Guía para la identificación de las áreas sembradas en palma de aceite, a partir del uso de la plataforma de Google Earth Engine (Estudio de caso: municipio de Maní – Casanare)

This document provides a comprehensive overview of the JavaScript code used within the Google Earth Engine (GEE) platform and serves as a Methodological Guide for the Identification of Oil Palm cultivation areas using supervised classification methods with Random Forest. The guide outlines detailed...

Full description

Autores:
Mera Garzón, Diana Patricia
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/9095
Acceso en línea:
http://repositorio.uan.edu.co/handle/123456789/9095
Palabra clave:
JavaScript
Random Forest
Sentinel
Planet Scope
Inteligencia Artificial (IA)
JavaScript
Random Forest
Sentinel
Planet Scope
Artificial Intelligence (AI)
Rights
openAccess
License
Attribution 4.0 International (CC BY 4.0)
id UAntonioN2_947838f00e42393e3948defa8765ce21
oai_identifier_str oai:repositorio.uan.edu.co:123456789/9095
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
dc.title.es_ES.fl_str_mv Guía para la identificación de las áreas sembradas en palma de aceite, a partir del uso de la plataforma de Google Earth Engine (Estudio de caso: municipio de Maní – Casanare)
title Guía para la identificación de las áreas sembradas en palma de aceite, a partir del uso de la plataforma de Google Earth Engine (Estudio de caso: municipio de Maní – Casanare)
spellingShingle Guía para la identificación de las áreas sembradas en palma de aceite, a partir del uso de la plataforma de Google Earth Engine (Estudio de caso: municipio de Maní – Casanare)
JavaScript
Random Forest
Sentinel
Planet Scope
Inteligencia Artificial (IA)
JavaScript
Random Forest
Sentinel
Planet Scope
Artificial Intelligence (AI)
title_short Guía para la identificación de las áreas sembradas en palma de aceite, a partir del uso de la plataforma de Google Earth Engine (Estudio de caso: municipio de Maní – Casanare)
title_full Guía para la identificación de las áreas sembradas en palma de aceite, a partir del uso de la plataforma de Google Earth Engine (Estudio de caso: municipio de Maní – Casanare)
title_fullStr Guía para la identificación de las áreas sembradas en palma de aceite, a partir del uso de la plataforma de Google Earth Engine (Estudio de caso: municipio de Maní – Casanare)
title_full_unstemmed Guía para la identificación de las áreas sembradas en palma de aceite, a partir del uso de la plataforma de Google Earth Engine (Estudio de caso: municipio de Maní – Casanare)
title_sort Guía para la identificación de las áreas sembradas en palma de aceite, a partir del uso de la plataforma de Google Earth Engine (Estudio de caso: municipio de Maní – Casanare)
dc.creator.fl_str_mv Mera Garzón, Diana Patricia
dc.contributor.advisor.spa.fl_str_mv Carvajal Vanegas, Andrés Felipe
dc.contributor.author.spa.fl_str_mv Mera Garzón, Diana Patricia
dc.subject.es_ES.fl_str_mv JavaScript
Random Forest
Sentinel
Planet Scope
Inteligencia Artificial (IA)
topic JavaScript
Random Forest
Sentinel
Planet Scope
Inteligencia Artificial (IA)
JavaScript
Random Forest
Sentinel
Planet Scope
Artificial Intelligence (AI)
dc.subject.keyword.es_ES.fl_str_mv JavaScript
Random Forest
Sentinel
Planet Scope
Artificial Intelligence (AI)
description This document provides a comprehensive overview of the JavaScript code used within the Google Earth Engine (GEE) platform and serves as a Methodological Guide for the Identification of Oil Palm cultivation areas using supervised classification methods with Random Forest. The guide outlines detailed step-by-step procedures and recommends specific functions. Furthermore, the source code is made available to the public, simplifying access and enabling reproduction by other users of Geographic Information Systems (GIS).
