Evaluación del pretratamiento térmico de residuos alimenticios, para la producción de biogás mediante digestión anaerobia

Propia

Autores:
Castro López, Leidy Katherine
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/2094
Acceso en línea:
http://repositorio.uan.edu.co/handle/123456789/2094
Palabra clave:
Residuos alimenticios
Pretratamiento
Hidrotérmico
Acidificación
Food waste
Hydrothermal
Pretreatment
Acidification
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
id UAntonioN2_8456e9579df7c0ac444064cf18b6f257
oai_identifier_str oai:repositorio.uan.edu.co:123456789/2094
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
dc.title.es_ES.fl_str_mv Evaluación del pretratamiento térmico de residuos alimenticios, para la producción de biogás mediante digestión anaerobia
title Evaluación del pretratamiento térmico de residuos alimenticios, para la producción de biogás mediante digestión anaerobia
spellingShingle Evaluación del pretratamiento térmico de residuos alimenticios, para la producción de biogás mediante digestión anaerobia
Residuos alimenticios
Pretratamiento
Hidrotérmico
Acidificación
Food waste
Hydrothermal
Pretreatment
Acidification
title_short Evaluación del pretratamiento térmico de residuos alimenticios, para la producción de biogás mediante digestión anaerobia
title_full Evaluación del pretratamiento térmico de residuos alimenticios, para la producción de biogás mediante digestión anaerobia
title_fullStr Evaluación del pretratamiento térmico de residuos alimenticios, para la producción de biogás mediante digestión anaerobia
title_full_unstemmed Evaluación del pretratamiento térmico de residuos alimenticios, para la producción de biogás mediante digestión anaerobia
title_sort Evaluación del pretratamiento térmico de residuos alimenticios, para la producción de biogás mediante digestión anaerobia
dc.creator.fl_str_mv Castro López, Leidy Katherine
dc.contributor.advisor.spa.fl_str_mv Lobo Baeta, Bruno Eduardo
Luna Wandurraga, Héctor Javier
dc.contributor.author.spa.fl_str_mv Castro López, Leidy Katherine
dc.subject.es_ES.fl_str_mv Residuos alimenticios
Pretratamiento
Hidrotérmico
Acidificación
topic Residuos alimenticios
Pretratamiento
Hidrotérmico
Acidificación
Food waste
Hydrothermal
Pretreatment
Acidification
dc.subject.keyword.es_ES.fl_str_mv Food waste
Hydrothermal
Pretreatment
Acidification
description Propia
publishDate 2020
dc.date.issued.spa.fl_str_mv 2020-01-13
dc.date.accessioned.none.fl_str_mv 2021-03-01T20:14:35Z
dc.date.available.none.fl_str_mv 2021-03-01T20:14:35Z
dc.type.spa.fl_str_mv Trabajo de grado (Pregrado y/o Especialización)
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://repositorio.uan.edu.co/handle/123456789/2094
dc.identifier.bibliographicCitation.spa.fl_str_mv Alibardi, L., & Cossu, R. (2016). Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products. Waste Management, 47, 69–77. https://doi.org/10.1016/j.wasman.2015.07.049
Andersen, L., Lamp, A., Dieckmann, C., Baetge, S., Schmidt, L. M., & Kaltschmitt, M. (2018). Biogas plants as key units of biorefinery concepts: Options and their assessment. Journal of Biotechnology, 283, 130–139. https://doi.org/10.1016/j.jbiotec.2018.07.041
Baêta, B. E. L., Cordeiro, P. H. de M., Passos, F., Gurgel, L. V. A., de Aquino, S. F., & FdzPolanco, F. (2017). Steam explosion pretreatment improved the biomethanization of coffee husks. Bioresource Technology, 245, 66–72. https://doi.org/10.1016/j.biortech.2017.08.110
Bong, C. P. C., Lim, L. Y., Lee, C. T., Klemeš, J. J., Ho, C. S., & Ho, W. S. (2018). The characterisation and treatment of food waste for improvement of biogas production during anaerobic digestion – A review. Journal of Cleaner Production, 172, 1545–1558. https://doi.org/10.1016/j.jclepro.2017.10.199
Centro de Estudos e Debates Estratégicos e da Consultoria Legislativa da Câmara dos, & Deputados. (2018). PERDAS E DESPERDÍCIO DE ALIMENTOSESTRATÉGIAS PARA REDUÇÃO.
