Modificación de parámetros de maquinado de un sistema cnc para evitar la aparición de chatter en un proceso de fresado

Regenerative chatter is a form of dynamic instability present in machining processes. This factor affects the efficiency of the cut, increases the wear of the tool, decreases the quality of the piece and presents abnormal noise during the process. This happens when the cutting force creates a displa...

Full description

Autores:
Martínez Varón, Camilo Andrés
Ruíz Ríos, Santiago
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/6477
Acceso en línea:
http://repositorio.uan.edu.co/handle/123456789/6477
Palabra clave:
Chatter
Viruta
CNC
Control
Diagrama de lóbulos
Estabilidad
620.1
Chatter
Chip
CNC
Control
Lobe diagram
Stability
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
id UAntonioN2_940e15cdb0d5da6c31aaf6472f2d18b2
oai_identifier_str oai:repositorio.uan.edu.co:123456789/6477
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
dc.title.es_ES.fl_str_mv Modificación de parámetros de maquinado de un sistema cnc para evitar la aparición de chatter en un proceso de fresado
title Modificación de parámetros de maquinado de un sistema cnc para evitar la aparición de chatter en un proceso de fresado
spellingShingle Modificación de parámetros de maquinado de un sistema cnc para evitar la aparición de chatter en un proceso de fresado
Chatter
Viruta
CNC
Control
Diagrama de lóbulos
Estabilidad
620.1
Chatter
Chip
CNC
Control
Lobe diagram
Stability
title_short Modificación de parámetros de maquinado de un sistema cnc para evitar la aparición de chatter en un proceso de fresado
title_full Modificación de parámetros de maquinado de un sistema cnc para evitar la aparición de chatter en un proceso de fresado
title_fullStr Modificación de parámetros de maquinado de un sistema cnc para evitar la aparición de chatter en un proceso de fresado
title_full_unstemmed Modificación de parámetros de maquinado de un sistema cnc para evitar la aparición de chatter en un proceso de fresado
title_sort Modificación de parámetros de maquinado de un sistema cnc para evitar la aparición de chatter en un proceso de fresado
dc.creator.fl_str_mv Martínez Varón, Camilo Andrés
Ruíz Ríos, Santiago
dc.contributor.advisor.spa.fl_str_mv Calero Arellano, Diego
dc.contributor.author.spa.fl_str_mv Martínez Varón, Camilo Andrés
Ruíz Ríos, Santiago
dc.subject.es_ES.fl_str_mv Chatter
Viruta
CNC
Control
Diagrama de lóbulos
Estabilidad
topic Chatter
Viruta
CNC
Control
Diagrama de lóbulos
Estabilidad
620.1
Chatter
Chip
CNC
Control
Lobe diagram
Stability
dc.subject.ddc.es_ES.fl_str_mv 620.1
dc.subject.keyword.es_ES.fl_str_mv Chatter
Chip
CNC
Control
Lobe diagram
Stability
description Regenerative chatter is a form of dynamic instability present in machining processes. This factor affects the efficiency of the cut, increases the wear of the tool, decreases the quality of the piece and presents abnormal noise during the process. This happens when the cutting force creates a displacement between the tool, which has an elastic nature, and the workpiece, causing an increase in the thickness of the chip, experiencing waves on its internal and external surfaces due to the vibrations present and past. This project presents a method for controlling the machining parameters of a CNC milling machine taking into account the lobe diagrams to determine the stability and chatter reduction.
publishDate 2021
dc.date.issued.spa.fl_str_mv 2021-11-23
dc.date.accessioned.none.fl_str_mv 2022-05-07T14:29:04Z
dc.date.available.none.fl_str_mv 2022-05-07T14:29:04Z
dc.type.spa.fl_str_mv Trabajo de grado (Pregrado y/o Especialización)
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://repositorio.uan.edu.co/handle/123456789/6477
dc.identifier.bibliographicCitation.spa.fl_str_mv M. Jasiewicz and K. Mi¸adlicki, “An integrated CNC system for chatter suppression in turning,” Advances in Production Engineering And Management, vol. 15, no. 3, pp. 318– 330, 2020.