publishDate 2023
dc.date.issued.spa.fl_str_mv 2023-11-25
dc.date.accessioned.none.fl_str_mv 2024-01-30T14:33:05Z
dc.date.available.none.fl_str_mv 2024-01-30T14:33:05Z
dc.type.spa.fl_str_mv Trabajo de grado (Pregrado y/o Especialización)
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://repositorio.uan.edu.co/handle/123456789/9095
dc.identifier.bibliographicCitation.spa.fl_str_mv Adepoju, K. A., & Adelabu, S. A. (2020). Improving accuracy evaluation of Landsat-8 OLI using image composite and multisource data with Google Earth Engine. Remote Sensing Letters, 11(2), 107–116. https://doi.org/10.1080/2150704X.2019.1690792
Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q., & Brisco, B. (2020). Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326–5350. https://doi.org/10.1109/JSTARS.2020.3021052
Amani, M., Mahdavi, S., Afshar, M., Brisco, B., Huang, W., Mirzadeh, S. M. J., White, L., Banks, S., Montgomery, J., & Hopkinson, C. (2019). Canadian wetland inventory using Google Earth Engine: The first map and preliminary results. Remote Sensing, 11(7). https://doi.org/10.3390/RS11070842
Ang, Y., Shafri, H. Z. M., Lee, Y. P., Bakar, S. A., Abidin, H., Mohd Junaidi, M. U. U., Hashim, S. J., Che’Ya, N. N., Hassan, M. R., Lim, H. S., Abdullah, R., Yusup, Y., Muhammad, S. A., Teh, S. Y., & Samad, M. N. (2022). Oil palm yield prediction across blocks from multisource data using machine learning and deep learning. Earth Science Informatics, 15(4), 2349–2367. https://doi.org/10.1007/S12145-022-00882-9/METRICS
Arias, A., Darghan, N. A. ;, Rivera, A. E. ; Beltran, C. ; Typology, J. A., Martínez-Arteaga, D., Atanasio, N., Darghan, A. E., Rivera, C., & Beltran, J. A. (2023). Typology of Irrigation Technology Adopters in Oil Palm Production: A Categorical Principal Components and Fuzzy Logic Approach. Sustainability 2023, Vol. 15, Page 9944, 15(13), 9944. https://doi.org/10.3390/SU15139944
Asming, M. A. A., Ibrahim, A. M., & Abir, I. M. (2022). Processing and classification of landsat and sentinel images for oil palm plantation detection. Remote Sensing Applications: Society and Environment, 26, 100747. https://doi.org/10.1016/J.RSASE.2022.100747
Azhar, B., Saadun, N., Prideaux, M., & Lindenmayer, D. B. (2017). The global palm oil sector must change to save biodiversity and improve food security in the tropics. In Journal of Environmental Management (Vol. 203, pp. 457–466). Academic Press. https://doi.org/10.1016/j.jenvman.2017.08.021
Basiron, Y. (2007). Palm oil production through sustainable plantations. European Journal of Lipid Science and Technology, 109(4), 289–295. https://doi.org/10.1002/ejlt.200600223 Belgiu, M., & Drăgu, L. (2016). Random forest in remote sensing: A review of applications and future directions. In ISPRS Journal of Photogrammetry and Remote Sensing (Vol. 114, pp. 24–31). Elsevier B.V. https://doi.org/10.1016/j.isprsjprs.2016.01.011
Breiman, L. (2001). Random Forests (Vol. 45)
Carlson, K. M., Curran, L. M., Asner, G. P., Pittman, A. M. D., Trigg, S. N., & Marion Adeney, J. (2013). Carbon emissions from forest conversion by Kalimantan oil palm plantations. Nature Climate Change, 3(3), 283–287. https://doi.org/10.1038/nclimate1702
dc.identifier.instname.spa.fl_str_mv instname:Universidad Antonio Nariño
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UAN