Cristóbal, J., Caldeira, C., Corrado, S., & Sala, S. (2018). Techno-economic and profitability analysis of food waste biorefineries at European level. Bioresource Technology, 259, 244– 252. https://doi.org/10.1016/j.biortech.2018.03.016
De Lemos Chernicharo, C. A. (2015). Anaerobic Reactors. In Water Intelligence Online (Vol. 6). https://doi.org/10.2166/9781780402116
Dieckmann, C., Lamp, A., Schmidt, L.-M., Andersen, L., Baetge, S., & Kaltschmitt, M. (2018). Von der Biogasanlage zur Bioraffinerie – Perspektiven für zukünftige BiogasanlagenkonzepteFrom Biogas Plant to Biorefinery—Future Outlook for Small Scale Biorefinery Concepts. Zeitschrift Für Energiewirtschaft, 42(3), 235–256. https://doi.org/10.1007/s12398-018-0233-3
FAO. (n.d.). CHAPTER 2: METHODS OF FOOD ANALYSIS. Retrieved December 5, 2019, 51 from http://www.fao.org/3/y5022e/y5022e03.htm#TopOfPage
Guo, H., Zhao, Y., Damgaard, A., Wang, Q., Lu, W., Wang, H., & Christensen, T. H. (2019). Material flow analysis of alternative biorefinery systems for managing Chinese food waste. Resources, Conservation and Recycling, 149, 197–209. https://doi.org/10.1016/j.resconrec.2019.05.010
Instituto de Pesquisa Econômica Aplicada. (2012). Diagnóstico dos Resíduos Orgânicos do Setor Agrossilvopastoril e Agroindústrias Associadas 2012. Retrieved from http://www.ipea.gov.br
Kuczman, O., Gueri, M. V. D., De Souza, S. N. M., Schirmer, W. N., Alves, H. J., Secco, D., Hernandes, F. B. (2018). Food waste anaerobic digestion of a popular restaurant in Southern Brazil. Journal of Cleaner Production, 196, 382–389. https://doi.org/10.1016/j.jclepro.2018.05.282
Leipold, S., & Petit-Boix, A. (2018). The circular economy and the bio-based sector - Perspectives of European and German stakeholders. Journal of Cleaner Production, 201, 1125–1137. https://doi.org/10.1016/j.jclepro.2018.08.019
Martinez-Hernandez, E., & Samsatli, S. (2017). Biorefineries and the food, energy, water nexus — towards a whole systems approach to design and planning. Current Opinion in Chemical Engineering, Vol. 18, pp. 16–22. https://doi.org/10.1016/j.coche.2017.08.003
Mirmohamadsadeghi, S., Karimi, K., Tabatabaei, M., & Aghbashlo, M. (2019). Biogas production from food wastes: A review on recent developments and future perspectives. Bioresource Technology Reports, 7(March), 100202. https://doi.org/10.1016/j.biteb.2019.100202
Pramanik, S. K., Suja, F. B., Zain, S. M., & Pramanik, B. K. (2019). The anaerobic digestion process of biogas production from food waste: Prospects and constraints. Bioresource Technology Reports, 8, 100310. https://doi.org/10.1016/j.biteb.2019.100310
Rao, P. V., Baral, S. S., Dey, R., & Mutnuri, S. (2010). Biogas generation potential by anaerobic digestion for sustainable energy development in India. Renewable and Sustainable Energy Reviews, 14(7), 2086–2094. https://doi.org/10.1016/j.rser.2010.03.031
Santos, T. M., Alonso, M. V., Oliet, M., Domínguez, J. C., Rigual, V., & Rodriguez, F. (2018). Effect of autohydrolysis on Pinus radiata wood for hemicellulose extraction. Carbohydrate Polymers, 194, 285–293. https://doi.org/10.1016/j.carbpol.2018.04.010
Sheng, K., Chen, X., Pan, J., Kloss, R., Wei, Y., & Ying, Y. (2013). Effect of ammonia and nitrate on biogas production from food waste via anaerobic digestion. Biosystems Engineering, 116(2), 205–212. https://doi.org/10.1016/j.biosystemseng.2013 2.08.005
Srisowmeya, G., Chakravarthy, M., & Nandhini Devi, G. (2019). Critical considerations in twostage anaerobic digestion of food waste – A review. Renewable and Sustainable Energy Reviews, 109587. https://doi.org/10.1016/j.rser.2019.109587
Woźniak, E., & Twardowski, T. (2018, January 25). The bioeconomy in Poland within the context of the European Union. New Biotechnology, Vol. 40, pp. 96–102. https://doi.org/10.1016/j.nbt.2017.06.003