S. Tobias and W. Fishwick, “Theory of regenerative machine tool chatter,” The engineer, vol. 205, no. 7, pp. 199–203, 1958.
Q. F. Alex Iglesias, “Machining improvement on flexible fixture through viscoelastic damping layer,” p. 179, nov 2013. [Online]. Available: https://www.diva-portal.org/ smash/get/diva2:660817/FULLTEXT08{#}page=179
Y. Altintaş and E. Budak, “Analytical Prediction of Stability Lobes in Milling,” CIRP Annals - Manufacturing Technology, vol. 44, no. 1, pp. 357–362, 1995.
F. Campa, L. L. De Lacalle, and A. Celaya, “Chatter avoidance in the milling of thin floors with bull-nose end mills: Model and stability diagrams,” International Journal of Machine Tools and Manufacture, vol. 51, no. 1, pp. 43–53, 2011.
Y. Yang, J. Munoa, and Y. Altintas, “Optimization of multiple tuned mass dampers to suppress machine tool chatter,” International Journal of Machine Tools and Manufacture, vol. 50, no. 9, pp. 834–842, 2010.
G. Quintana and J. Ciurana, “Chatter in machining processes: A review,” International Journal of Machine Tools and Manufacture, vol. 51, no. 5, pp. 363–376, 2011.
D. Li, H. Cao, and X. Chen, “Fuzzy control of milling chatter with piezoelectric actuators embedded to the tool holder,” Mechanical Systems and Signal Processing, vol. 148, p. 107190, 2021.
E. Mizrachi, S. Basovich, and S. Arogeti, “Robust time-delayed h synthesis for active control of chatter in internal turning,” International Journal of Machine Tools and Manufacture, vol. 158, p. 103612, 2020.
S. Wan, X. Li, W. Su, J. Yuan, and J. Hong, “Active chatter suppression for milling process with sliding mode control and electromagnetic actuator,” Mechanical Systems and Signal Processing, vol. 136, p. 106528, 2020.
dc.identifier.instname.spa.fl_str_mv instname:Universidad Antonio Nariño
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UAN
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uan.edu.co/
url http://repositorio.uan.edu.co/handle/123456789/6477
identifier_str_mv M. Jasiewicz and K. Mi¸adlicki, “An integrated CNC system for chatter suppression in turning,” Advances in Production Engineering And Management, vol. 15, no. 3, pp. 318– 330, 2020.
S. Tobias and W. Fishwick, “Theory of regenerative machine tool chatter,” The engineer, vol. 205, no. 7, pp. 199–203, 1958.
Q. F. Alex Iglesias, “Machining improvement on flexible fixture through viscoelastic damping layer,” p. 179, nov 2013. [Online]. Available: https://www.diva-portal.org/ smash/get/diva2:660817/FULLTEXT08{#}page=179
Y. Altintaş and E. Budak, “Analytical Prediction of Stability Lobes in Milling,” CIRP Annals - Manufacturing Technology, vol. 44, no. 1, pp. 357–362, 1995.
F. Campa, L. L. De Lacalle, and A. Celaya, “Chatter avoidance in the milling of thin floors with bull-nose end mills: Model and stability diagrams,” International Journal of Machine Tools and Manufacture, vol. 51, no. 1, pp. 43–53, 2011.
Y. Yang, J. Munoa, and Y. Altintas, “Optimization of multiple tuned mass dampers to suppress machine tool chatter,” International Journal of Machine Tools and Manufacture, vol. 50, no. 9, pp. 834–842, 2010.
G. Quintana and J. Ciurana, “Chatter in machining processes: A review,” International Journal of Machine Tools and Manufacture, vol. 51, no. 5, pp. 363–376, 2011.
