banks, S., Montgomery, J., & Hopkinson, C. (2019). Canadian wetland inventory using Google Earth Engine: The first map and preliminary results. Remote Sensing, 11(7). https://doi.org/10.3390/RS11070842 Ang, Y., Shafri, H. Z. M., Lee, Y. P., Bakar, S. A., Abidin, H., Mohd Junaidi, M. U. U., Hashim, S. J., Che’Ya, N. N., Hassan, M. R., Lim, H. S., Abdullah, R., Yusup, Y., Muhammad, S. A., Teh, S. Y., & Samad, M. N. (2022). Oil palm yield prediction across blocks from multisource data using machine learning and deep learning. Earth Science Informatics, 15(4), 2349–2367. https://doi.org/10.1007/S12145-022-00882-9/METRICS Arias, A., Darghan, N. A. ;, Rivera, A. E. ; Beltran, C. ; Typology, J. A., Martínez-Arteaga, D., Atanasio, N., Darghan, A. E., Rivera, C., & Beltran, J. A. (2023). Typology of Irrigation Technology Adopters in Oil Palm Production: A Categorical Principal Components and Fuzzy Logic Approach. Sustainability 2023, Vol. 15, Page 9944, 15(13), 9944. https://doi.org/10.3390/SU15139944 Asming, M. A. A., Ibrahim, A. M., & Abir, I. M. (2022). Processing and classification of landsat and sentinel images for oil palm plantation detection. Remote Sensing Applications: Society and Environment, 26, 100747. https://doi.org/10.1016/J.RSASE.2022.100747 Azhar, B., Saadun, N., Prideaux, M., & Lindenmayer, D. B. (2017). The global palm oil sector must change to save biodiversity and improve food security in the tropics. In Journal of Environmental Management (Vol. 203, pp. 457–466). Academic Press. https://doi.org/10.1016/j.jenvman.2017.08.021 Basiron, Y. (2007). Palm oil production through sustainable plantations. European Journal of Lipid Science and Technology, 109(4), 289–295. https://doi.org/10.1002/ejlt.200600223 Belgiu, M., & Drăgu, L. (2016). Random forest in remote sensing: A review of applications and future directions. In ISPRS Journal of Photogrammetry and Remote Sensing (Vol. 114, pp. 24–31). Elsevier B.V. https://doi.org/10.1016/j.isprsjprs.2016.01.011 Breiman, L. (2001). Random Forests (Vol. 45) Carlson, K. M., Curran, L. M., Asner, G. P., Pittman, A. M. D., Trigg, S. N., & Marion Adeney, J. (2013). Carbon emissions from forest conversion by Kalimantan oil palm plantations. Nature Climate Change, 3(3), 283–287. https://doi.org/10.1038/nclimate1702 instname:Universidad Antonio Nariño reponame:Repositorio Institucional UAN repourl:https://repositorio.uan.edu.co/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
Acceso abierto |
dc.rights.license.spa.fl_str_mv |
Attribution 4.0 International (CC BY 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution 4.0 International (CC BY 4.0) Acceso abierto https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad Antonio Nariño |
dc.publisher.program.spa.fl_str_mv |
Especialización en Sistemas de Información Geográfica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería Ambiental |
dc.publisher.campus.spa.fl_str_mv |
Bogotá - Federmán |
institution |
Universidad Antonio Nariño |
bitstream.url.fl_str_mv |