Yin, J., Wang, K., Yang, Y., Shen, D., Wang, M., & Mo, H. (2014). Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment. Bioresource Technology, 171, 323–329. https://doi.org/10.1016/j.biortech.2014.08.062
Yirong, C., Zhang, W., Heaven, S., & Banks, C. J. (2017). Influence of ammonia in the anaerobic digestion of food waste. Journal of Environmental Chemical Engineering, 5(5), 5131–5142. https://doi.org/10.1016/j.jece.2017.09.043
Yong, Z., Dong, Y., Zhang, X., & Tan, T. (2015). Anaerobic co-digestion of food waste and straw for biogas production. Renewable Energy, 78, 527–530. https://doi.org/10.1016/j.renene.2015.01.033
Zhang, C., Su, H., Baeyens, J., & Tan, T. (2014). Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews, Vol. 38, pp. 383–392. https://doi.org/10.1016/j.rser.2014.05.038
dc.identifier.instname.spa.fl_str_mv instname:Universidad Antonio Nariño
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UAN
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uan.edu.co/
url http://repositorio.uan.edu.co/handle/123456789/2094
identifier_str_mv Alibardi, L., & Cossu, R. (2016). Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products. Waste Management, 47, 69–77. https://doi.org/10.1016/j.wasman.2015.07.049
Andersen, L., Lamp, A., Dieckmann, C., Baetge, S., Schmidt, L. M., & Kaltschmitt, M. (2018). Biogas plants as key units of biorefinery concepts: Options and their assessment. Journal of Biotechnology, 283, 130–139. https://doi.org/10.1016/j.jbiotec.2018.07.041
Baêta, B. E. L., Cordeiro, P. H. de M., Passos, F., Gurgel, L. V. A., de Aquino, S. F., & FdzPolanco, F. (2017). Steam explosion pretreatment improved the biomethanization of coffee husks. Bioresource Technology, 245, 66–72. https://doi.org/10.1016/j.biortech.2017.08.110
Bong, C. P. C., Lim, L. Y., Lee, C. T., Klemeš, J. J., Ho, C. S., & Ho, W. S. (2018). The characterisation and treatment of food waste for improvement of biogas production during anaerobic digestion – A review. Journal of Cleaner Production, 172, 1545–1558. https://doi.org/10.1016/j.jclepro.2017.10.199
Centro de Estudos e Debates Estratégicos e da Consultoria Legislativa da Câmara dos, & Deputados. (2018). PERDAS E DESPERDÍCIO DE ALIMENTOSESTRATÉGIAS PARA REDUÇÃO.
Cristóbal, J., Caldeira, C., Corrado, S., & Sala, S. (2018). Techno-economic and profitability analysis of food waste biorefineries at European level. Bioresource Technology, 259, 244– 252. https://doi.org/10.1016/j.biortech.2018.03.016
De Lemos Chernicharo, C. A. (2015). Anaerobic Reactors. In Water Intelligence Online (Vol. 6). https://doi.org/10.2166/9781780402116
Dieckmann, C., Lamp, A., Schmidt, L.-M., Andersen, L., Baetge, S., & Kaltschmitt, M. (2018). Von der Biogasanlage zur Bioraffinerie – Perspektiven für zukünftige BiogasanlagenkonzepteFrom Biogas Plant to Biorefinery—Future Outlook for Small Scale Biorefinery Concepts. Zeitschrift Für Energiewirtschaft, 42(3), 235–256. https://doi.org/10.1007/s12398-018-0233-3
FAO. (n.d.). CHAPTER 2: METHODS OF FOOD ANALYSIS. Retrieved December 5, 2019, 51 from http://www.fao.org/3/y5022e/y5022e03.htm#TopOfPage
Guo, H., Zhao, Y., Damgaard, A., Wang, Q., Lu, W., Wang, H., & Christensen, T. H. (2019). Material flow analysis of alternative biorefinery systems for managing Chinese food waste. Resources, Conservation and Recycling, 149, 197–209. https://doi.org/10.1016/j.resconrec.2019.05.010
Instituto de Pesquisa Econômica Aplicada. (2012). Diagnóstico dos Resíduos Orgânicos do Setor Agrossilvopastoril e Agroindústrias Associadas 2012. Retrieved from http://www.ipea.gov.br
Kuczman, O., Gueri, M. V. D., De Souza, S. N. M., Schirmer, W. N., Alves, H. J., Secco, D., Hernandes, F. B. (2018). Food waste anaerobic digestion of a popular restaurant in Southern Brazil. Journal of Cleaner Production, 196, 382–389. https://doi.org/10.1016/j.jclepro.2018.05.282
Leipold, S., & Petit-Boix, A. (2018). The circular economy and the bio-based sector - Perspectives of European and German stakeholders. Journal of Cleaner Production, 201, 1125–1137. https://doi.org/10.1016/j.jclepro.2018.08.019