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uan.edu.co/
url http://repositorio.uan.edu.co/handle/123456789/9095
identifier_str_mv Adepoju, K. A., & Adelabu, S. A. (2020). Improving accuracy evaluation of Landsat-8 OLI using image composite and multisource data with Google Earth Engine. Remote Sensing Letters, 11(2), 107–116. https://doi.org/10.1080/2150704X.2019.1690792
Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q., & Brisco, B. (2020). Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326–5350. https://doi.org/10.1109/JSTARS.2020.3021052
Amani, M., Mahdavi, S., Afshar, M., Brisco, B., Huang, W., Mirzadeh, S. M. J., White, L., Banks, S., Montgomery, J., & Hopkinson, C. (2019). Canadian wetland inventory using Google Earth Engine: The first map and preliminary results. Remote Sensing, 11(7). https://doi.org/10.3390/RS11070842
Ang, Y., Shafri, H. Z. M., Lee, Y. P., Bakar, S. A., Abidin, H., Mohd Junaidi, M. U. U., Hashim, S. J., Che’Ya, N. N., Hassan, M. R., Lim, H. S., Abdullah, R., Yusup, Y., Muhammad, S. A., Teh, S. Y., & Samad, M. N. (2022). Oil palm yield prediction across blocks from multisource data using machine learning and deep learning. Earth Science Informatics, 15(4), 2349–2367. https://doi.org/10.1007/S12145-022-00882-9/METRICS
Arias, A., Darghan, N. A. ;, Rivera, A. E. ; Beltran, C. ; Typology, J. A., Martínez-Arteaga, D., Atanasio, N., Darghan, A. E., Rivera, C., & Beltran, J. A. (2023). Typology of Irrigation Technology Adopters in Oil Palm Production: A Categorical Principal Components and Fuzzy Logic Approach. Sustainability 2023, Vol. 15, Page 9944, 15(13), 9944. https://doi.org/10.3390/SU15139944
Asming, M. A. A., Ibrahim, A. M., & Abir, I. M. (2022). Processing and classification of landsat and sentinel images for oil palm plantation detection. Remote Sensing Applications: Society and Environment, 26, 100747. https://doi.org/10.1016/J.RSASE.2022.100747
Azhar, B., Saadun, N., Prideaux, M., & Lindenmayer, D. B. (2017). The global palm oil sector must change to save biodiversity and improve food security in the tropics. In Journal of Environmental Management (Vol. 203, pp. 457–466). Academic Press. https://doi.org/10.1016/j.jenvman.2017.08.021
Basiron, Y. (2007). Palm oil production through sustainable plantations. European Journal of Lipid Science and Technology, 109(4), 289–295. https://doi.org/10.1002/ejlt.200600223 Belgiu, M., & Drăgu, L. (2016). Random forest in remote sensing: A review of applications and future directions. In ISPRS Journal of Photogrammetry and Remote Sensing (Vol. 114, pp. 24–31). Elsevier B.V. https://doi.org/10.1016/j.isprsjprs.2016.01.011
Breiman, L. (2001). Random Forests (Vol. 45)
Carlson, K. M., Curran, L. M., Asner, G. P., Pittman, A. M. D., Trigg, S. N., & Marion Adeney, J. (2013). Carbon emissions from forest conversion by Kalimantan oil palm plantations. Nature Climate Change, 3(3), 283–287. https://doi.org/10.1038/nclimate1702
instname:Universidad Antonio Nariño
reponame:Repositorio Institucional UAN
repourl:https://repositorio.uan.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv Acceso abierto
dc.rights.license.spa.fl_str_mv Attribution 4.0 International (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution 4.0 International (CC BY 4.0)
Acceso abierto
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad Antonio Nariño