https://repositorio.uan.edu.co/bitstreams/f864f051-75bb-4038-ba14-e0bdc392af6d/download https://repositorio.uan.edu.co/bitstreams/1a227c5e-5564-46b6-b130-8bf945997639/download https://repositorio.uan.edu.co/bitstreams/1ef43578-ed5f-47c9-b8ba-5c5b4f87915e/download https://repositorio.uan.edu.co/bitstreams/836c9468-d66c-4e94-aea2-47c5ebd26d86/download https://repositorio.uan.edu.co/bitstreams/e76378cc-cdb9-42ca-99e4-601950058254/download https://repositorio.uan.edu.co/bitstreams/7f32cd63-c2d9-4df7-b0c5-02e45d23e116/download https://repositorio.uan.edu.co/bitstreams/4ebc7269-0dde-47fd-8307-573ec1679e32/download https://repositorio.uan.edu.co/bitstreams/1093cf33-7801-4a4d-9ab8-f796219f3cc9/download https://repositorio.uan.edu.co/bitstreams/82ec2bdf-d02f-48cb-a864-1e3195496fac/download https://repositorio.uan.edu.co/bitstreams/edb86a91-7ece-4406-936d-92d01d3cb59a/download https://repositorio.uan.edu.co/bitstreams/3d2c3b48-93c4-49cb-83ef-3d0af6c24ddc/download https://repositorio.uan.edu.co/bitstreams/e5589160-9f4d-4361-b896-67aa16b906b9/download https://repositorio.uan.edu.co/bitstreams/eeb88ce8-8094-4823-a307-590da17ecdfe/download |
bitstream.checksum.fl_str_mv |
5f2f9672e79604c3a8036afd1413ccbb 0837d7b54d5ca1169836ebe5db1fc56d 8886071b3ba96ae782ba52414d4ce07d 33dc8c9923fa48e073248fb0e4fbb813 2b2ab6ec8a6a222739b9c0e57c635c2e ea2863de23e307a3b13534f1dce77ede ec4574ac388cf7527f99309163c3dae9 4a89ec7dae67ad7fed28f4db0060b6bd 4faea34162063694d41a74cb8a77f955 84fca487ac6f3c43b1d91fd59f567e60 631819dc35cb5971355a3c05fd35ecbe 3a0269584f0265f008b6d17048e635ce 8464f5e3fc71a01653db964195a38691 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UAN |
repository.mail.fl_str_mv |
alertas.repositorio@uan.edu.co |
_version_ |
1814300345263718400 |
spelling |
Attribution 4.0 International (CC BY 4.0)Acceso abiertohttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Carvajal Vanegas, Andrés FelipeMera Garzón, Diana Patricia117923147972024-01-30T14:33:05Z2024-01-30T14:33:05Z2023-11-25http://repositorio.uan.edu.co/handle/123456789/9095Adepoju, K. A., & Adelabu, S. A. (2020). Improving accuracy evaluation of Landsat-8 OLI using image composite and multisource data with Google Earth Engine. Remote Sensing Letters, 11(2), 107–116. https://doi.org/10.1080/2150704X.2019.1690792Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q., & Brisco, B. (2020). Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326–5350. https://doi.org/10.1109/JSTARS.2020.3021052Amani, M., Mahdavi, S., Afshar, M., Brisco, B., Huang, W., Mirzadeh, S. M. J., White, L., Banks, S., Montgomery, J., & Hopkinson, C. (2019). Canadian wetland inventory using Google Earth Engine: The first map and preliminary results. Remote Sensing, 11(7). https://doi.org/10.3390/RS11070842Ang, Y., Shafri, H. Z. M., Lee, Y. P., Bakar, S. A., Abidin, H., Mohd Junaidi, M. U. U., Hashim, S. J., Che’Ya, N. N., Hassan, M. R., Lim, H. S., Abdullah, R., Yusup, Y., Muhammad, S. A., Teh, S. Y., & Samad, M. N. (2022). Oil palm yield prediction across blocks from multisource data using machine learning and deep learning. Earth Science Informatics, 15(4), 2349–2367. https://doi.org/10.1007/S12145-022-00882-9/METRICSArias, A., Darghan, N. A. ;, Rivera, A. E. ; Beltran, C. ; Typology, J. A., Martínez-Arteaga, D., Atanasio, N., Darghan, A. E., Rivera, C., & Beltran, J. A. (2023). Typology of Irrigation Technology Adopters in Oil Palm Production: A Categorical