Martinez-Hernandez, E., & Samsatli, S. (2017). Biorefineries and the food, energy, water nexus — towards a whole systems approach to design and planning. Current Opinion in Chemical Engineering, Vol. 18, pp. 16–22. https://doi.org/10.1016/j.coche.2017.08.003
Mirmohamadsadeghi, S., Karimi, K., Tabatabaei, M., & Aghbashlo, M. (2019). Biogas production from food wastes: A review on recent developments and future perspectives. Bioresource Technology Reports, 7(March), 100202. https://doi.org/10.1016/j.biteb.2019.100202
Pramanik, S. K., Suja, F. B., Zain, S. M., & Pramanik, B. K. (2019). The anaerobic digestion process of biogas production from food waste: Prospects and constraints. Bioresource Technology Reports, 8, 100310. https://doi.org/10.1016/j.biteb.2019.100310
Rao, P. V., Baral, S. S., Dey, R., & Mutnuri, S. (2010). Biogas generation potential by anaerobic digestion for sustainable energy development in India. Renewable and Sustainable Energy Reviews, 14(7), 2086–2094. https://doi.org/10.1016/j.rser.2010.03.031
Santos, T. M., Alonso, M. V., Oliet, M., Domínguez, J. C., Rigual, V., & Rodriguez, F. (2018). Effect of autohydrolysis on Pinus radiata wood for hemicellulose extraction. Carbohydrate Polymers, 194, 285–293. https://doi.org/10.1016/j.carbpol.2018.04.010
Sheng, K., Chen, X., Pan, J., Kloss, R., Wei, Y., & Ying, Y. (2013). Effect of ammonia and nitrate on biogas production from food waste via anaerobic digestion. Biosystems Engineering, 116(2), 205–212. https://doi.org/10.1016/j.biosystemseng.2013 2.08.005
Srisowmeya, G., Chakravarthy, M., & Nandhini Devi, G. (2019). Critical considerations in twostage anaerobic digestion of food waste – A review. Renewable and Sustainable Energy Reviews, 109587. https://doi.org/10.1016/j.rser.2019.109587
Woźniak, E., & Twardowski, T. (2018, January 25). The bioeconomy in Poland within the context of the European Union. New Biotechnology, Vol. 40, pp. 96–102. https://doi.org/10.1016/j.nbt.2017.06.003
Yin, J., Wang, K., Yang, Y., Shen, D., Wang, M., & Mo, H. (2014). Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment. Bioresource Technology, 171, 323–329. https://doi.org/10.1016/j.biortech.2014.08.062
Yirong, C., Zhang, W., Heaven, S., & Banks, C. J. (2017). Influence of ammonia in the anaerobic digestion of food waste. Journal of Environmental Chemical Engineering, 5(5), 5131–5142. https://doi.org/10.1016/j.jece.2017.09.043
Yong, Z., Dong, Y., Zhang, X., & Tan, T. (2015). Anaerobic co-digestion of food waste and straw for biogas production. Renewable Energy, 78, 527–530. https://doi.org/10.1016/j.renene.2015.01.033
Zhang, C., Su, H., Baeyens, J., & Tan, T. (2014). Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews, Vol. 38, pp. 383–392. https://doi.org/10.1016/j.rser.2014.05.038
instname:Universidad Antonio Nariño
reponame:Repositorio Institucional UAN
repourl:https://repositorio.uan.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv Acceso abierto
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Acceso abierto
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad Antonio Nariño
dc.publisher.program.spa.fl_str_mv Ingeniería Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Ambiental
dc.publisher.campus.spa.fl_str_mv Bogotá - Sur
institution Universidad Antonio Nariño
bitstream.url.fl_str_mv https://repositorio.uan.edu.co/bitstreams/de24a506-87f0-4301-aa1b-521b9c5b7ee5/download
https://repositorio.uan.edu.co/bitstreams/09fab990-1c3f-40dd-84a4-bf715474ec85/download
https://repositorio.uan.edu.co/bitstreams/04528510-41e6-4624-8907-1d09d50af4dd/download
https://repositorio.uan.edu.co/bitstreams/d70d815a-623d-481b-846f-06e29c15dcb8/download
bitstream.checksum.fl_str_mv ab93b70685a604e4a5655b734a377e57
063f6ce814236b7bfbd0dd35dcd62a99
80294ba9ff4c5b4f07812ee200fbc42f