D. Li, H. Cao, and X. Chen, “Fuzzy control of milling chatter with piezoelectric actuators embedded to the tool holder,” Mechanical Systems and Signal Processing, vol. 148, p. 107190, 2021.
E. Mizrachi, S. Basovich, and S. Arogeti, “Robust time-delayed h synthesis for active control of chatter in internal turning,” International Journal of Machine Tools and Manufacture, vol. 158, p. 103612, 2020.
S. Wan, X. Li, W. Su, J. Yuan, and J. Hong, “Active chatter suppression for milling process with sliding mode control and electromagnetic actuator,” Mechanical Systems and Signal Processing, vol. 136, p. 106528, 2020.
instname:Universidad Antonio Nariño
reponame:Repositorio Institucional UAN
repourl:https://repositorio.uan.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv Acceso abierto
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Acceso abierto
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad Antonio Nariño
dc.publisher.program.spa.fl_str_mv Ingeniería Mecatrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Mecánica, Electrónica y Biomédica
dc.publisher.campus.spa.fl_str_mv Bogotá - Sur
institution Universidad Antonio Nariño
bitstream.url.fl_str_mv https://repositorio.uan.edu.co/bitstreams/59bdfe26-0b83-4352-a1ed-ab83b03c1046/download
https://repositorio.uan.edu.co/bitstreams/1e39137f-c9b5-476e-8278-453d51a109e5/download
https://repositorio.uan.edu.co/bitstreams/011fdaad-58b1-4df2-a92e-3d87b12f523c/download
https://repositorio.uan.edu.co/bitstreams/0225e07d-be16-4012-9c1b-d2ff4d322666/download
https://repositorio.uan.edu.co/bitstreams/8220ab5d-4268-40ea-b730-c2336603a75c/download
bitstream.checksum.fl_str_mv 394576816d5c8c8dab6eb380548a78b8
7789ada5fbdf1f05f7136c2730fabd2d
f55ddc4276f272f140e85bb30e0d4fbd
4ba746aee27e6799315ed42ab4784e41
9868ccc48a14c8d591352b6eaf7f6239
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1814300440017240064
spelling Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Calero Arellano, DiegoMartínez Varón, Camilo AndrésRuíz Ríos, Santiago11481718902114818144512022-05-07T14:29:04Z2022-05-07T14:29:04Z2021-11-23http://repositorio.uan.edu.co/handle/123456789/6477M. Jasiewicz and K. Mi¸adlicki, “An integrated CNC system for chatter suppression in turning,” Advances in Production Engineering And Management, vol. 15, no. 3, pp. 318– 330, 2020.S. Tobias and W. Fishwick, “Theory of regenerative machine tool chatter,” The engineer, vol. 205, no. 7, pp. 199–203, 1958.Q. F. Alex Iglesias, “Machining improvement on flexible fixture through viscoelastic damping layer,” p. 179, nov 2013. [Online]. Available: https://www.diva-portal.org/ smash/get/diva2:660817/FULLTEXT08{#}page=179Y. Altintaş and E. Budak, “Analytical Prediction of Stability Lobes in Milling,” CIRP Annals - Manufacturing Technology, vol. 44, no. 1, pp. 357–362, 1995.F. Campa, L. L. De Lacalle, and A. Celaya, “Chatter avoidance in the milling of thin floors with bull-nose end mills: Model and stability diagrams,” International Journal of Machine Tools and Manufacture, vol. 51, no. 1, pp. 43–53, 2011.Y. Yang, J. Munoa, and Y. Altintas, “Optimization of multiple tuned mass dampers to suppress machine tool chatter,” International Journal of Machine Tools and Manufacture, vol. 50, no. 9, pp. 834–842, 2010.G. Quintana and J. Ciurana, “Chatter in machining processes: A review,” International Journal of Machine Tools and Manufacture, vol. 51, no. 5, pp. 363–376, 2011.D. Li, H. Cao, and X. Chen, “Fuzzy control of milling chatter with piezoelectric actuators embedded to the tool holder,” Mechanical Systems and Signal Processing, vol. 148, p. 107190, 2021.E. Mizrachi, S. Basovich, and S. Arogeti, “Robust time-delayed h synthesis