dc.publisher.program.spa.fl_str_mv Especialización en Sistemas de Información Geográfica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Ambiental
dc.publisher.campus.spa.fl_str_mv Bogotá - Federmán
institution Universidad Antonio Nariño
bitstream.url.fl_str_mv https://repositorio.uan.edu.co/bitstreams/f864f051-75bb-4038-ba14-e0bdc392af6d/download
https://repositorio.uan.edu.co/bitstreams/1a227c5e-5564-46b6-b130-8bf945997639/download
https://repositorio.uan.edu.co/bitstreams/1ef43578-ed5f-47c9-b8ba-5c5b4f87915e/download
https://repositorio.uan.edu.co/bitstreams/836c9468-d66c-4e94-aea2-47c5ebd26d86/download
https://repositorio.uan.edu.co/bitstreams/e76378cc-cdb9-42ca-99e4-601950058254/download
https://repositorio.uan.edu.co/bitstreams/7f32cd63-c2d9-4df7-b0c5-02e45d23e116/download
https://repositorio.uan.edu.co/bitstreams/4ebc7269-0dde-47fd-8307-573ec1679e32/download
https://repositorio.uan.edu.co/bitstreams/1093cf33-7801-4a4d-9ab8-f796219f3cc9/download
https://repositorio.uan.edu.co/bitstreams/82ec2bdf-d02f-48cb-a864-1e3195496fac/download
https://repositorio.uan.edu.co/bitstreams/edb86a91-7ece-4406-936d-92d01d3cb59a/download
https://repositorio.uan.edu.co/bitstreams/3d2c3b48-93c4-49cb-83ef-3d0af6c24ddc/download
https://repositorio.uan.edu.co/bitstreams/e5589160-9f4d-4361-b896-67aa16b906b9/download
https://repositorio.uan.edu.co/bitstreams/eeb88ce8-8094-4823-a307-590da17ecdfe/download
bitstream.checksum.fl_str_mv 5f2f9672e79604c3a8036afd1413ccbb
0837d7b54d5ca1169836ebe5db1fc56d
8886071b3ba96ae782ba52414d4ce07d
33dc8c9923fa48e073248fb0e4fbb813
2b2ab6ec8a6a222739b9c0e57c635c2e
ea2863de23e307a3b13534f1dce77ede
ec4574ac388cf7527f99309163c3dae9
4a89ec7dae67ad7fed28f4db0060b6bd
4faea34162063694d41a74cb8a77f955
84fca487ac6f3c43b1d91fd59f567e60
631819dc35cb5971355a3c05fd35ecbe
3a0269584f0265f008b6d17048e635ce
8464f5e3fc71a01653db964195a38691
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1814300345263718400
spelling Attribution 4.0 International (CC BY 4.0)Acceso abiertohttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Carvajal Vanegas, Andrés FelipeMera Garzón, Diana Patricia117923147972024-01-30T14:33:05Z2024-01-30T14:33:05Z2023-11-25http://repositorio.uan.edu.co/handle/123456789/9095Adepoju, K. A., & Adelabu, S. A. (2020). Improving accuracy evaluation of Landsat-8 OLI using image composite and multisource data with Google Earth Engine. Remote Sensing Letters, 11(2), 107–116. https://doi.org/10.1080/2150704X.2019.1690792Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q., & Brisco, B. (2020). Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326–5350. https://doi.org/10.1109/JSTARS.2020.3021052Amani, M., Mahdavi, S., Afshar, M., Brisco, B., Huang, W., Mirzadeh, S. M. J., White, L., Banks, S., Montgomery, J., & Hopkinson, C. (2019). Canadian wetland inventory using Google Earth Engine: The first map and preliminary results. Remote Sensing, 11(7). https://doi.org/10.3390/RS11070842Ang, Y., Shafri, H. Z. M., Lee, Y. P., Bakar, S. A., Abidin, H., Mohd Junaidi, M. U. U., Hashim, S. J., Che’Ya, N. N., Hassan, M. R., Lim, H. S., Abdullah, R., Yusup, Y., Muhammad, S. A., Teh, S. Y., & Samad, M. N. (2022). Oil palm yield prediction across blocks from multisource data using machine learning and deep learning. Earth Science Informatics, 15(4), 