2e388663398085f69421c9e4c5fcf235
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1812928314642268160
spelling Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lobo Baeta, Bruno EduardoLuna Wandurraga, Héctor JavierCastro López, Leidy Katherine2021-03-01T20:14:35Z2021-03-01T20:14:35Z2020-01-13http://repositorio.uan.edu.co/handle/123456789/2094Alibardi, L., & Cossu, R. (2016). Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products. Waste Management, 47, 69–77. https://doi.org/10.1016/j.wasman.2015.07.049Andersen, L., Lamp, A., Dieckmann, C., Baetge, S., Schmidt, L. M., & Kaltschmitt, M. (2018). Biogas plants as key units of biorefinery concepts: Options and their assessment. Journal of Biotechnology, 283, 130–139. https://doi.org/10.1016/j.jbiotec.2018.07.041Baêta, B. E. L., Cordeiro, P. H. de M., Passos, F., Gurgel, L. V. A., de Aquino, S. F., & FdzPolanco, F. (2017). Steam explosion pretreatment improved the biomethanization of coffee husks. Bioresource Technology, 245, 66–72. https://doi.org/10.1016/j.biortech.2017.08.110Bong, C. P. C., Lim, L. Y., Lee, C. T., Klemeš, J. J., Ho, C. S., & Ho, W. S. (2018). The characterisation and treatment of food waste for improvement of biogas production during anaerobic digestion – A review. Journal of Cleaner Production, 172, 1545–1558. https://doi.org/10.1016/j.jclepro.2017.10.199Centro de Estudos e Debates Estratégicos e da Consultoria Legislativa da Câmara dos, & Deputados. (2018). PERDAS E DESPERDÍCIO DE ALIMENTOSESTRATÉGIAS PARA REDUÇÃO.Cristóbal, J., Caldeira, C., Corrado, S., & Sala, S. (2018). Techno-economic and profitability analysis of food waste biorefineries at European level. Bioresource Technology, 259, 244– 252. https://doi.org/10.1016/j.biortech.2018.03.016De Lemos Chernicharo, C. A. (2015). Anaerobic Reactors. In Water Intelligence Online (Vol. 6). https://doi.org/10.2166/9781780402116Dieckmann, C., Lamp, A., Schmidt, L.-M., Andersen, L., Baetge, S., & Kaltschmitt, M. (2018). Von der Biogasanlage zur Bioraffinerie – Perspektiven für zukünftige BiogasanlagenkonzepteFrom Biogas Plant to Biorefinery—Future Outlook for Small Scale Biorefinery Concepts. Zeitschrift Für Energiewirtschaft, 42(3), 235–256. https://doi.org/10.1007/s12398-018-0233-3FAO. (n.d.). CHAPTER 2: METHODS OF FOOD ANALYSIS. Retrieved December 5, 2019, 51 from http://www.fao.org/3/y5022e/y5022e03.htm#TopOfPageGuo, H., Zhao, Y., Damgaard, A., Wang, Q., Lu, W., Wang, H., & Christensen, T. H. (2019). Material flow analysis of alternative biorefinery systems for managing Chinese food waste. Resources, Conservation and Recycling, 149, 197–209. https://doi.org/10.1016/j.resconrec.2019.05.010Instituto de Pesquisa Econômica Aplicada. (2012). Diagnóstico dos Resíduos Orgânicos do Setor Agrossilvopastoril e Agroindústrias Associadas 2012. Retrieved from http://www.ipea.gov.brKuczman, O., Gueri, M. V. D., De Souza, S. N. M., Schirmer, W. N., Alves, H. J., Secco, D., Hernandes, F. B. (2018). Food waste anaerobic digestion of a popular restaurant in Southern Brazil. Journal of Cleaner Production, 196, 382–389. https://doi.org/10.1016/j.jclepro.2018.05.282Leipold, S., & Petit-Boix, A. (2018). The circular economy and the bio-based sector - Perspectives of European and German stakeholders. Journal of Cleaner Production, 201, 1125–1137. https://doi.org/10.1016/j.jclepro.2018.08.019Martinez-Hernandez, E., & Samsatli, S. (2017). Biorefineries and the food, energy, water nexus — towards a whole systems approach to design and planning. Current Opinion in Chemical Engineering, Vol. 18, pp. 16–22. https://doi.org/10.1016/j.coche.2017.08.003Mirmohamadsadeghi, S., Karimi, K., Tabatabaei, M., & Aghbashlo, M. (2019). Biogas production from food wastes: A review on recent developments and future perspectives. Bioresource Technology Reports, 7(March), 100202. https://doi.org/10.1016/j.biteb.2019.100202Pramanik, S. K., Suja, F. B., Zain, S. M., & Pramanik, B. K. (2019). The