for active control of chatter in internal turning,” International Journal of Machine Tools and Manufacture, vol. 158, p. 103612, 2020.S. Wan, X. Li, W. Su, J. Yuan, and J. Hong, “Active chatter suppression for milling process with sliding mode control and electromagnetic actuator,” Mechanical Systems and Signal Processing, vol. 136, p. 106528, 2020.instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/Regenerative chatter is a form of dynamic instability present in machining processes. This factor affects the efficiency of the cut, increases the wear of the tool, decreases the quality of the piece and presents abnormal noise during the process. This happens when the cutting force creates a displacement between the tool, which has an elastic nature, and the workpiece, causing an increase in the thickness of the chip, experiencing waves on its internal and external surfaces due to the vibrations present and past. This project presents a method for controlling the machining parameters of a CNC milling machine taking into account the lobe diagrams to determine the stability and chatter reduction.El chatter regenerativo es una forma de inestabilidad dinámica presente en los procesos de maquinado. Este factor afecta la eficiencia del corte, aumenta el desgaste de la herramienta, dismunuye la calidad de la pieza y presenta ruido anormal durante el proceso. Esto sucede cuando la fuerza de corte crea un desplazamiento entre la herramienta, que tiene una naturaleza elástica, y la pieza de trabajo, ocasionando un aumento en el grosor de la viruta, experimentando ondas en sus superficies internas y externas debido a las vibraciones presentes y pasadas. Este proyecto presenta un método para el control de los parámetros de maquinado de una fresadora CNC teniendo en cuenta los diagramas de lóbulos para determinar la estabilidad y la reducción del chatter.Ingeniero(a) Mecatrónico(a)PregradoPresencialProyectospaUniversidad Antonio NariñoIngeniería MecatrónicaFacultad de Ingeniería Mecánica, Electrónica y BiomédicaBogotá - SurChatterVirutaCNCControlDiagrama de lóbulosEstabilidad620.1ChatterChipCNCControlLobe diagramStabilityModificación de parámetros de maquinado de un sistema cnc para evitar la aparición de chatter en un proceso de fresadoTrabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85EspecializadaORIGINAL2021_CamiloAndresMartinezVaron2021_CamiloAndresMartinezVaronTrabajo de gradoapplication/pdf6083955https://repositorio.uan.edu.co/bitstreams/59bdfe26-0b83-4352-a1ed-ab83b03c1046/download394576816d5c8c8dab6eb380548a78b8MD522021_CamiloAndresMartinezVaron_Autorización12021_CamiloAndresMartinezVaron_Autorización1Autorización Autores Martínezapplication/pdf822312https://repositorio.uan.edu.co/bitstreams/1e39137f-c9b5-476e-8278-453d51a109e5/download7789ada5fbdf1f05f7136c2730fabd2dMD542021_CamiloAndresMartinezVaron_Autorización22021_CamiloAndresMartinezVaron_Autorización2Autorización Autores Ruizapplication/pdf2048286https://repositorio.uan.edu.co/bitstreams/011fdaad-58b1-4df2-a92e-3d87b12f523c/downloadf55ddc4276f272f140e85bb30e0d4fbdMD552021_CamiloAndresMartinezVaron_Acta2021_CamiloAndresMartinezVaron_ActaActa Martinez-Ruizapplication/pdf357741https://repositorio.uan.edu.co/bitstreams/0225e07d-be16-4012-9c1b-d2ff4d322666/download4ba746aee27e6799315ed42ab4784e41MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.uan.edu.co/bitstreams/8220ab5d-4268-40ea-b730-c2336603a75c/download9868ccc48a14c8d591352b6eaf7f6239MD56123456789/6477oai:repositorio.uan.edu.co:123456789/64772024-10-09 23:26:23.405https://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertoopen.accesshttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co