Principal Components and Fuzzy Logic Approach. Sustainability 2023, Vol. 15, Page 9944, 15(13), 9944. https://doi.org/10.3390/SU15139944Asming, M. A. A., Ibrahim, A. M., & Abir, I. M. (2022). Processing and classification of landsat and sentinel images for oil palm plantation detection. Remote Sensing Applications: Society and Environment, 26, 100747. https://doi.org/10.1016/J.RSASE.2022.100747Azhar, B., Saadun, N., Prideaux, M., & Lindenmayer, D. B. (2017). The global palm oil sector must change to save biodiversity and improve food security in the tropics. In Journal of Environmental Management (Vol. 203, pp. 457–466). Academic Press. https://doi.org/10.1016/j.jenvman.2017.08.021Basiron, Y. (2007). Palm oil production through sustainable plantations. European Journal of Lipid Science and Technology, 109(4), 289–295. https://doi.org/10.1002/ejlt.200600223 Belgiu, M., & Drăgu, L. (2016). Random forest in remote sensing: A review of applications and future directions. In ISPRS Journal of Photogrammetry and Remote Sensing (Vol. 114, pp. 24–31). Elsevier B.V. https://doi.org/10.1016/j.isprsjprs.2016.01.011Breiman, L. (2001). Random Forests (Vol. 45)Carlson, K. M., Curran, L. M., Asner, G. P., Pittman, A. M. D., Trigg, S. N., & Marion Adeney, J. (2013). Carbon emissions from forest conversion by Kalimantan oil palm plantations. Nature Climate Change, 3(3), 283–287. https://doi.org/10.1038/nclimate1702instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/This document provides a comprehensive overview of the JavaScript code used within the Google Earth Engine (GEE) platform and serves as a Methodological Guide for the Identification of Oil Palm cultivation areas using supervised classification methods with Random Forest. The guide outlines detailed step-by-step procedures and recommends specific functions. Furthermore, the source code is made available to the public, simplifying access and enabling reproduction by other users of Geographic Information Systems (GIS).Este documento ofrece una visión general del código JavaScript utilizado en la plataforma Google Earth Engine (GEE) y funciona como una Guía Metodológica para la Identificación de áreas de cultivo de Palma Aceitera mediante métodos de clasificación supervisada con Random Forest. La guía detalla los procedimientos paso a paso y recomienda funciones específicas. Además, el código fuente se encuentra disponible al público, facilitando así su acceso y la posibilidad de reproducción por parte de otros usuarios de Sistemas de Información Geográfica (SIG).Especialista en Sistemas de Información GeográficaEspecializaciónPresencialMonografíaspaUniversidad Antonio NariñoEspecialización en Sistemas de Información GeográficaFacultad de Ingeniería AmbientalBogotá - FedermánJavaScriptRandom ForestSentinelPlanet ScopeInteligencia Artificial (IA)JavaScriptRandom ForestSentinelPlanet ScopeArtificial Intelligence (AI)Guía para la identificación de las áreas sembradas en palma de aceite, a partir del uso de la plataforma de Google Earth Engine (Estudio de caso: municipio de Maní – Casanare)Trabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85EspecializadaORIGINAL2023_DianaPatriciaMeraGarzón.pdf2023_DianaPatriciaMeraGarzón.pdfTrabajo