anaerobic digestion process of biogas production from food waste: Prospects and constraints. Bioresource Technology Reports, 8, 100310. https://doi.org/10.1016/j.biteb.2019.100310Rao, P. V., Baral, S. S., Dey, R., & Mutnuri, S. (2010). Biogas generation potential by anaerobic digestion for sustainable energy development in India. Renewable and Sustainable Energy Reviews, 14(7), 2086–2094. https://doi.org/10.1016/j.rser.2010.03.031Santos, T. M., Alonso, M. V., Oliet, M., Domínguez, J. C., Rigual, V., & Rodriguez, F. (2018). Effect of autohydrolysis on Pinus radiata wood for hemicellulose extraction. Carbohydrate Polymers, 194, 285–293. https://doi.org/10.1016/j.carbpol.2018.04.010Sheng, K., Chen, X., Pan, J., Kloss, R., Wei, Y., & Ying, Y. (2013). Effect of ammonia and nitrate on biogas production from food waste via anaerobic digestion. Biosystems Engineering, 116(2), 205–212. https://doi.org/10.1016/j.biosystemseng.2013 2.08.005Srisowmeya, G., Chakravarthy, M., & Nandhini Devi, G. (2019). Critical considerations in twostage anaerobic digestion of food waste – A review. Renewable and Sustainable Energy Reviews, 109587. https://doi.org/10.1016/j.rser.2019.109587Woźniak, E., & Twardowski, T. (2018, January 25). The bioeconomy in Poland within the context of the European Union. New Biotechnology, Vol. 40, pp. 96–102. https://doi.org/10.1016/j.nbt.2017.06.003Yin, J., Wang, K., Yang, Y., Shen, D., Wang, M., & Mo, H. (2014). Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment. Bioresource Technology, 171, 323–329. https://doi.org/10.1016/j.biortech.2014.08.062Yirong, C., Zhang, W., Heaven, S., & Banks, C. J. (2017). Influence of ammonia in the anaerobic digestion of food waste. Journal of Environmental Chemical Engineering, 5(5), 5131–5142. https://doi.org/10.1016/j.jece.2017.09.043Yong, Z., Dong, Y., Zhang, X., & Tan, T. (2015). Anaerobic co-digestion of food waste and straw for biogas production. Renewable Energy, 78, 527–530. https://doi.org/10.1016/j.renene.2015.01.033Zhang, C., Su, H., Baeyens, J., & Tan, T. (2014). Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews, Vol. 38, pp. 383–392. https://doi.org/10.1016/j.rser.2014.05.038instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/PropiaThe constant increase in population requires an increase in the demand for food. In response to such consumption, a large amount of waste and waste is generated, in addition to the impacts caused on the natural resources used to produce them. At the same time, the use of nonrenewable energy sources generates the search for alternatives of renewable sources, which can use waste or scrap from other products. As a contribution to the objectives of sustainable development, including the use of renewable and non-polluting energies; in the city of Ouro Petro, Minas Gerais-Brazil, the high generation of food waste in the university restaurant of the Federal University of Ouro Preto, demands the treatment of these, although they are currently taken for the consumption of animals, this study has the objective is to evaluate the use of food waste in the production of biogas, with visas for the energy use of the establishment itself. The food wastes were characterized physicochemically before and after applying a hydrothermal pretreatment at temperatures of 125 ° C, 160 ° C and 180 ° C, which was intended to solubilize the organic matter contained in the substrate for greater biogas production efficiency, in addition, it accelerated the hydrolysis stage of DA. He raw substrate had TS = 19.3%, VSS = 18.3%, C / N = 30, lipids = 25.4%, carbohydrates = 22.8% and proteins = 10.7%. After the substrate was pretreated, these characteristics were altered with the increase in temperature such as COD, the C / N ratio and the appearance of significant concentrations of 4+. However, the high concentration of lipids and