2349–2367. https://doi.org/10.1007/S12145-022-00882-9/METRICSArias, A., Darghan, N. A. ;, Rivera, A. E. ; Beltran, C. ; Typology, J. A., Martínez-Arteaga, D., Atanasio, N., Darghan, A. E., Rivera, C., & Beltran, J. A. (2023). Typology of Irrigation Technology Adopters in Oil Palm Production: A Categorical Principal Components and Fuzzy Logic Approach. Sustainability 2023, Vol. 15, Page 9944, 15(13), 9944. https://doi.org/10.3390/SU15139944Asming, M. A. A., Ibrahim, A. M., & Abir, I. M. (2022). Processing and classification of landsat and sentinel images for oil palm plantation detection. Remote Sensing Applications: Society and Environment, 26, 100747. https://doi.org/10.1016/J.RSASE.2022.100747Azhar, B., Saadun, N., Prideaux, M., & Lindenmayer, D. B. (2017). The global palm oil sector must change to save biodiversity and improve food security in the tropics. In Journal of Environmental Management (Vol. 203, pp. 457–466). Academic Press. https://doi.org/10.1016/j.jenvman.2017.08.021Basiron, Y. (2007). Palm oil production through sustainable plantations. European Journal of Lipid Science and Technology, 109(4), 289–295. https://doi.org/10.1002/ejlt.200600223 Belgiu, M., & Drăgu, L. (2016). Random forest in remote sensing: A review of applications and future directions. In ISPRS Journal of Photogrammetry and Remote Sensing (Vol. 114, pp. 24–31). Elsevier B.V. https://doi.org/10.1016/j.isprsjprs.2016.01.011Breiman, L. (2001). Random Forests (Vol. 45)Carlson, K. M., Curran, L. M., Asner, G. P., Pittman, A. M. D., Trigg, S. N., & Marion Adeney, J. (2013). Carbon emissions from forest conversion by Kalimantan oil palm plantations. Nature Climate Change, 3(3), 283–287. https://doi.org/10.1038/nclimate1702instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/This document provides a comprehensive overview of the JavaScript code used within the Google Earth Engine (GEE) platform and serves as a Methodological Guide for the Identification of Oil Palm cultivation areas using supervised classification methods with Random Forest. The guide outlines detailed step-by-step procedures and recommends specific functions. Furthermore, the source code is made available to the public, simplifying access and enabling reproduction by other users of Geographic Information Systems (GIS).Este documento ofrece una visión general del código JavaScript utilizado en la plataforma Google Earth Engine (GEE) y funciona como una Guía Metodológica para la Identificación de áreas de cultivo de Palma Aceitera mediante métodos de clasificación supervisada con Random Forest. La guía detalla los procedimientos paso a paso y recomienda funciones específicas. Además, el código fuente se encuentra disponible al público, facilitando así su acceso y la posibilidad de reproducción por parte de otros usuarios de Sistemas de Información Geográfica (SIG).Especialista en Sistemas de Información GeográficaEspecializaciónPresencialMonografíaspaUniversidad Antonio NariñoEspecialización en Sistemas de Información GeográficaFacultad de Ingeniería AmbientalBogotá - FedermánJavaScriptRandom ForestSentinelPlanet ScopeInteligencia Artificial (IA)JavaScriptRandom ForestSentinelPlanet ScopeArtificial Intelligence (AI)Guía para la identificación de las áreas sembradas en palma de aceite, a partir del uso de la plataforma de Google Earth Engine (Estudio de caso: municipio de Maní – Casanare)Trabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85EspecializadaORIGINAL2023_DianaPatriciaMeraGarzón.pdf2023_DianaPatriciaMeraGarzón.pdfTrabajo de gradoapplication/pdf3664720https://repositorio.uan.edu.co/bitstreams/f864f051-75bb-4038-ba14-e0bdc392af6d/download5f2f9672e79604c3a8036afd1413ccbbMD512023_DianaPatriciaMeraGarzón_Anexo.pdf2023_DianaPatriciaMeraGarzón_Anexo.pdfArtículo anexoapplication/pdf2918273https://repositorio.uan.edu.co/bitstreams/1a227c5e-5564-46b6-b130-8bf945997639/download0837d7b54d5ca1169836ebe5db1fc56dMD522023_DianaPatriciaMeraGarzón_Autorizacion.pdf2023_DianaPatriciaMeraGarzón_Autorizacion.pdfAutorización de uso para consulta, publicación y reproducción electrónicaapplication/pdf1040437https://repositorio.uan.edu.co/bitstreams/1ef43578-ed5f-47c9-b8ba-5c5b4f87915e/download8886071b3ba96ae782ba52414d4ce07dMD532023_DianaPatriciaMeraGarzón_Acta.pdf2023_DianaPatriciaMeraGarzón_Acta.pdfActa de sustentaciónapplication/pdf254775https://repositorio.uan.edu.co/bitstreams/836c9468-d66c-4e94-aea2-47c5ebd26d86/download33dc8c9923fa48e073248fb0e4fbb813MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uan.edu.co/bitstreams/e76378cc-cdb9-42ca-99e4-601950058254/download2b2ab6ec8a6a222739b9c0e57c635c2eMD55TEXT2023_DianaPatriciaMeraGarzón.pdf.txt2023_DianaPatriciaMeraGarzón.pdf.txtExtracted texttext/plain76576https://repositorio.uan.edu.co/bitstreams/7f32cd63-c2d9-4df7-b0c5-02e45d23e116/downloadea2863de23e307a3b13534f1dce77edeMD562023_DianaPatriciaMeraGarzón_Anexo.pdf.txt2023_DianaPatriciaMeraGarzón_Anexo.pdf.txtExtracted texttext/plain53196https://repositorio.uan.edu.co/bitstreams/4ebc7269-0dde-47fd-8307-573ec1679e32/downloadec4574ac388cf7527f99309163c3dae9MD582023_DianaPatriciaMeraGarzón_Autorizacion.pdf.txt2023_DianaPatriciaMeraGarzón_Autorizacion.pdf.txtExtracted texttext/plain8123https://repositorio.uan.edu.co/bitstreams/1093cf33-7801-4a4d-9ab8-f796219f3cc9/download4a89ec7dae67ad7fed28f4db0060b6bdMD5102023_DianaPatriciaMeraGarzón_Acta.pdf.txt2023_DianaPatriciaMeraGarzón_Acta.pdf.txtExtracted texttext/plain1505https://repositorio.uan.edu.co/bitstreams/82ec2bdf-d02f-48cb-a864-1e3195496fac/download4faea34162063694d41a74cb8a77f955MD512THUMBNAIL2023_DianaPatriciaMeraGarzón.pdf.jpg2023_DianaPatriciaMeraGarzón.pdf.jpgGenerated Thumbnailimage/jpeg8103https://repositorio.uan.edu.co/bitstreams/edb86a91-7ece-4406-936d-92d01d3cb59a/download84fca487ac6f3c43b1d91fd59f567e60MD572023_DianaPatriciaMeraGarzón_Anexo.pdf.jpg2023_DianaPatriciaMeraGarzón_Anexo.pdf.jpgGenerated Thumbnailimage/jpeg6918https://repositorio.uan.edu.co/bitstreams/3d2c3b48-93c4-49cb-83ef-3d0af6c24ddc/download631819dc35cb5971355a3c05fd35ecbeMD592023_DianaPatriciaMeraGarzón_Autorizacion.pdf.jpg2023_DianaPatriciaMeraGarzón_Autorizacion.pdf.jpgGenerated Thumbnailimage/jpeg20142https://repositorio.uan.edu.co/bitstreams/e5589160-9f4d-4361-b896-67aa16b906b9/download3a0269584f0265f008b6d17048e635ceMD5112023_DianaPatriciaMeraGarzón_Acta.pdf.jpg2023_DianaPatriciaMeraGarzón_Acta.pdf.jpgGenerated Thumbnailimage/jpeg11901https://repositorio.uan.edu.co/bitstreams/eeb88ce8-8094-4823-a307-590da17ecdfe/download8464f5e3fc71a01653db964195a38691MD513123456789/9095oai:repositorio.uan.edu.co:123456789/90952024-10-21 12:41:13.618https://creativecommons.org/licenses/by/4.0/Acceso abiertoopen.accesshttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co