de gradoapplication/pdf3664720https://repositorio.uan.edu.co/bitstreams/f864f051-75bb-4038-ba14-e0bdc392af6d/download5f2f9672e79604c3a8036afd1413ccbbMD512023_DianaPatriciaMeraGarzón_Anexo.pdf2023_DianaPatriciaMeraGarzón_Anexo.pdfArtículo anexoapplication/pdf2918273https://repositorio.uan.edu.co/bitstreams/1a227c5e-5564-46b6-b130-8bf945997639/download0837d7b54d5ca1169836ebe5db1fc56dMD522023_DianaPatriciaMeraGarzón_Autorizacion.pdf2023_DianaPatriciaMeraGarzón_Autorizacion.pdfAutorización de uso para consulta, publicación y reproducción electrónicaapplication/pdf1040437https://repositorio.uan.edu.co/bitstreams/1ef43578-ed5f-47c9-b8ba-5c5b4f87915e/download8886071b3ba96ae782ba52414d4ce07dMD532023_DianaPatriciaMeraGarzón_Acta.pdf2023_DianaPatriciaMeraGarzón_Acta.pdfActa de sustentaciónapplication/pdf254775https://repositorio.uan.edu.co/bitstreams/836c9468-d66c-4e94-aea2-47c5ebd26d86/download33dc8c9923fa48e073248fb0e4fbb813MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uan.edu.co/bitstreams/e76378cc-cdb9-42ca-99e4-601950058254/download2b2ab6ec8a6a222739b9c0e57c635c2eMD55TEXT2023_DianaPatriciaMeraGarzón.pdf.txt2023_DianaPatriciaMeraGarzón.pdf.txtExtracted texttext/plain76576https://repositorio.uan.edu.co/bitstreams/7f32cd63-c2d9-4df7-b0c5-02e45d23e116/downloadea2863de23e307a3b13534f1dce77edeMD562023_DianaPatriciaMeraGarzón_Anexo.pdf.txt2023_DianaPatriciaMeraGarzón_Anexo.pdf.txtExtracted texttext/plain53196https://repositorio.uan.edu.co/bitstreams/4ebc7269-0dde-47fd-8307-573ec1679e32/downloadec4574ac388cf7527f99309163c3dae9MD582023_DianaPatriciaMeraGarzón_Autorizacion.pdf.txt2023_DianaPatriciaMeraGarzón_Autorizacion.pdf.txtExtracted texttext/plain8123https://repositorio.uan.edu.co/bitstreams/1093cf33-7801-4a4d-9ab8-f796219f3cc9/download4a89ec7dae67ad7fed28f4db0060b6bdMD5102023_DianaPatriciaMeraGarzón_Acta.pdf.txt2023_DianaPatriciaMeraGarzón_Acta.pdf.txtExtracted texttext/plain1505https://repositorio.uan.edu.co/bitstreams/82ec2bdf-d02f-48cb-a864-1e3195496fac/download4faea34162063694d41a74cb8a77f955MD512THUMBNAIL2023_DianaPatriciaMeraGarzón.pdf.jpg2023_DianaPatriciaMeraGarzón.pdf.jpgGenerated Thumbnailimage/jpeg8103https://repositorio.uan.edu.co/bitstreams/edb86a91-7ece-4406-936d-92d01d3cb59a/download84fca487ac6f3c43b1d91fd59f567e60MD572023_DianaPatriciaMeraGarzón_Anexo.pdf.jpg2023_DianaPatriciaMeraGarzón_Anexo.pdf.jpgGenerated Thumbnailimage/jpeg6918https://repositorio.uan.edu.co/bitstreams/3d2c3b48-93c4-49cb-83ef-3d0af6c24ddc/download631819dc35cb5971355a3c05fd35ecbeMD592023_DianaPatriciaMeraGarzón_Autorizacion.pdf.jpg2023_DianaPatriciaMeraGarzón_Autorizacion.pdf.jpgGenerated Thumbnailimage/jpeg20142https://repositorio.uan.edu.co/bitstreams/e5589160-9f4d-4361-b896-67aa16b906b9/download3a0269584f0265f008b6d17048e635ceMD5112023_DianaPatriciaMeraGarzón_Acta.pdf.jpg2023_DianaPatriciaMeraGarzón_Acta.pdf.jpgGenerated Thumbnailimage/jpeg11901https://repositorio.uan.edu.co/bitstreams/eeb88ce8-8094-4823-a307-590da17ecdfe/download8464f5e3fc71a01653db964195a38691MD513123456789/9095oai:repositorio.uan.edu.co:123456789/90952024-10-21 12:41:13.618https://creativecommons.org/licenses/by/4.0/Acceso abiertoopen.accesshttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co |