proteins, generated inhibition of methanogens by the accumulation of fatty acids that caused acidification in the environment, achieving only values of 1.97 NmL4/ g of VSS at temperature 125 ° C and A / M = 0.5. Thus, the accumulation of fatty acids allowed microorganisms to have a large amount of food to produce intermediate products such as acetic and propionic acid, which in their transformation generate 2 obtaining values for the raw substrate of 11,59 NmL2 /g de VSS and for the pretreated substrate of 5,82 NmL2 /g de VSS a 125°C, 4,21 NmL2 /g de VSS a 160°C y 60 NmL2 /g de VSS a 180 °C, all values were obtained with the ratio A / M = 3. Therefore, it was concluded that although food residues were not positive for biomethanization, they were an excellent acidifying substrate for the production of hydrogen and volatile fatty acids, which can be products of high added value in the green industry.El aumento constante de la población, exige un aumento en la demanda de alimentos. En respuesta a dicho consumo, se genera gran cantidad de residuos y desperdicios, además de los impactos causados en los recursos naturales usados para producirlos. Paralelamente, el uso de fuentes energéticas no renovables, genera la búsqueda de alternativas de fuentes renovables, que puedan emplear los residuos o desechos provenientes de otros productos. Como contribución a los objetivos de desarrollo sostenible, entre ellos el uso de energías renovables y no contaminantes; en la ciudad de Ouro Petro, Minas Gerais-Brasil, la alta generación de residuos alimenticios en el restaurante universitario de la Universidad Federal de Ouro Preto, exige el tratamiento de los mismos, aunque actualmente son llevados para el consumo de animales, este estudio tiene como objetivo evaluar el uso de los residuos alimenticios en la producción de biogás, con visas al aprovechamiento energético del propio establecimiento. Los residuos alimenticios se caracterizaron fisicoquímicamente antes y después de aplicar un pretratamiento hidrotérmico a temperaturas de 125 °C, 160 °C y 180 °C, que tuvo como finalidad solubilizar la materia orgánica contenida en el sustrato para una mayor eficiencia de producción de biogás, además que agilizó la etapa de hidrólisis de la DA. El sustrato en bruto poseía ST= 19,3%, SV=18,3%, C/N=30, lípidos= 25,4%, carbohidratos=22,8% y proteínas=10,7%. Luego que se sometió a pretratamiento el sustrato, dichas características fueron alteradas con el aumento de la temperatura como la DQO, la relación C/N y la aparición de concentraciones significativas de 4 +. Sin embargo, la alta concentración de lípidos yproteínas, generó inhibición de los metanogénicos por la acumulación de ácidos grasos quecausaron acidificación en el medio, consiguiéndose apenas valores de 1,97 NmL4 /g de SSV a temperatura 125°C y A/M= 0,5. Así, la acumulación de ácidos grasos, permitió a los microorganismos tener gran cantidad de alimento para producir productos intermedios como ácido acético y propiónico, que en su transformación generan 2, obteniéndose valores para el sustrato en bruto de 11,59 NmL2 /g de SSV y para el sustrato pretratado de 5,82 NmL2 /g de SSV a 125°C, 4,21 NmL2 /g de SSV a 160°C y 60 NmL2 /g de SSV a 180 °C, todos los valores se obtuvieron con la relación A/M= 3. Por lo anterior, se concluyó que, aunque los residuos alimenticios no fueron positivos para la biometanización, fueron un excelente sustrato acidificante para la producción de hidrógeno y ácidos grasos volátiles, que pueden ser productos de alto valor agregado en la industria verde.Ingeniero(a) AmbientalPregradoPresencialspaUniversidad Antonio NariñoIngeniería AmbientalFacultad de Ingeniería AmbientalBogotá - SurResiduos alimenticiosPretratamientoHidrotérmicoAcidificaciónFood wasteHydrothermalPretreatmentAcidificationEvaluación del pretratamiento térmico de residuos alimenticios, para la producción de biogás mediante digestión anaerobiaTrabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85ORIGINAL2020LeidyKatherineCastroLópez.pdf2020LeidyKatherineCastroLópez.pdfTrabajo de gradoapplication/pdf1061041https://repositorio.uan.edu.co/bitstreams/de24a506-87f0-4301-aa1b-521b9c5b7ee5/downloadab93b70685a604e4a5655b734a377e57MD512020AutorizacióndeAutores.pdf2020AutorizacióndeAutores.pdfAutorización de Autoresapplication/pdf342019https://repositorio.uan.edu.co/bitstreams/09fab990-1c3f-40dd-84a4-bf715474ec85/download063f6ce814236b7bfbd0dd35dcd62a99MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.uan.edu.co/bitstreams/04528510-41e6-4624-8907-1d09d50af4dd/download80294ba9ff4c5b4f07812ee200fbc42fMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82710https://repositorio.uan.edu.co/bitstreams/d70d815a-623d-481b-846f-06e29c15dcb8/download2e388663398085f69421c9e4c5fcf235MD54123456789/2094oai:repositorio.uan.edu.co:123456789/20942024-10-09 22:45:29.143https://creativecommons.org/licenses/by-nc-sa/4.0/Acceso abiertoopen.accesshttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.coQWwgaW5jbHVpciBpbmZvcm1hY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSAgVU5JVkVSU0lEQUQgQU5UT05JTyBOQVJJw5FPLCBlbCBhdXRvcihlcykgYXV0b3JpemEgYWwgU2lzdGVtYSBOYWNpb25hbCBkZSBCaWJsaW90ZWNhcyBwYXJhIGFsbWFjZW5hciB5IG1hbnRlbmVyIGxhIGluZm9ybWFjacOzbiAsIGNvbiBmaW5lcyBhY2Fkw6ltaWNvcyB5IGRlIG1hbmVyYSBncmF0dWl0YSwgIHBvbmdhIGEgZGlzcG9zaWNpw7NuIGRlIGxhIGNvbXVuaWRhZCBzdXMgY29udGVuaWRvcyBkw6FuZG9sZSB2aXNpYmlsaWRhZCBhIGxvcyBtaXNtb3MsIHNlIGVudGllbmRlIHF1ZSBlbChsb3MpIGF1dG9yKGVzKSBhY2VwdGEobik6IAoKMS4JUXVlIGxvcyB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBwdWVkYW4gY29uc3VsdGFyIGVsIGNvbnRlbmlkbyBkZSBlc3RlIHRyYWJham8gZW4gbG9zIHNpdGlvcyB3ZWIgcXVlIGFkbWluaXN0cmEgbGEgVW5pdmVyc2lkYWQgQW50b25pbyBOYXJpw7FvLCBlbiBCYXNlIGRlIERhdG9zLCBlbiBvdHJvcyBDYXTDoWxvZ29zIHkgZW4gb3Ryb3Mgc2l0aW9zIFdlYiwgUmVkZXMgeSBTaXN0ZW1hcyBkZSBJbmZvcm1hY2nDs24gbmFjaW9uYWxlcyBlIGludGVybmFjaW9uYWxlcyDigJxPcGVuIEFjY2Vzc+KAnSB5IGVuIGxhcyByZWRlcyBkZSBpbmZvcm1hY2nDs24gZGVsIHBhw61zIHkgZGVsIGV4dGVyaW9yLCBjb24gbGFzIGN1YWxlcyB0ZW5nYSBjb252ZW5pbyBsYSBVbml2ZXJzaWRhZCBBbnRvbmlvIE5hcmnDsW8uCgoyLglRdWUgc2UgcGVybWl0ZSBsYSBjb25zdWx0YSBhIGxvcyB1c3VhcmlvcyBpbnRlcmVzYWRvcyBlbiBlbCBjb250ZW5pZG8gZGUgZXN0ZSB0cmFiYWpvLCBjb24gZmluYWxpZGFkIGFjYWTDqW1pY2EsIG51bmNhIHBhcmEgdXNvcyBjb21lcmNpYWxlcywgc2llbXByZSB5IGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyB5IGEgc3UgYXV0b3IuIEVzdG8gaW5jbHV5ZSBjdWFscXVpZXIgZm9ybWF0byBkaXNwb25pYmxlIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuCgozLglRdWUgbG9zIGRlcmVjaG9zIHNvYnJlIGxvcyBkb2N1bWVudG9zIHNvbiBwcm9waWVkYWQgZGVsIGF1dG9yIG8gZGUgbG9zIGF1dG9yZXMgeSB0aWVuZW4gc29icmUgc3Ugb2JyYSwgZW50cmUgb3Ryb3MsIGxvcyBkZXJlY2hvcyBtb3JhbGVzIGEgcXVlIGhhY2VuIHJlZmVyZW5jaWEgY29uc2VydmFuZG8gbG9zIGNvcnJlc3BvbmRpZW50ZXMgZGVyZWNob3Mgc2luIG1vZGlmaWNhY2nDs24gbyByZXN0cmljY2nDs24gYWxndW5hIHB1ZXN0byBxdWUsIGRlIGFjdWVyZG8gY29uIGxhIGxlZ2lzbGFjacOzbiBjb2xvbWJpYW5hIGFwbGljYWJsZSwgZWwgcHJlc2VudGUgZXMgdW5hIGF1dG9yaXphY2nDs24gcXVlIGVuIG5pbmfDum4gY2FzbyBjb25sbGV2YSBsYSBlbmFqZW5hY2nDs24gZGVsIGRlcmVjaG8gZGUgYXV0b3IgeSBzdXMgY29uZXhvcy4KCjQuCVF1ZSBlbCBTaXN0ZW1hIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIEFudG9uaW8gTmFyacOxbyBwdWVkYSBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBwYXJhIHByb3DDs3NpdG9zIGRlIHByZXNlcnZhY2nDs24gZGlnaXRhbC4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgeSB1c2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiBkZSBsYSBpbmZvcm1hY2nDs24gaW5jbHVpZGEgZW4gZXN0ZSByZXBvc2l0b3Jpby4KCjUuCVF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIGVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvciBsbyB0YW50byBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgVW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZTsgYXPDrSBtaXNtbyBlbCBhY8OhIGZpcm1hbnRlIGRlamFyw6EgaW5kZW1uZSBhIGxhIFVuaXZlcnNpZGFkIGRlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBwZXJqdWljaW8uCg==